mirror of
https://github.com/Z3Prover/z3
synced 2025-04-07 01:54:08 +00:00
352 lines
13 KiB
C++
352 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2006 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
theory_arith_eq.h
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2008-06-22.
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#pragma once
|
|
|
|
// #define PROFILE_OFFSET_ROW
|
|
|
|
#ifdef PROFILE_OFFSET_ROW
|
|
#include "util/stopwatch.h"
|
|
#undef max
|
|
#undef min
|
|
#endif
|
|
|
|
namespace smt {
|
|
|
|
/**
|
|
\brief This method is invoked when a variable was non fixed and become fixed.
|
|
*/
|
|
template<typename Ext>
|
|
void theory_arith<Ext>::fixed_var_eh(theory_var v) {
|
|
if (!propagate_eqs())
|
|
return;
|
|
|
|
SASSERT(is_fixed(v));
|
|
// WARNING: it is not safe to use get_value(v) here, since
|
|
// get_value(v) may not satisfy v bounds at this point.
|
|
if (!lower_bound(v).is_rational())
|
|
return;
|
|
numeral const & val = lower_bound(v).get_rational();
|
|
value_sort_pair key(val, is_int_src(v));
|
|
theory_var v2;
|
|
if (m_fixed_var_table.find(key, v2)) {
|
|
if (v2 < static_cast<int>(get_num_vars()) && is_fixed(v2) && lower_bound(v2).get_rational() == val) {
|
|
// It only makes sense to propagate equality to the core when v and v2 have the same sort.
|
|
// The table m_fixed_var_table is not restored during backtrack. So, it may
|
|
// contain invalid (key -> value) pairs. So, we must check whether v2 is really equal to val (previous test) AND it has
|
|
// the same sort of v. The following test was missing in a previous version of Z3.
|
|
if (!is_equal(v, v2) && is_int_src(v) == is_int_src(v2)) {
|
|
antecedents ante(*this);
|
|
|
|
//
|
|
// v <= k <= v2 => v <= v2
|
|
// v >= k >= v2 => v >= v2
|
|
//
|
|
|
|
lower(v)->push_justification(ante, numeral::zero(), proofs_enabled());
|
|
upper(v2)->push_justification(ante, numeral::zero(), proofs_enabled());
|
|
lower(v2)->push_justification(ante, numeral::zero(), proofs_enabled());
|
|
upper(v)->push_justification(ante, numeral::zero(), proofs_enabled());
|
|
|
|
TRACE("arith_eq", tout << "propagate eq: v" << v << " = v" << v2 << "\n";
|
|
display_var(tout, v);
|
|
display_var(tout, v2););
|
|
m_stats.m_fixed_eqs++;
|
|
propagate_eq_to_core(v, v2, ante);
|
|
}
|
|
}
|
|
else {
|
|
// the original fixed variable v2 was deleted or its bounds were removed
|
|
// during backtracking.
|
|
m_fixed_var_table.erase(key);
|
|
m_fixed_var_table.insert(key, v);
|
|
}
|
|
}
|
|
else {
|
|
m_fixed_var_table.insert(key, v);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Returns true if r is a offset row.
|
|
A offset row is a row that can be written as:
|
|
|
|
x = y + M
|
|
|
|
where x and y are non fixed variables, and
|
|
M is linear polynomials where all variables are fixed,
|
|
and M evaluates to k.
|
|
When true is returned, x, y and k are stored in the given arguments.
|
|
|
|
\remark The following rule is used to select x and y.
|
|
- if the base variable is not fixed, then x is the base var.
|
|
- otherwise x is the smallest var.
|
|
*/
|
|
template<typename Ext>
|
|
bool theory_arith<Ext>::is_offset_row(row const & r, theory_var & x, theory_var & y, numeral & k) const {
|
|
#ifdef PROFILE_OFFSET_ROW
|
|
static stopwatch timer;
|
|
static unsigned total = 0;
|
|
static unsigned ok = 0;
|
|
timer.start();
|
|
total ++;
|
|
#endif
|
|
|
|
// Quick check without using big numbers...
|
|
// Check if there are more than 2 unbounded vars.
|
|
unsigned bad = 0;
|
|
typename vector<row_entry>::const_iterator it = r.begin_entries();
|
|
typename vector<row_entry>::const_iterator end = r.end_entries();
|
|
for (; it != end; ++it) {
|
|
if (!it->is_dead()) {
|
|
theory_var v = it->m_var;
|
|
if (lower(v) != nullptr && upper(v) != nullptr)
|
|
continue;
|
|
bad++;
|
|
if (bad > 2) {
|
|
#ifdef PROFILE_OFFSET_ROW
|
|
timer.stop();
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Full check using == for big numbers...
|
|
x = null_theory_var;
|
|
y = null_theory_var;
|
|
it = r.begin_entries();
|
|
for (; it != end; ++it) {
|
|
if (!it->is_dead()) {
|
|
theory_var v = it->m_var;
|
|
if (is_fixed(v))
|
|
continue;
|
|
if (it->m_coeff.is_one() && x == null_theory_var) {
|
|
x = v;
|
|
continue;
|
|
}
|
|
if (it->m_coeff.is_minus_one() && y == null_theory_var) {
|
|
y = v;
|
|
continue;
|
|
}
|
|
#ifdef PROFILE_OFFSET_ROW
|
|
timer.stop();
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (x == null_theory_var && y == null_theory_var) {
|
|
#ifdef PROFILE_OFFSET_ROW
|
|
timer.stop();
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
k.reset();
|
|
it = r.begin_entries();
|
|
for (; it != end; ++it) {
|
|
if (!it->is_dead()) {
|
|
theory_var v = it->m_var;
|
|
if (v == x || v == y)
|
|
continue;
|
|
SASSERT(is_fixed(v));
|
|
k -= it->m_coeff * lower_bound(v).get_rational();
|
|
}
|
|
}
|
|
|
|
#ifdef PROFILE_OFFSET_ROW
|
|
timer.stop();
|
|
ok++;
|
|
if (ok % 100000 == 0) {
|
|
TRACE("arith_eq",
|
|
tout << total << " " << ok << " "
|
|
<< static_cast<double>(ok)/static_cast<double>(total)
|
|
<< " " << timer.get_seconds() << "\n";
|
|
tout.flush(););
|
|
}
|
|
#endif
|
|
|
|
if (y == null_theory_var)
|
|
return true;
|
|
|
|
if (x == null_theory_var) {
|
|
std::swap(x, y);
|
|
k.neg();
|
|
SASSERT(x != null_theory_var);
|
|
return true;
|
|
}
|
|
|
|
if (r.get_base_var() != x && x > y) {
|
|
std::swap(x, y);
|
|
k.neg();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
\brief Cheap propagation of equalities x_i = x_j, when
|
|
x_i = y + k
|
|
x_j = y + k
|
|
|
|
This equalities are detected by maintaining a map:
|
|
(y, k) -> row_id when a row is of the form x = y + k
|
|
|
|
This methods checks whether the given row is an offset row (See is_offset_row),
|
|
and uses the map to find new equalities if that is the case.
|
|
*/
|
|
template<typename Ext>
|
|
void theory_arith<Ext>::propagate_cheap_eq(unsigned rid) {
|
|
if (!propagate_eqs())
|
|
return;
|
|
TRACE("arith_eq_verbose", tout << "checking if row " << rid << " can propagate equality.\n";
|
|
display_row_info(tout, rid););
|
|
row const & r = m_rows[rid];
|
|
theory_var x;
|
|
theory_var y;
|
|
numeral k;
|
|
if (is_offset_row(r, x, y, k)) {
|
|
if (y == null_theory_var) {
|
|
// x is an implied fixed var at k.
|
|
value_sort_pair key(k, is_int_src(x));
|
|
theory_var x2;
|
|
if (m_fixed_var_table.find(key, x2) &&
|
|
x2 < static_cast<int>(get_num_vars()) &&
|
|
is_fixed(x2) &&
|
|
lower_bound(x2).get_rational() == k &&
|
|
// We must check whether x2 is an integer.
|
|
// The table m_fixed_var_table is not restored during backtrack. So, it may
|
|
// contain invalid (key -> value) pairs.
|
|
// So, we must check whether x2 is really equal to k (previous test)
|
|
// AND has the same sort of x.
|
|
// The following test was missing in a previous version of Z3.
|
|
is_int_src(x) == is_int_src(x2) &&
|
|
!is_equal(x, x2)) {
|
|
|
|
antecedents ante(*this);
|
|
collect_fixed_var_justifications(r, ante);
|
|
|
|
//
|
|
// x1 <= k1 x1 >= k1, x2 <= x1 + k2 x2 >= x1 + k2
|
|
//
|
|
TRACE("arith_eq", tout << "fixed\n";);
|
|
lower(x2)->push_justification(ante, numeral::zero(), proofs_enabled());
|
|
upper(x2)->push_justification(ante, numeral::zero(), proofs_enabled());
|
|
m_stats.m_fixed_eqs++;
|
|
propagate_eq_to_core(x, x2, ante);
|
|
}
|
|
//return;
|
|
}
|
|
|
|
if (k.is_zero() && y != null_theory_var && !is_equal(x, y) && is_int_src(x) == is_int_src(y)) {
|
|
// found equality x = y
|
|
antecedents ante(*this);
|
|
collect_fixed_var_justifications(r, ante);
|
|
TRACE("arith_eq", tout << "propagate eq using x-y=0 row:\n"; display_row_info(tout, r););
|
|
m_stats.m_offset_eqs++;
|
|
propagate_eq_to_core(x, y, ante);
|
|
}
|
|
|
|
int row_id;
|
|
var_offset key(y, k);
|
|
if (m_var_offset2row_id.find(key, row_id)) {
|
|
row & r2 = m_rows[row_id];
|
|
if (r.get_base_var() == r2.get_base_var()) {
|
|
// it is the same row.
|
|
return;
|
|
}
|
|
theory_var x2;
|
|
theory_var y2;
|
|
numeral k2;
|
|
if (r2.get_base_var() != null_theory_var && is_offset_row(r2, x2, y2, k2)) {
|
|
bool new_eq = false;
|
|
if (y == y2 && k == k2) {
|
|
new_eq = true;
|
|
}
|
|
else if (y2 != null_theory_var) {
|
|
std::swap(x2, y2);
|
|
k2.neg();
|
|
if (y == y2 && k == k2) {
|
|
new_eq = true;
|
|
}
|
|
}
|
|
|
|
if (new_eq) {
|
|
if (!is_equal(x, x2) && is_int_src(x) == is_int_src(x2)) {
|
|
SASSERT(y == y2 && k == k2);
|
|
antecedents ante(*this);
|
|
collect_fixed_var_justifications(r, ante);
|
|
collect_fixed_var_justifications(r2, ante);
|
|
TRACE("arith_eq", tout << "propagate eq two rows:\n";
|
|
tout << "x : v" << x << "\n";
|
|
tout << "x2 : v" << x2 << "\n";
|
|
display_row_info(tout, r);
|
|
display_row_info(tout, r2););
|
|
m_stats.m_offset_eqs++;
|
|
propagate_eq_to_core(x, x2, ante);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// the original row was delete or it is not offset row anymore ===> remove it from table
|
|
}
|
|
// add new entry
|
|
m_var_offset2row_id.insert(key, rid);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename Ext>
|
|
void theory_arith<Ext>::propagate_eq_to_core(theory_var x, theory_var y, antecedents& antecedents) {
|
|
// Ignore equality if variables are already known to be equal.
|
|
if (is_equal(x, y))
|
|
return;
|
|
enode * _x = get_enode(x);
|
|
enode * _y = get_enode(y);
|
|
// I doesn't make sense to propagate an equality (to the core) of variables of different sort.
|
|
CTRACE("arith", _x->get_sort() != _y->get_sort(), tout << enode_pp(_x, ctx) << " = " << enode_pp(_y, ctx) << "\n");
|
|
if (_x->get_sort() != _y->get_sort())
|
|
return;
|
|
|
|
eq_vector const& eqs = antecedents.eqs();
|
|
literal_vector const& lits = antecedents.lits();
|
|
justification * js =
|
|
ctx.mk_justification(
|
|
ext_theory_eq_propagation_justification(
|
|
get_id(), ctx,
|
|
lits.size(), lits.data(),
|
|
eqs.size(), eqs.data(),
|
|
_x, _y,
|
|
antecedents.num_params(), antecedents.params("eq-propagate")));
|
|
TRACE("arith_eq", tout << "detected equality: #" << _x->get_owner_id() << " = #" << _y->get_owner_id() << "\n";
|
|
display_var(tout, x);
|
|
display_var(tout, y);
|
|
for (literal lit : lits)
|
|
ctx.display_detailed_literal(tout, lit) << "\n";
|
|
for (auto const& p : eqs)
|
|
tout << enode_pp(p.first, ctx) << " = " << enode_pp(p.second, ctx) << "\n";
|
|
tout << " ==> ";
|
|
tout << enode_pp(_x, ctx) << " = " << enode_pp(_y, ctx) << "\n";);
|
|
ctx.assign_eq(_x, _y, eq_justification(js));
|
|
}
|
|
};
|
|
|
|
|