mirror of
https://github.com/Z3Prover/z3
synced 2025-04-12 12:08:18 +00:00
415 lines
12 KiB
C++
415 lines
12 KiB
C++
/*++
|
|
Copyright (c) 2020 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
smt_induction.cpp
|
|
|
|
Abstract:
|
|
|
|
Add induction lemmas to context.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner 2020-04-25
|
|
|
|
Notes:
|
|
|
|
- work in absence of recursive functions but instead presence of quantifiers
|
|
- relax current requirement of model sweeping when terms don't have value simplifications
|
|
- k-induction
|
|
- also to deal with mutually recursive datatypes
|
|
- beyond literal induction lemmas
|
|
- refine initialization of values when term is equal to constructor application,
|
|
|
|
--*/
|
|
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/ast_util.h"
|
|
#include "ast/recfun_decl_plugin.h"
|
|
#include "ast/datatype_decl_plugin.h"
|
|
#include "ast/arith_decl_plugin.h"
|
|
#include "ast/rewriter/value_sweep.h"
|
|
#include "ast/rewriter/expr_safe_replace.h"
|
|
#include "smt/smt_context.h"
|
|
#include "smt/smt_induction.h"
|
|
|
|
using namespace smt;
|
|
|
|
/**
|
|
* collect literals that are assigned to true,
|
|
* but evaluate to false under all extensions of
|
|
* the congruence closure.
|
|
*/
|
|
|
|
literal_vector collect_induction_literals::pre_select() {
|
|
literal_vector result;
|
|
for (unsigned i = m_literal_index; i < ctx.assigned_literals().size(); ++i) {
|
|
literal lit = ctx.assigned_literals()[i];
|
|
smt::bool_var v = lit.var();
|
|
if (!ctx.has_enode(v)) {
|
|
continue;
|
|
}
|
|
expr* e = ctx.bool_var2expr(v);
|
|
if (!lit.sign() && m.is_eq(e))
|
|
continue;
|
|
result.push_back(lit);
|
|
}
|
|
TRACE("induction", ctx.display(tout << "literal index: " << m_literal_index << "\n" << result << "\n"););
|
|
|
|
ctx.push_trail(value_trail<context, unsigned>(m_literal_index));
|
|
m_literal_index = ctx.assigned_literals().size();
|
|
return result;
|
|
}
|
|
|
|
void collect_induction_literals::model_sweep_filter(literal_vector& candidates) {
|
|
expr_ref_vector terms(m);
|
|
for (literal lit : candidates) {
|
|
terms.push_back(ctx.bool_var2expr(lit.var()));
|
|
}
|
|
vector<expr_ref_vector> values;
|
|
vs(terms, values);
|
|
unsigned j = 0;
|
|
for (unsigned i = 0; i < terms.size(); ++i) {
|
|
literal lit = candidates[i];
|
|
bool is_viable_candidate = true;
|
|
for (auto const& vec : values) {
|
|
if (vec[i] && lit.sign() && m.is_true(vec[i]))
|
|
continue;
|
|
if (vec[i] && !lit.sign() && m.is_false(vec[i]))
|
|
continue;
|
|
is_viable_candidate = false;
|
|
break;
|
|
}
|
|
if (is_viable_candidate)
|
|
candidates[j++] = lit;
|
|
}
|
|
candidates.shrink(j);
|
|
}
|
|
|
|
|
|
collect_induction_literals::collect_induction_literals(context& ctx, ast_manager& m, value_sweep& vs):
|
|
ctx(ctx),
|
|
m(m),
|
|
vs(vs),
|
|
m_literal_index(0)
|
|
{}
|
|
|
|
literal_vector collect_induction_literals::operator()() {
|
|
literal_vector candidates = pre_select();
|
|
model_sweep_filter(candidates);
|
|
return candidates;
|
|
}
|
|
|
|
|
|
// --------------------------------------
|
|
// induction_lemmas
|
|
|
|
bool induction_lemmas::viable_induction_sort(sort* s) {
|
|
// potentially also induction on integers, sequences
|
|
return m_dt.is_datatype(s) && m_dt.is_recursive(s);
|
|
}
|
|
|
|
bool induction_lemmas::viable_induction_parent(enode* p, enode* n) {
|
|
app* o = p->get_owner();
|
|
return
|
|
m_rec.is_defined(o) ||
|
|
m_dt.is_constructor(o);
|
|
}
|
|
|
|
bool induction_lemmas::viable_induction_children(enode* n) {
|
|
app* e = n->get_owner();
|
|
if (m.is_value(e))
|
|
return false;
|
|
if (e->get_decl()->is_skolem())
|
|
return false;
|
|
if (n->get_num_args() == 0)
|
|
return true;
|
|
if (e->get_family_id() == m_rec.get_family_id())
|
|
return m_rec.is_defined(e);
|
|
if (e->get_family_id() == m_dt.get_family_id())
|
|
return m_dt.is_constructor(e);
|
|
return false;
|
|
}
|
|
|
|
bool induction_lemmas::viable_induction_term(enode* p, enode* n) {
|
|
return
|
|
viable_induction_sort(m.get_sort(n->get_owner())) &&
|
|
viable_induction_parent(p, n) &&
|
|
viable_induction_children(n);
|
|
}
|
|
|
|
/**
|
|
* positions in n that can be used for induction
|
|
* the positions are distinct roots
|
|
* and none of the roots are equivalent to a value in the current
|
|
* congruence closure.
|
|
*/
|
|
enode_vector induction_lemmas::induction_positions(enode* n) {
|
|
enode_vector result;
|
|
enode_vector todo;
|
|
auto add_todo = [&](enode* n) {
|
|
if (!n->is_marked()) {
|
|
n->set_mark();
|
|
todo.push_back(n);
|
|
}
|
|
};
|
|
add_todo(n);
|
|
for (unsigned i = 0; i < todo.size(); ++i) {
|
|
n = todo[i];
|
|
for (enode* a : smt::enode::args(n)) {
|
|
add_todo(a);
|
|
if (!a->is_marked2() && viable_induction_term(n, a)) {
|
|
result.push_back(a);
|
|
a->set_mark2();
|
|
}
|
|
}
|
|
}
|
|
for (enode* n : todo)
|
|
n->unset_mark();
|
|
for (enode* n : result)
|
|
n->unset_mark2();
|
|
return result;
|
|
}
|
|
|
|
|
|
// Collecting induction positions relative to parent.
|
|
induction_lemmas::induction_positions_t induction_lemmas::induction_positions2(enode* n) {
|
|
induction_positions_t result;
|
|
enode_vector todo;
|
|
todo.push_back(n);
|
|
n->set_mark();
|
|
for (unsigned i = 0; i < todo.size(); ++i) {
|
|
enode* n = todo[i];
|
|
unsigned idx = 0;
|
|
for (enode* a : smt::enode::args(n)) {
|
|
if (viable_induction_term(n, a)) {
|
|
result.push_back(induction_position_t(n, idx));
|
|
}
|
|
if (!a->is_marked()) {
|
|
a->set_mark();
|
|
todo.push_back(a);
|
|
}
|
|
++idx;
|
|
}
|
|
}
|
|
for (enode* n : todo)
|
|
n->unset_mark();
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
extract substitutions for x into accessor values of the same sort.
|
|
collect side-conditions for the accessors to be well defined.
|
|
apply a depth-bounded unfolding of datatype constructors to collect
|
|
accessor values beyond a first level and for nested (mutually recursive)
|
|
datatypes.
|
|
*/
|
|
void induction_lemmas::mk_hypothesis_substs(unsigned depth, expr* x, cond_substs_t& subst) {
|
|
expr_ref_vector conds(m);
|
|
mk_hypothesis_substs_rec(depth, m.get_sort(x), x, conds, subst);
|
|
}
|
|
|
|
void induction_lemmas::mk_hypothesis_substs_rec(unsigned depth, sort* s, expr* y, expr_ref_vector& conds, cond_substs_t& subst) {
|
|
sort* ys = m.get_sort(y);
|
|
for (func_decl* c : *m_dt.get_datatype_constructors(ys)) {
|
|
func_decl* is_c = m_dt.get_constructor_recognizer(c);
|
|
conds.push_back(m.mk_app(is_c, y));
|
|
for (func_decl* acc : *m_dt.get_constructor_accessors(c)) {
|
|
sort* rs = acc->get_range();
|
|
if (!m_dt.is_datatype(rs) || !m_dt.is_recursive(rs))
|
|
continue;
|
|
expr_ref acc_y(m.mk_app(acc, y), m);
|
|
if (rs == s) {
|
|
subst.push_back(std::make_pair(conds, acc_y));
|
|
}
|
|
if (depth > 1) {
|
|
mk_hypothesis_substs_rec(depth - 1, s, acc_y, conds, subst);
|
|
}
|
|
}
|
|
conds.pop_back();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create simple induction lemmas of the form:
|
|
*
|
|
* lit & a.eqs() => alpha
|
|
* alpha & is-c(sk) => ~beta
|
|
*
|
|
* where
|
|
* lit = is a formula containing t
|
|
* alpha = a.term(), a variant of lit
|
|
* with some occurrences of t replaced by sk
|
|
* beta = alpha[sk/access_k(sk)]
|
|
* for each constructor c, that is recursive
|
|
* and contains argument of datatype sort s
|
|
*
|
|
* The main claim is that the lemmas are valid and that
|
|
* they approximate induction reasoning.
|
|
*
|
|
* alpha approximates minimal instance of the datatype s where
|
|
* the instance of s is true. In the limit one can
|
|
* set beta to all instantiations of smaller values than sk.
|
|
*
|
|
*/
|
|
|
|
void induction_lemmas::mk_hypothesis_lemma(expr_ref_vector const& conds, expr_pair_vector const& subst, literal alpha) {
|
|
expr_ref beta(m);
|
|
ctx.literal2expr(alpha, beta);
|
|
expr_safe_replace rep(m);
|
|
for (auto const& p : subst) {
|
|
rep.insert(p.first, p.second);
|
|
}
|
|
rep(beta); // set beta := alpha[sk/acc(acc2(sk))]
|
|
// alpha & is-c(sk) => ~alpha[sk/acc(sk)]
|
|
literal_vector lits;
|
|
lits.push_back(~alpha);
|
|
for (expr* c : conds) lits.push_back(~mk_literal(c));
|
|
lits.push_back(~mk_literal(beta));
|
|
add_th_lemma(lits);
|
|
}
|
|
|
|
void induction_lemmas::create_hypotheses(unsigned depth, expr_ref_vector const& sks, literal alpha) {
|
|
if (sks.empty())
|
|
return;
|
|
|
|
// extract hypothesis substitutions
|
|
vector<std::pair<expr*, cond_substs_t>> substs;
|
|
for (expr* sk : sks) {
|
|
cond_substs_t subst;
|
|
mk_hypothesis_substs(depth, sk, subst);
|
|
|
|
// append the identity substitution:
|
|
expr_ref_vector conds(m);
|
|
subst.push_back(std::make_pair(conds, expr_ref(sk, m)));
|
|
substs.push_back(std::make_pair(sk, subst));
|
|
}
|
|
|
|
// create cross-product of instantiations:
|
|
vector<std::pair<expr_ref_vector, expr_pair_vector>> s1, s2;
|
|
s1.push_back(std::make_pair(expr_ref_vector(m), expr_pair_vector()));
|
|
for (auto const& x2cond_sub : substs) {
|
|
s2.reset();
|
|
for (auto const& cond_sub : x2cond_sub.second) {
|
|
for (auto const& cond_subs : s1) {
|
|
expr_pair_vector pairs(cond_subs.second);
|
|
expr_ref_vector conds(cond_subs.first);
|
|
pairs.push_back(std::make_pair(x2cond_sub.first, cond_sub.second));
|
|
conds.append(cond_sub.first);
|
|
s2.push_back(std::make_pair(conds, pairs));
|
|
}
|
|
}
|
|
s1.swap(s2);
|
|
}
|
|
s1.pop_back(); // last substitution is the identity
|
|
|
|
// extract lemmas from instantiations
|
|
for (auto& p : s1) {
|
|
mk_hypothesis_lemma(p.first, p.second, alpha);
|
|
}
|
|
}
|
|
|
|
|
|
void induction_lemmas::add_th_lemma(literal_vector const& lits) {
|
|
IF_VERBOSE(0, ctx.display_literals_verbose(verbose_stream() << "lemma:\n", lits) << "\n");
|
|
ctx.mk_clause(lits.size(), lits.c_ptr(), nullptr, smt::CLS_TH_AXIOM);
|
|
// CLS_TH_LEMMA, but then should re-instance if GC'ed
|
|
++m_num_lemmas;
|
|
}
|
|
|
|
literal induction_lemmas::mk_literal(expr* e) {
|
|
expr_ref _e(e, m);
|
|
if (!ctx.e_internalized(e)) {
|
|
ctx.internalize(e, false);
|
|
}
|
|
enode* n = ctx.get_enode(e);
|
|
ctx.mark_as_relevant(n);
|
|
return ctx.get_literal(e);
|
|
}
|
|
|
|
bool induction_lemmas::operator()(literal lit) {
|
|
unsigned num = m_num_lemmas;
|
|
enode* r = ctx.bool_var2enode(lit.var());
|
|
expr_ref_vector sks(m);
|
|
expr_safe_replace rep(m);
|
|
|
|
// have to be non-overlapping:
|
|
for (enode* n : induction_positions(r)) {
|
|
expr* t = n->get_owner();
|
|
if (is_uninterp_const(t)) { // for now, to avoid overlapping terms
|
|
sort* s = m.get_sort(t);
|
|
expr_ref sk(m.mk_fresh_const("sk", s), m);
|
|
sks.push_back(sk);
|
|
rep.insert(t, sk);
|
|
}
|
|
}
|
|
expr_ref alpha(m);
|
|
ctx.literal2expr(lit, alpha);
|
|
rep(alpha);
|
|
literal alpha_lit = mk_literal(alpha);
|
|
|
|
// alpha is the minimal instance of induction_positions where lit holds
|
|
// alpha & is-c(sk) => ~alpha[sk/acc(sk)]
|
|
create_hypotheses(1, sks, alpha_lit);
|
|
if (m_num_lemmas == num)
|
|
return false;
|
|
// lit => alpha
|
|
literal_vector lits;
|
|
lits.push_back(~lit);
|
|
lits.push_back(alpha_lit);
|
|
add_th_lemma(lits);
|
|
return true;
|
|
}
|
|
|
|
induction_lemmas::induction_lemmas(context& ctx, ast_manager& m, value_sweep& vs):
|
|
ctx(ctx),
|
|
m(m),
|
|
vs(vs),
|
|
m_dt(m),
|
|
m_a(m),
|
|
m_rec(m),
|
|
m_num_lemmas(0)
|
|
{}
|
|
|
|
induction::induction(context& ctx, ast_manager& m):
|
|
ctx(ctx),
|
|
m(m),
|
|
vs(m),
|
|
m_collect_literals(ctx, m, vs),
|
|
m_create_lemmas(ctx, m, vs)
|
|
{}
|
|
|
|
// TBD: use smt_arith_value to also include state from arithmetic solver
|
|
void induction::init_values() {
|
|
for (enode* n : ctx.enodes())
|
|
if (m.is_value(n->get_owner()))
|
|
for (enode* r : *n)
|
|
if (r != n) {
|
|
vs.set_value(r->get_owner(), n->get_owner());
|
|
}
|
|
}
|
|
|
|
bool induction::operator()() {
|
|
bool added_lemma = false;
|
|
vs.reset_values();
|
|
init_values();
|
|
literal_vector candidates = m_collect_literals();
|
|
for (literal lit : candidates) {
|
|
if (m_create_lemmas(lit))
|
|
added_lemma = true;
|
|
}
|
|
return added_lemma;
|
|
}
|
|
|
|
// state contains datatypes + recursive functions
|
|
// more comprehensive:
|
|
// state contains integers / datatypes / sequences + recursive function / quantifiers
|
|
|
|
bool induction::should_try(context& ctx) {
|
|
recfun::util u(ctx.get_manager());
|
|
datatype::util dt(ctx.get_manager());
|
|
theory* adt = ctx.get_theory(dt.get_family_id());
|
|
return adt && adt->get_num_vars() > 0 && !u.get_rec_funs().empty();
|
|
}
|