mirror of
https://github.com/Z3Prover/z3
synced 2025-07-17 01:46:39 +00:00
126 lines
3.6 KiB
C++
126 lines
3.6 KiB
C++
/*
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
Author: Lev Nachmanson
|
|
*/
|
|
|
|
#pragma once
|
|
#include "util/lp/nra_solver.h"
|
|
#include "nlsat/nlsat_solver.h"
|
|
|
|
namespace lp {
|
|
|
|
struct nra_solver::imp {
|
|
lean::lar_solver& s;
|
|
reslimit m_limit; // TBD: extract from lar_solver
|
|
params_ref m_params; // TBD: pass from outside
|
|
|
|
struct mon_eq {
|
|
mon_eq(lean::var_index v, svector<lean::var_index> const& vs):
|
|
m_v(v), m_vs(vs) {}
|
|
lean::var_index m_v;
|
|
svector<lean::var_index> m_vs;
|
|
};
|
|
|
|
vector<mon_eq> m_monomials;
|
|
unsigned_vector m_lim;
|
|
mutable std::unordered_map<lean::var_index, rational> m_variable_values; // current model
|
|
|
|
imp(lean::lar_solver& s):
|
|
s(s) {
|
|
}
|
|
|
|
lean::final_check_status check_feasible() {
|
|
return lean::final_check_status::GIVEUP;
|
|
}
|
|
|
|
void add(lean::var_index v, unsigned sz, lean::var_index const* vs) {
|
|
m_monomials.push_back(mon_eq(v, svector<lean::var_index>(sz, vs)));
|
|
}
|
|
|
|
void push() {
|
|
m_lim.push_back(m_monomials.size());
|
|
}
|
|
|
|
void pop(unsigned n) {
|
|
if (n == 0) return;
|
|
SASSERT(n < m_lim.size());
|
|
m_monomials.shrink(m_lim[m_lim.size() - n]);
|
|
m_lim.shrink(m_lim.size() - n);
|
|
}
|
|
|
|
/*
|
|
\brief Check if polynomials are well defined.
|
|
multiply values for vs and check if they are equal to value for v.
|
|
epsilon has been computed.
|
|
*/
|
|
bool check_assignment(mon_eq const& m) const {
|
|
rational r1 = m_variable_values[m.m_v];
|
|
rational r2(1);
|
|
for (auto w : m.m_vs) {
|
|
r2 *= m_variable_values[w];
|
|
}
|
|
return r1 == r2;
|
|
}
|
|
|
|
bool check_assignments() const {
|
|
s.get_model(m_variable_values);
|
|
for (auto const& m : m_monomials) {
|
|
if (!check_assignment(m)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
\brief one-shot nlsat check.
|
|
A one shot checker is the least functionality that can
|
|
enable non-linear reasoning.
|
|
In addition to checking satisfiability we would also need
|
|
to identify equalities in the model that should be assumed
|
|
with the remaining solver.
|
|
|
|
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
|
|
*/
|
|
lbool check_nlsat() {
|
|
nlsat::solver solver(m_limit, m_params);
|
|
// add linear inequalities from lra_solver
|
|
// add polynomial definitions.
|
|
for (auto const& m : m_monomials) {
|
|
add_monomial_eq(solver, m);
|
|
}
|
|
lbool r = solver.check();
|
|
if (r == l_true) {
|
|
// TBD extract model.
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void add_monomial_eq(nlsat::solver& solver, mon_eq const& m) {
|
|
|
|
}
|
|
};
|
|
|
|
nra_solver::nra_solver(lean::lar_solver& s) {
|
|
m_imp = alloc(imp, s);
|
|
}
|
|
|
|
nra_solver::~nra_solver() {
|
|
dealloc(m_imp);
|
|
}
|
|
|
|
void nra_solver::add_monomial(lean::var_index v, unsigned sz, lean::var_index const* vs) {
|
|
m_imp->add(v, sz, vs);
|
|
}
|
|
|
|
lean::final_check_status nra_solver::check_feasible() {
|
|
return m_imp->check_feasible();
|
|
}
|
|
|
|
void nra_solver::push() {
|
|
m_imp->push();
|
|
}
|
|
|
|
void nra_solver::pop(unsigned n) {
|
|
m_imp->pop(n);
|
|
}
|
|
}
|