3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-27 19:05:51 +00:00
z3/src/math/lp/nra_solver.cpp
2022-07-12 20:49:54 -07:00

386 lines
12 KiB
C++

/*
Copyright (c) 2017 Microsoft Corporation
Author: Nikolaj Bjorner, Lev Nachmanson
*/
#include "math/lp/lar_solver.h"
#include "math/lp/nra_solver.h"
#include "nlsat/nlsat_solver.h"
#include "math/polynomial/polynomial.h"
#include "math/polynomial/algebraic_numbers.h"
#include "util/map.h"
#include "math/lp/u_set.h"
#include "math/lp/nla_core.h"
namespace nra {
typedef nla::mon_eq mon_eq;
typedef nla::variable_map_type variable_map_type;
struct solver::imp {
lp::lar_solver& s;
reslimit& m_limit;
params_ref m_params;
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
lp::u_set m_term_set;
scoped_ptr<nlsat::solver> m_nlsat;
scoped_ptr<scoped_anum> m_zero;
mutable variable_map_type m_variable_values; // current model
nla::core& m_nla_core;
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p, nla::core& nla_core):
s(s),
m_limit(lim),
m_params(p),
m_nla_core(nla_core) {}
bool need_check() {
return m_nla_core.m_to_refine.size() != 0;
}
/**
\brief one-shot nlsat check.
A one shot checker is the least functionality that can
enable non-linear reasoning.
In addition to checking satisfiability we would also need
to identify equalities in the model that should be assumed
with the remaining solver.
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
TBD: explore more incremental ways of applying nlsat (using assumptions)
*/
lbool check() {
SASSERT(need_check());
m_zero = nullptr;
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
m_zero = alloc(scoped_anum, am());
m_term_set.clear();
m_lp2nl.reset();
vector<nlsat::assumption, false> core;
// add linear inequalities from lra_solver
for (lp::constraint_index ci : s.constraints().indices()) {
add_constraint(ci);
}
// add polynomial definitions.
for (auto const& m : m_nla_core.emons())
add_monic_eq(m);
for (unsigned i : m_term_set)
add_term(i);
// TBD: add variable bounds?
lbool r = l_undef;
try {
r = m_nlsat->check();
}
catch (z3_exception&) {
if (m_limit.is_canceled()) {
r = l_undef;
}
else {
throw;
}
}
TRACE("nra",
m_nlsat->display(tout << r << "\n");
display(tout);
for (auto kv : m_lp2nl)
tout << "j" << kv.m_key << " := x" << kv.m_value << "\n";
);
switch (r) {
case l_true:
m_nla_core.set_use_nra_model(true);
break;
case l_false: {
lp::explanation ex;
m_nlsat->get_core(core);
for (auto c : core) {
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
ex.push_back(idx);
TRACE("arith", tout << "ex: " << idx << "\n";);
}
nla::new_lemma lemma(m_nla_core, __FUNCTION__);
lemma &= ex;
m_nla_core.set_use_nra_model(true);
break;
}
case l_undef:
break;
}
return r;
}
void add_monic_eq(mon_eq const& m) {
polynomial::manager& pm = m_nlsat->pm();
svector<polynomial::var> vars;
for (auto v : m.vars()) {
vars.push_back(lp2nl(v));
}
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.data()), pm);
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
polynomial::monomial * mls[2] = { m1, m2 };
polynomial::scoped_numeral_vector coeffs(pm.m());
coeffs.push_back(mpz(1));
coeffs.push_back(mpz(-1));
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.data(), mls), pm);
polynomial::polynomial* ps[1] = { p };
bool even[1] = { false };
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
m_nlsat->mk_clause(1, &lit, nullptr);
}
void add_constraint(unsigned idx) {
auto& c = s.constraints()[idx];
auto& pm = m_nlsat->pm();
auto k = c.kind();
auto rhs = c.rhs();
auto lhs = c.coeffs();
auto sz = lhs.size();
svector<polynomial::var> vars;
rational den = denominator(rhs);
for (auto kv : lhs) {
vars.push_back(lp2nl(kv.second));
den = lcm(den, denominator(kv.first));
}
vector<rational> coeffs;
for (auto kv : lhs) {
coeffs.push_back(den * kv.first);
}
rhs *= den;
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.data(), vars.data(), -rhs), pm);
polynomial::polynomial* ps[1] = { p };
bool is_even[1] = { false };
nlsat::literal lit;
nlsat::assumption a = this + idx;
switch (k) {
case lp::lconstraint_kind::LE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::LT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::EQ:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
break;
default:
lp_assert(false); // unreachable
}
m_nlsat->mk_clause(1, &lit, a);
}
lbool check(vector<dd::pdd> const& eqs) {
m_zero = nullptr;
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
m_zero = alloc(scoped_anum, am());
m_lp2nl.reset();
m_term_set.clear();
for (auto const& eq : eqs)
add_eq(eq);
for (auto const& [v, w] : m_lp2nl) {
auto& ls = m_nla_core.m_lar_solver;
if (ls.column_has_lower_bound(v))
add_lb(ls.get_lower_bound(v), w);
if (ls.column_has_upper_bound(v))
add_ub(ls.get_upper_bound(v), w);
}
lbool r = l_undef;
try {
r = m_nlsat->check();
}
catch (z3_exception&) {
if (m_limit.is_canceled()) {
r = l_undef;
}
else {
throw;
}
}
IF_VERBOSE(0, verbose_stream() << "check-nra " << r << "\n";
m_nlsat->display(verbose_stream());
for (auto const& [v, w] : m_lp2nl) {
auto& ls = m_nla_core.m_lar_solver;
if (ls.column_has_lower_bound(v))
verbose_stream() << w << " >= " << ls.get_lower_bound(v) << "\n";
if (ls.column_has_upper_bound(v))
verbose_stream() << w << " <= " << ls.get_upper_bound(v) << "\n";
});
return r;
}
void add_eq(dd::pdd const& eq) {
dd::pdd normeq = eq;
rational lc(1);
for (auto const& [c, m] : eq)
lc = lcm(denominator(c), lc);
if (lc != 1)
normeq *= lc;
polynomial::manager& pm = m_nlsat->pm();
polynomial::polynomial_ref p(pdd2polynomial(normeq), pm);
bool is_even[1] = { false };
polynomial::polynomial* ps[1] = { p };
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
m_nlsat->mk_clause(1, &lit, nullptr);
}
void add_lb(lp::impq const& b, unsigned w) {
add_bound(b.x, w, b.y <= 0, b.y > 0 ? nlsat::atom::kind::GT : nlsat::atom::kind::LT);
}
void add_ub(lp::impq const& b, unsigned w) {
add_bound(b.x, w, b.y >= 0, b.y < 0 ? nlsat::atom::kind::LT : nlsat::atom::kind::GT);
}
// w - bound < 0
// w - bound > 0
void add_bound(lp::mpq const& bound, unsigned w, bool neg, nlsat::atom::kind k) {
polynomial::manager& pm = m_nlsat->pm();
polynomial::polynomial_ref p1(pm.mk_polynomial(w), pm);
polynomial::polynomial_ref p2(pm.mk_const(bound), pm);
polynomial::polynomial_ref p(pm.sub(p1, p2), pm);
polynomial::polynomial* ps[1] = { p };
bool is_even[1] = { false };
nlsat::literal lit = m_nlsat->mk_ineq_literal(k, 1, ps, is_even);
if (neg)
lit.neg();
m_nlsat->mk_clause(1, &lit, nullptr);
}
polynomial::polynomial* pdd2polynomial(dd::pdd const& p) {
polynomial::manager& pm = m_nlsat->pm();
if (p.is_val())
return pm.mk_const(p.val());
polynomial::polynomial_ref lo(pdd2polynomial(p.lo()), pm);
polynomial::polynomial_ref hi(pdd2polynomial(p.hi()), pm);
unsigned w, v = p.var();
if (!m_lp2nl.find(v, w)) {
w = m_nlsat->mk_var(false);
m_lp2nl.insert(v, w);
}
polynomial::polynomial_ref vp(pm.mk_polynomial(w, 1), pm);
return pm.add(lo, pm.mul(vp, hi));
}
bool is_int(lp::var_index v) {
return s.var_is_int(v);
}
polynomial::var lp2nl(lp::var_index v) {
polynomial::var r;
if (!m_lp2nl.find(v, r)) {
r = m_nlsat->mk_var(is_int(v));
m_lp2nl.insert(v, r);
if (!m_term_set.contains(v) && s.column_corresponds_to_term(v)) {
if (v >= m_term_set.data_size())
m_term_set.resize(v + 1);
m_term_set.insert(v);
}
}
return r;
}
//
void add_term(unsigned term_column) {
lp::tv ti = lp::tv::raw(s.column_to_reported_index(term_column));
const lp::lar_term& t = s.get_term(ti);
// code that creates a polynomial equality between the linear coefficients and
// variable representing the term.
svector<polynomial::var> vars;
rational den(1);
for (lp::lar_term::ival kv : t) {
vars.push_back(lp2nl(kv.column().index()));
den = lcm(den, denominator(kv.coeff()));
}
vars.push_back(lp2nl(term_column));
vector<rational> coeffs;
for (auto kv : t) {
coeffs.push_back(den * kv.coeff());
}
coeffs.push_back(-den);
polynomial::manager& pm = m_nlsat->pm();
polynomial::polynomial_ref p(pm.mk_linear(coeffs.size(), coeffs.data(), vars.data(), rational(0)), pm);
polynomial::polynomial* ps[1] = { p };
bool is_even[1] = { false };
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
m_nlsat->mk_clause(1, &lit, nullptr);
}
nlsat::anum const& value(lp::var_index v) const {
polynomial::var pv;
if (m_lp2nl.find(v, pv))
return m_nlsat->value(pv);
else
return *m_zero;
}
nlsat::anum_manager& am() {
return m_nlsat->am();
}
void updt_params(params_ref& p) {
m_params.append(p);
}
std::ostream& display(std::ostream& out) const {
for (auto m : m_nla_core.emons()) {
out << "j" << m.var() << " = ";
for (auto v : m.vars()) {
out << "j" << v << " ";
}
out << "\n";
}
return out;
}
};
solver::solver(lp::lar_solver& s, reslimit& lim, nla::core & nla_core, params_ref const& p) {
m_imp = alloc(imp, s, lim, p, nla_core);
}
solver::~solver() {
dealloc(m_imp);
}
lbool solver::check() {
return m_imp->check();
}
lbool solver::check(vector<dd::pdd> const& eqs) {
return m_imp->check(eqs);
}
bool solver::need_check() {
return m_imp->need_check();
}
std::ostream& solver::display(std::ostream& out) const {
return m_imp->display(out);
}
nlsat::anum const& solver::value(lp::var_index v) const {
return m_imp->value(v);
}
nlsat::anum_manager& solver::am() {
return m_imp->am();
}
void solver::updt_params(params_ref& p) {
m_imp->updt_params(p);
}
}