3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-10 16:12:03 +00:00
z3/src/math/polysat/viable.cpp
Jakob Rath 0c62b81a56 Rename confusing methods
avoid difference between c.is_eq() and c->is_eq()
2023-06-23 11:59:18 +02:00

2255 lines
86 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
maintain viable domains
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
Notes:
TODO: Investigate in depth a notion of phase caching for variables.
The Linear solver can be used to supply a phase in some cases.
In other cases, the phase of a variable assignment across branches
might be used in a call to is_viable. With phase caching on, it may
just check if the cached phase is viable without detecting that it is a propagation.
TODO: improve management of the fallback univariate solvers:
- use a solver pool and recycle the least recently used solver
- incrementally add/remove constraints
- set resource limit of univariate solver
TODO: plan to fix the FI "pumping":
1. simple looping detection and bitblasting fallback. -- done
2. intervals at multiple bit widths
- for equations, this will give us exact solutions for all coefficients
- for inequalities, a coefficient 2^k*a means that intervals are periodic because the upper k bits of x are irrelevant;
storing the interval for x[K-k:0] would take care of this.
--*/
#include "util/debug.h"
#include "math/polysat/viable.h"
#include "math/polysat/solver.h"
#include "math/polysat/number.h"
#include "math/polysat/univariate/univariate_solver.h"
namespace polysat {
using namespace viable_query;
struct inf_fi : public inference {
viable& v;
pvar var;
inf_fi(viable& v, pvar var) : v(v), var(var) {}
std::ostream& display(std::ostream& out) const override {
return out << "Forbidden intervals for v" << var << ": " << viable::var_pp(v, var);
}
};
viable::viable(solver& s):
s(s),
m_forbidden_intervals(s) {
}
viable::~viable() {
for (entry* e : m_alloc)
dealloc(e);
}
void viable::push_var(unsigned bit_width) {
m_units.push_back(nullptr);
m_equal_lin.push_back(nullptr);
m_diseq_lin.push_back(nullptr);
}
void viable::pop_var() {
m_units.pop_back();
m_equal_lin.pop_back();
m_diseq_lin.pop_back();
}
viable::entry* viable::alloc_entry() {
if (m_alloc.empty())
return alloc(entry);
auto* e = m_alloc.back();
e->src.reset();
e->side_cond.reset();
e->refined.reset();
e->coeff = 1;
m_alloc.pop_back();
return e;
}
void viable::pop_viable() {
auto const& [v, k, e] = m_trail.back();
// display_one(verbose_stream() << "Pop entry: ", v, e) << "\n";
SASSERT(well_formed(m_units[v]));
switch (k) {
case entry_kind::unit_e:
entry::remove_from(m_units[v], e);
SASSERT(well_formed(m_units[v]));
break;
case entry_kind::equal_e:
entry::remove_from(m_equal_lin[v], e);
break;
case entry_kind::diseq_e:
entry::remove_from(m_diseq_lin[v], e);
break;
default:
UNREACHABLE();
break;
}
m_alloc.push_back(e);
m_trail.pop_back();
}
void viable::push_viable() {
auto& [v, k, e] = m_trail.back();
// display_one(verbose_stream() << "Push entry: ", v, e) << "\n";
SASSERT(e->prev() != e || !m_units[v]);
SASSERT(e->prev() != e || e->next() == e);
SASSERT(k == entry_kind::unit_e);
(void)k;
SASSERT(well_formed(m_units[v]));
if (e->prev() != e) {
entry* pos = e->prev();
e->init(e);
pos->insert_after(e);
if (e->interval.lo_val() < m_units[v]->interval.lo_val())
m_units[v] = e;
}
else
m_units[v] = e;
SASSERT(well_formed(m_units[v]));
m_trail.pop_back();
}
bool viable::intersect(pdd const& p, pdd const& q, signed_constraint const& sc) {
pvar v = null_var;
bool first = true;
bool prop = false;
if (p.is_unilinear())
v = p.var();
else if (q.is_unilinear())
v = q.var(), first = false;
else
return prop;
try_viable:
if (intersect(v, sc)) {
if (s.is_conflict())
return true;
rational val;
switch (find_viable(v, val)) {
case find_t::singleton:
propagate(v, val);
prop = true;
break;
case find_t::empty:
SASSERT(s.is_conflict());
return true;
default:
break;
}
}
if (first && q.is_unilinear() && q.var() != v) {
v = q.var();
first = false;
goto try_viable;
}
return prop;
}
void viable::propagate(pvar v, rational const& val) {
// NOTE: all propagations must be justified by a prefix of \Gamma,
// otherwise dependencies may be missed during conflict resolution.
// The propagation reason for v := val consists of the following constraints:
// - source constraint (already on \Gamma)
// - side conditions
// - i.lo() == i.lo_val() for each unit interval i
// - i.hi() == i.hi_val() for each unit interval i
// NSB review:
// the bounds added by x < p and p < x in forbidden_intervals
// match_non_max, match_non_zero
// use values that are approximations. Then the propagations in
// try_assign_eval are incorrect.
// For example, x > p means x has forbidden interval [0, p + 1[,
// the numeric interval is [0, 1[, but p + 1 == 1 is not ensured
// even p may have free variables.
// the proper side condition on p + 1 is -1 > p or -2 >= p or p + 1 != 0
// I am disabling match_non_max and match_non_zero from forbidden_interval
// The narrowing rules in ule_constraint already handle the bounds propagaitons
// as it propagates p != -1 and 0 != q (p < -1, q > 0),
//
for (auto const& c : get_constraints(v)) {
s.try_assign_eval(c);
}
for (auto const& i : units(v)) {
s.try_assign_eval(s.eq(i.lo(), i.lo_val()));
s.try_assign_eval(s.eq(i.hi(), i.hi_val()));
}
s.assign_propagate(v, val);
}
bool viable::intersect(pvar v, signed_constraint const& c) {
LOG("intersect v" << v << " in " << lit_pp(s, c));
if (s.is_assigned(v)) {
// this can happen e.g. for c = ovfl*(v2,v3); where intersect(pdd,pdd,signed_constraint) will try both variables.
LOG("abort intersect because v" << v << " is already assigned");
return false;
}
entry* ne = alloc_entry();
if (!m_forbidden_intervals.get_interval(c, v, *ne)) {
m_alloc.push_back(ne);
return false;
}
if (ne->interval.is_currently_empty()) {
m_alloc.push_back(ne);
return false;
}
for (signed_constraint sc : ne->side_cond) {
// side conditions must evaluate to true by definition
VERIFY(sc.is_currently_true(s));
switch (sc.bvalue(s)) {
case l_false:
// We have a bool/eval conflict with one of the side conditions.
// This happens if the side condition was already bool-propagated, but appears in the propagation queue after c.
// UNREACHABLE(); // since propagation now checks bool/eval conflicts before narrowing, this case should be impossible.
// TODO: why does it still trigger?
s.set_conflict(~sc);
return true;
case l_undef:
s.assign_eval(sc.blit());
break;
case l_true:
// ok
break;
}
// any bool/eval conflicts should have been discovered before narrowing;
VERIFY(sc.bvalue(s) != l_false);
// side conditions should be eval'd
VERIFY_EQ(sc.bvalue(s), l_true);
}
if (ne->coeff == 1) {
return intersect(v, ne);
}
else if (ne->coeff == -1) {
insert(ne, v, m_diseq_lin, entry_kind::diseq_e);
return true;
}
else {
insert(ne, v, m_equal_lin, entry_kind::equal_e);
return true;
}
}
void viable::insert(entry* e, pvar v, ptr_vector<entry>& entries, entry_kind k) {
SASSERT(well_formed(m_units[v]));
m_trail.push_back({ v, k, e });
s.m_trail.push_back(trail_instr_t::viable_add_i);
e->init(e);
if (!entries[v])
entries[v] = e;
else
e->insert_after(entries[v]);
SASSERT(entries[v]->invariant());
SASSERT(well_formed(m_units[v]));
}
bool viable::intersect(pvar v, entry* ne) {
SASSERT(!s.is_assigned(v));
SASSERT(!ne->src.empty());
entry* e = m_units[v];
if (e && e->interval.is_full()) {
m_alloc.push_back(ne);
return false;
}
if (ne->interval.is_currently_empty()) {
m_alloc.push_back(ne);
return false;
}
auto create_entry = [&]() {
m_trail.push_back({ v, entry_kind::unit_e, ne });
s.m_trail.push_back(trail_instr_t::viable_add_i);
ne->init(ne);
return ne;
};
auto remove_entry = [&](entry* e) {
m_trail.push_back({ v, entry_kind::unit_e, e });
s.m_trail.push_back(trail_instr_t::viable_rem_i);
e->remove_from(m_units[v], e);
};
if (ne->interval.is_full()) {
while (m_units[v])
remove_entry(m_units[v]);
m_units[v] = create_entry();
return true;
}
if (!e)
m_units[v] = create_entry();
else {
entry* first = e;
do {
if (e->interval.currently_contains(ne->interval)) {
m_alloc.push_back(ne);
return false;
}
while (ne->interval.currently_contains(e->interval)) {
entry* n = e->next();
remove_entry(e);
if (!m_units[v]) {
m_units[v] = create_entry();
return true;
}
if (e == first)
first = n;
e = n;
}
SASSERT(e->interval.lo_val() != ne->interval.lo_val());
if (e->interval.lo_val() > ne->interval.lo_val()) {
if (first->prev()->interval.currently_contains(ne->interval)) {
m_alloc.push_back(ne);
return false;
}
e->insert_before(create_entry());
if (e == first)
m_units[v] = e->prev();
SASSERT(well_formed(m_units[v]));
return true;
}
e = e->next();
}
while (e != first);
// otherwise, append to end of list
first->insert_before(create_entry());
}
SASSERT(well_formed(m_units[v]));
return true;
}
template<bool FORWARD>
bool viable::refine_viable(pvar v, rational const& val, const svector<lbool>& fixed, const vector<ptr_vector<entry>>& justifications) {
return refine_bits<FORWARD>(v, val, fixed, justifications) && refine_equal_lin(v, val) && refine_disequal_lin(v, val);
}
namespace {
rational div_floor(rational const& a, rational const& b) {
return floor(a / b);
}
rational div_ceil(rational const& a, rational const& b) {
return ceil(a / b);
}
/**
* Given a*y0 mod M \in [lo;hi], try to find the largest y_max >= y0 such that for all y \in [y0;y_max] . a*y mod M \in [lo;hi].
* Result may not be optimal.
* NOTE: upper bound is inclusive.
*/
rational compute_y_max(rational const& y0, rational const& a, rational const& lo0, rational const& hi, rational const& M) {
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo0=" << lo0 << " hi=" << hi << " M=" << M << std::endl;
// SASSERT(0 <= y0 && y0 < M); // not required
SASSERT(1 <= a && a < M);
SASSERT(0 <= lo0 && lo0 < M);
SASSERT(0 <= hi && hi < M);
if (lo0 <= hi) {
SASSERT(lo0 <= mod(a*y0, M) && mod(a*y0, M) <= hi);
}
else {
SASSERT(mod(a*y0, M) <= hi || mod(a*y0, M) >= lo0);
}
// wrapping intervals are handled by replacing the lower bound lo by lo - M
rational const lo = lo0 > hi ? (lo0 - M) : lo0;
// the length of the interval is now hi - lo + 1.
// full intervals shouldn't go through this computation.
SASSERT(hi - lo + 1 < M);
auto contained = [&lo, &hi] (rational const& a_y) -> bool {
return lo <= a_y && a_y <= hi;
};
auto delta_h = [&a, &lo, &hi] (rational const& a_y) -> rational {
SASSERT(lo <= a_y && a_y <= hi);
(void)lo; // avoid warning in release mode
return div_floor(hi - a_y, a);
};
// minimal k such that lo <= a*y0 + k*M
rational const k = div_ceil(lo - a * y0, M);
rational const kM = k*M;
rational const a_y0 = a*y0 + kM;
SASSERT(contained(a_y0));
// maximal y for [lo;hi]-interval around a*y0
// rational const y0h = y0 + div_floor(hi - a_y0, a);
rational const delta0 = delta_h(a_y0);
rational const y0h = y0 + delta0;
rational const a_y0h = a_y0 + a*delta0;
SASSERT(y0 <= y0h);
SASSERT(contained(a_y0h));
// Check the first [lo;hi]-interval after a*y0
rational const y1l = y0h + 1;
rational const a_y1l = a_y0h + a - M;
if (!contained(a_y1l))
return y0h;
rational const delta1 = delta_h(a_y1l);
rational const y1h = y1l + delta1;
rational const a_y1h = a_y1l + a*delta1;
SASSERT(y1l <= y1h);
SASSERT(contained(a_y1h));
// Check the second [lo;hi]-interval after a*y0
rational const y2l = y1h + 1;
rational const a_y2l = a_y1h + a - M;
if (!contained(a_y2l))
return y1h;
SASSERT(contained(a_y2l));
// At this point, [y1l;y1h] must be a full y-interval that can be extended to the right.
// Extending the interval can only be possible if the part not covered by [lo;hi] is smaller than the coefficient a.
// The size of the gap is (lo + M) - (hi + 1).
SASSERT(lo + M - hi - 1 < a);
// The points a*[y0l;y0h] + k*M fall into the interval [lo;hi].
// After the first overflow, the points a*[y1l .. y1h] + (k - 1)*M fall into [lo;hi].
// With each overflow, these points drift by some offset alpha.
rational const step = y1h - y0h;
rational const alpha = a * step - M;
if (alpha == 0) {
// the points do not drift after overflow
// => y_max is infinite
return y0 + M;
}
rational const i =
alpha < 0
// alpha < 0:
// With each overflow to the right, the points drift to the left.
// We can continue overflowing while a * yil >= lo, where yil = y1l + i * step.
? div_floor(lo - a_y1l, alpha)
// alpha > 0:
// With each overflow to the right, the points drift to the right.
// We can continue overflowing while a * yih <= hi, where yih = y1h + i * step.
: div_floor(hi - a_y1h, alpha);
// i is the number of overflows to the right
SASSERT(i >= 0);
// a * [yil;yih] is the right-most y-interval that is completely in [lo;hi].
rational const yih = y1h + i * step;
rational const a_yih = a_y1h + i * alpha;
SASSERT_EQ(a_yih, a*yih + (k - i - 1)*M);
SASSERT(contained(a_yih));
// The next interval to the right may contain a few more values if alpha > 0
// (because only the upper end moved out of the interval)
rational const y_next = yih + 1;
rational const a_y_next = a_yih + a - M;
if (contained(a_y_next))
return y_next + delta_h(a_y_next);
else
return yih;
}
/**
* Given a*y0 mod M \in [lo;hi], try to find the smallest y_min <= y0 such that for all y \in [y_min;y0] . a*y mod M \in [lo;hi].
* Result may not be optimal.
* NOTE: upper bound is inclusive.
*/
rational compute_y_min(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M) {
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo=" << lo << " hi=" << hi << " M=" << M << std::endl;
// SASSERT(0 <= y0 && y0 < M); // not required
SASSERT(1 <= a && a < M);
SASSERT(0 <= lo && lo < M);
SASSERT(0 <= hi && hi < M);
auto const negateM = [&M] (rational const& x) -> rational {
if (x.is_zero())
return x;
else
return M - x;
};
rational y_min = -compute_y_max(-y0, a, negateM(hi), negateM(lo), M);
while (y_min > y0)
y_min -= M;
return y_min;
}
/**
* Given a*y0 mod M \in [lo;hi],
* find the largest interval [y_min;y_max] around y0 such that for all y \in [y_min;y_max] . a*y mod M \in [lo;hi].
* Result may not be optimal.
* NOTE: upper bounds are inclusive.
*/
std::pair<rational, rational> compute_y_bounds(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M) {
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo=" << lo << " hi=" << hi << " M=" << M << std::endl;
SASSERT(0 <= y0 && y0 < M);
SASSERT(1 <= a && a < M);
SASSERT(0 <= lo && lo < M);
SASSERT(0 <= hi && hi < M);
auto const is_valid = [&] (rational const& y) -> bool {
rational const a_y = mod(a * y, M);
if (lo <= hi)
return lo <= a_y && a_y <= hi;
else
return a_y <= hi || lo <= a_y;
};
unsigned const max_refinements = 100;
unsigned i = 0;
rational const y_max_max = y0 + M - 1;
rational y_max = compute_y_max(y0, a, lo, hi, M);
while (y_max < y_max_max && is_valid(y_max + 1)) {
y_max = compute_y_max(y_max + 1, a, lo, hi, M);
if (++i == max_refinements) {
// verbose_stream() << "y0=" << y0 << ", a=" << a << ", lo=" << lo << ", hi=" << hi << "\n";
// verbose_stream() << "refined y_max: " << y_max << "\n";
break;
}
}
i = 0;
rational const y_min_min = y_max - M + 1;
rational y_min = y0;
while (y_min > y_min_min && is_valid(y_min - 1)) {
y_min = compute_y_min(y_min - 1, a, lo, hi, M);
if (++i == max_refinements) {
// verbose_stream() << "y0=" << y0 << ", a=" << a << ", lo=" << lo << ", hi=" << hi << "\n";
// verbose_stream() << "refined y_min: " << y_min << "\n";
break;
}
}
SASSERT(y_min <= y0 && y0 <= y_max);
rational const len = y_max - y_min + 1;
if (len >= M)
// full
return { rational::zero(), M - 1 };
else
return { mod(y_min, M), mod(y_max, M) };
}
}
template<bool FORWARD>
bool viable::refine_bits(pvar v, rational const& val, const svector<lbool>& fixed, const vector<ptr_vector<entry>>& justifications) {
pdd v_pdd = s.var(v);
// TODO: We might also extend simultaneously up and downwards if we want the actual interval (however, this might make use of more fixed bits and is weaker - worse - therefore)
entry* ne = alloc_entry();
rational new_val = extend_by_bits<FORWARD>(v_pdd, val, fixed, justifications, ne->src, ne->side_cond, ne->refined);
if (new_val == val) {
m_alloc.push_back(ne);
return true;
}
// TODO: Extend in both directions? (Less justifications vs. bigger intervals)
rational new_val2 = extend_by_bits<!FORWARD>(v_pdd, val, fixed, justifications, ne->src, ne->side_cond, ne->refined);
ne->coeff = 1;
if (FORWARD) {
LOG("refine-bits FORWARD for v" << v << " = " << val << " to [" << new_val2 << ", " << new_val << "[");
ne->interval = eval_interval::proper(v_pdd.manager().mk_val(new_val2), new_val2, v_pdd.manager().mk_val(new_val), new_val);
}
else {
LOG("refine-bits BACKWARD for v" << v << " = " << val << " to [" << new_val << ", " << new_val2 << "[");
ne->interval = eval_interval::proper(v_pdd.manager().mk_val(new_val), new_val, v_pdd.manager().mk_val(new_val2), new_val2);
}
SASSERT(ne->interval.currently_contains(val));
intersect(v, ne);
return false;
}
/**
* Traverse all interval constraints with coefficients to check whether current value 'val' for
* 'v' is feasible. If not, extract a (maximal) interval to block 'v' from being assigned val.
*
* To investigate:
* - side conditions are stronger than for unit intervals. They constrain the lower and upper bounds to
* be precisely the assigned values. This is to ensure that lo/hi that are computed based on lo_val
* and division with coeff are valid. Is there a more relaxed scheme?
*/
bool viable::refine_equal_lin(pvar v, rational const& val) {
// LOG_H2("refine-equal-lin with v" << v << ", val = " << val);
entry const* e = m_equal_lin[v];
if (!e)
return true;
entry const* first = e;
auto& m = s.var2pdd(v);
unsigned const N = m.power_of_2();
rational const& max_value = m.max_value();
rational const& mod_value = m.two_to_N();
// Rotate the 'first' entry, to prevent getting stuck in a refinement loop
// with an early entry when a later entry could give a better interval.
m_equal_lin[v] = m_equal_lin[v]->next();
do {
rational coeff_val = mod(e->coeff * val, mod_value);
if (e->interval.currently_contains(coeff_val)) {
// IF_LOGGING(
// verbose_stream() << "refine-equal-lin for v" << v << " in src: ";
// for (const auto& src : e->src)
// verbose_stream() << lit_pp(s, src) << "\n";
// );
// LOG("forbidden interval v" << v << " " << num_pp(s, v, val) << " " << num_pp(s, v, e->coeff, true) << " * " << e->interval);
if (mod(e->interval.hi_val() + 1, mod_value) == e->interval.lo_val()) {
// We have an equation: a * v == b
rational const a = e->coeff;
rational const b = e->interval.hi_val();
LOG("refine-equal-lin: equation detected: " << dd::val_pp(m, a, true) << " * v" << v << " == " << dd::val_pp(m, b, false));
unsigned const parity_a = get_parity(a, N);
unsigned const parity_b = get_parity(b, N);
if (parity_a > parity_b) {
// No solution
LOG("refined: no solution due to parity");
entry* ne = alloc_entry();
ne->refined.push_back(e);
ne->src = e->src;
ne->side_cond = e->side_cond;
ne->coeff = 1;
ne->interval = eval_interval::full();
intersect(v, ne);
return false;
}
if (parity_a == 0) {
// "fast path" for odd a
rational a_inv;
VERIFY(a.mult_inverse(N, a_inv));
rational const hi = mod(a_inv * b, mod_value);
rational const lo = mod(hi + 1, mod_value);
LOG("refined to [" << num_pp(s, v, lo) << ", " << num_pp(s, v, hi) << "[");
SASSERT_EQ(mod(a * hi, mod_value), b); // hi is the solution
entry* ne = alloc_entry();
ne->refined.push_back(e);
ne->src = e->src;
ne->side_cond = e->side_cond;
ne->coeff = 1;
ne->interval = eval_interval::proper(m.mk_val(lo), lo, m.mk_val(hi), hi);
SASSERT(ne->interval.currently_contains(val));
intersect(v, ne);
return false;
}
// 2^k * v == a_inv * b
// 2^k solutions because only the lower N-k bits of v are fixed.
//
// Smallest solution is v0 == a_inv * (b >> k)
// Solutions are of the form v_i = v0 + 2^(N-k) * i for i in { 0, 1, ..., 2^k - 1 }.
// Forbidden intervals: [v_i + 1; v_{i+1}[ == [ v_i + 1; v_i + 2^(N-k) [
// We need the interval that covers val:
// v_i + 1 <= val < v_i + 2^(N-k)
//
// TODO: create one interval for v[N-k:] instead of 2^k intervals for v.
unsigned const k = parity_a;
rational const a_inv = a.pseudo_inverse(N);
unsigned const N_minus_k = N - k;
rational const two_to_N_minus_k = rational::power_of_two(N_minus_k);
rational const v0 = mod(a_inv * machine_div2k(b, k), two_to_N_minus_k);
SASSERT(mod(val, two_to_N_minus_k) != v0); // val is not a solution
rational const vi = v0 + clear_lower_bits(mod(val - v0, mod_value), N_minus_k);
rational const lo = mod(vi + 1, mod_value);
rational const hi = mod(vi + two_to_N_minus_k, mod_value);
LOG("refined to [" << num_pp(s, v, lo) << ", " << num_pp(s, v, hi) << "[");
SASSERT_EQ(mod(a * (lo - 1), mod_value), b); // lo-1 is a solution
SASSERT_EQ(mod(a * hi, mod_value), b); // hi is a solution
entry* ne = alloc_entry();
ne->refined.push_back(e);
ne->src = e->src;
ne->side_cond = e->side_cond;
ne->coeff = 1;
ne->interval = eval_interval::proper(m.mk_val(lo), lo, m.mk_val(hi), hi);
SASSERT(ne->interval.currently_contains(val));
intersect(v, ne);
return false;
}
// TODO: special handling for the even factors of e->coeff = 2^k * a', a' odd
// (create one interval for v[N-k:] instead of 2^k intervals for v)
// compute_y_bounds calculates with inclusive upper bound, so we need to adjust argument and result accordingly.
rational const hi_val_incl = e->interval.hi_val().is_zero() ? max_value : (e->interval.hi_val() - 1);
auto [lo, hi] = compute_y_bounds(val, e->coeff, e->interval.lo_val(), hi_val_incl, mod_value);
hi += 1;
LOG("refined to [" << num_pp(s, v, lo) << ", " << num_pp(s, v, hi) << "[");
// verbose_stream() << "lo=" << lo << " val=" << val << " hi=" << hi << "\n";
if (lo <= hi) {
SASSERT(0 <= lo && lo <= val && val < hi && hi <= mod_value);
} else {
SASSERT(0 < hi && hi < lo && lo < mod_value && (val < hi || lo <= val));
}
bool full = (lo == 0 && hi == mod_value);
if (hi == mod_value)
hi = 0;
entry* ne = alloc_entry();
ne->refined.push_back(e);
ne->src = e->src;
ne->side_cond = e->side_cond;
ne->coeff = 1;
if (full)
ne->interval = eval_interval::full();
else
ne->interval = eval_interval::proper(m.mk_val(lo), lo, m.mk_val(hi), hi);
SASSERT(ne->interval.currently_contains(val));
intersect(v, ne);
return false;
}
e = e->next();
}
while (e != first);
return true;
}
bool viable::refine_disequal_lin(pvar v, rational const& val) {
// LOG_H2("refine-disequal-lin with v" << v << ", val = " << val);
entry const* e = m_diseq_lin[v];
if (!e)
return true;
entry const* first = e;
rational const& max_value = s.var2pdd(v).max_value();
rational const mod_value = max_value + 1;
// Rotate the 'first' entry, to prevent getting stuck in a refinement loop
// with an early entry when a later entry could give a better interval.
m_diseq_lin[v] = m_diseq_lin[v]->next();
do {
// IF_LOGGING(
// verbose_stream() << "refine-disequal-lin for v" << v << " in src: ";
// for (const auto& src : e->src)
// verbose_stream() << lit_pp(s, src) << "\n";
// );
// We compute an interval if the concrete value 'val' violates the constraint:
// p*val + q > r*val + s if e->src.is_positive()
// p*val + q >= r*val + s if e->src.is_negative()
// Note that e->interval is meaningless in this case,
// we just use it to transport the values p,q,r,s
rational const& p = e->interval.lo_val();
rational const& q_ = e->interval.lo().val();
rational const& r = e->interval.hi_val();
rational const& s_ = e->interval.hi().val();
SASSERT(p != r && p != 0 && r != 0);
SASSERT(e->src.size() == 1);
rational const a = mod(p * val + q_, mod_value);
rational const b = mod(r * val + s_, mod_value);
rational const np = mod_value - p;
rational const nr = mod_value - r;
int const corr = e->src[0].is_negative() ? 1 : 0;
auto delta_l = [&](rational const& val) {
rational num = a - b + corr;
rational l1 = floor(b / r);
rational l2 = val;
if (p > r)
l2 = ceil(num / (p - r)) - 1;
rational l3 = ceil(num / (p + nr)) - 1;
rational l4 = ceil((mod_value - a) / np) - 1;
rational d1 = l3;
rational d2 = std::min(l1, l2);
rational d3 = std::min(l1, l4);
rational d4 = std::min(l2, l4);
rational dmax = std::max(std::max(d1, d2), std::max(d3, d4));
return std::min(val, dmax);
};
auto delta_u = [&](rational const& val) {
rational num = a - b + corr;
rational h1 = floor(b / nr);
rational h2 = max_value - val;
if (r > p)
h2 = ceil(num / (r - p)) - 1;
rational h3 = ceil(num / (np + r)) - 1;
rational h4 = ceil((mod_value - a) / p) - 1;
rational d1 = h3;
rational d2 = std::min(h1, h2);
rational d3 = std::min(h1, h4);
rational d4 = std::min(h2, h4);
rational dmax = std::max(std::max(d1, d2), std::max(d3, d4));
return std::min(max_value - val, dmax);
};
if (a > b || (e->src[0].is_negative() && a == b)) {
rational lo = val - delta_l(val);
rational hi = val + delta_u(val) + 1;
LOG("refine-disequal-lin: " << " [" << lo << ", " << hi << "[");
SASSERT(0 <= lo && lo <= val);
SASSERT(val <= hi && hi <= mod_value);
if (hi == mod_value) hi = 0;
pdd lop = s.var2pdd(v).mk_val(lo);
pdd hip = s.var2pdd(v).mk_val(hi);
entry* ne = alloc_entry();
ne->refined.push_back(e);
ne->src = e->src;
ne->side_cond = e->side_cond;
ne->coeff = 1;
ne->interval = eval_interval::proper(lop, lo, hip, hi);
intersect(v, ne);
return false;
}
e = e->next();
}
while (e != first);
return true;
}
// Skips all values that are not feasible w.r.t. fixed bits
template<bool FORWARD>
rational viable::extend_by_bits(const pdd& var, const rational& bound, const svector<lbool>& fixed, const vector<ptr_vector<entry>>& justifications, vector<signed_constraint>& src, vector<signed_constraint>& side_cond, ptr_vector<entry const>& refined) const {
unsigned k = var.power_of_2();
if (fixed.empty())
return bound;
SASSERT(k == fixed.size());
auto add_justification = [&](unsigned i) {
auto& to_add = justifications[i];
SASSERT(!to_add.empty());
for (auto& add : to_add) {
// TODO: Check for duplicates; maybe we add the same src/side_cond over and over again
for (auto& sc : add->side_cond)
side_cond.push_back(sc);
for (auto& c : add->src)
src.push_back(c);
refined.push_back(add);
}
};
unsigned firstFail;
for (firstFail = k; firstFail > 0; firstFail--) {
if (fixed[firstFail - 1] != l_undef) {
lbool current = bound.get_bit(firstFail - 1) ? l_true : l_false;
if (current != fixed[firstFail - 1])
break;
}
}
if (firstFail == 0)
return bound; // the value is feasible according to fixed bits
svector<lbool> new_bound(fixed.size());
for (unsigned i = 0; i < firstFail; i++) {
if (fixed[i] != l_undef) {
SASSERT(fixed[i] == l_true || fixed[i] == l_false);
new_bound[i] = fixed[i];
if (i == firstFail - 1 || FORWARD != (fixed[i] == l_false))
add_justification(i); // Minimize number of responsible fixed bits; we only add those justifications we need for sure
}
else
new_bound[i] = FORWARD ? l_false : l_true;
}
bool carry = fixed[firstFail - 1] == (FORWARD ? l_false : l_true);
for (unsigned i = firstFail; i < new_bound.size(); i++) {
if (fixed[i] == l_undef) {
lbool current = bound.get_bit(i) ? l_true : l_false;
if (carry) {
if (FORWARD) {
if (current == l_false) {
new_bound[i] = l_true;
carry = false;
}
else
new_bound[i] = l_false;
}
else {
if (current == l_true) {
new_bound[i] = l_false;
carry = false;
}
else
new_bound[i] = l_true;
}
}
else
new_bound[i] = current;
}
else {
new_bound[i] = fixed[i];
if (carry)
add_justification(i); // Again, we need this justification; if carry is false we don't need it
}
}
SASSERT(!src.empty());
if (carry) {
// We covered everything
/*if (FORWARD)
return rational::power_of_two(k);
else*/
return rational::zero();
}
// TODO: Directly convert new_bound in rational?
rational ret = rational::zero();
for (unsigned i = new_bound.size(); i > 0; i--) {
ret *= 2;
SASSERT(new_bound[i - 1] != l_undef);
ret += new_bound[i - 1] == l_true ? 1 : 0;
}
if (!FORWARD)
return ret + 1;
return ret;
}
// returns true iff no conflict was encountered
bool viable::collect_bit_information(pvar v, bool add_conflict, svector<lbool>& fixed, vector<ptr_vector<entry>>& justifications) {
pdd p = s.var(v);
// maybe pass them as arguments rather than having them as fields...
fixed.clear();
justifications.clear();
fixed.resize(p.power_of_2(), l_undef);
justifications.resize(p.power_of_2(), ptr_vector<entry>());
auto* e1 = m_equal_lin[v];
auto* e2 = m_units[v];
auto* first = e1;
if (!e1 && !e2)
return true;
clause_builder builder(s, "bit check");
uint_set already_added;
vector<std::pair<entry*, trailing_bits>> postponed;
auto add_entry = [&builder, &already_added](entry* e) {
for (const auto& sc : e->side_cond) {
if (already_added.contains(sc.bvar()))
continue;
already_added.insert(sc.bvar());
builder.insert_eval(~sc);
}
for (const auto& src : e->src) {
if (already_added.contains(src.bvar()))
continue;
already_added.insert(src.bvar());
builder.insert_eval(~src);
}
};
auto add_entry_list = [add_entry](const ptr_vector<entry>& list) {
for (const auto& e : list)
add_entry(e);
};
if (e1) {
unsigned largest_lsb = 0;
do {
if (e1->src.size() != 1) {
// We just consider the ordinary constraints and not already contracted ones
e1 = e1->next();
continue;
}
signed_constraint& src = e1->src[0];
single_bit bit;
trailing_bits lsb;
if (src->is_ule() &&
simplify_clause::get_bit(s.subst(src->to_ule().lhs()), s.subst(src->to_ule().rhs()), p, bit, src.is_positive()) && p.is_var()) {
lbool prev = fixed[bit.position];
fixed[bit.position] = bit.positive ? l_true : l_false;
//verbose_stream() << "Setting bit " << bit.position << " to " << bit.positive << " because of " << e->src << "\n";
if (prev != l_undef && fixed[bit.position] != prev) {
LOG("Bit conflicting " << e1->src << " with " << justifications[bit.position][0]->src);
if (add_conflict) {
add_entry_list(justifications[bit.position]);
add_entry(e1);
s.set_conflict(*builder.build());
}
return false;
}
// just override; we prefer bit constraints over parity as those are easier for subsumption to remove
// verbose_stream() << "Adding bit constraint: " << e->src[0] << " (" << bit.position << ")\n";
justifications[bit.position].clear();
justifications[bit.position].push_back(e1);
}
else if (src->is_eq() &&
simplify_clause::get_lsb(s.subst(src->to_ule().lhs()), s.subst(src->to_ule().rhs()), p, lsb, src.is_positive()) && p.is_var()) {
if (src.is_positive()) {
for (unsigned i = 0; i < lsb.length; i++) {
lbool prev = fixed[i];
fixed[i] = lsb.bits.get_bit(i) ? l_true : l_false;
if (prev != l_undef) {
if (fixed[i] != prev) {
LOG("Positive parity conflicting " << e1->src << " with " << justifications[i][0]->src);
if (add_conflict) {
add_entry_list(justifications[i]);
add_entry(e1);
s.set_conflict(*builder.build());
}
return false;
}
else {
// Prefer justifications from larger masks (less premisses)
// TODO: Check that we don't override justifications comming from bit constraints
if (largest_lsb < lsb.length) {
justifications[i].clear();
justifications[i].push_back(e1);
}
}
}
else {
SASSERT(justifications[i].empty());
justifications[i].push_back(e1);
}
}
largest_lsb = std::max(largest_lsb, lsb.length);
}
else
postponed.push_back({ e1, lsb });
}
e1 = e1->next();
} while(e1 != first);
}
#if 0 // is the benefit enough?
if (e2) {
unsigned largest_msb = 0;
first = e2;
do {
if (e2->src.size() != 1) {
e2 = e2->next();
continue;
}
signed_constraint& src = e2->src[0];
leading_bits msb;
if (src->is_ule() &&
simplify_clause::get_msb(s.subst(src->to_ule().lhs()), s.subst(src->to_ule().rhs()), p, msb, src.is_positive()) && p.is_var()) {
for (unsigned i = fixed.size() - msb.length; i < fixed.size(); i++) {
lbool prev = fixed[i];
fixed[i] = msb.positive ? l_true : l_false;
if (prev != l_undef) {
if (fixed[i] != prev) {
LOG("msb conflicting " << e2->src << " with " << justifications[i][0]->src);
if (add_conflict) {
add_entry_list(justifications[i]);
add_entry(e2);
s.set_conflict(*builder.build());
}
return false;
}
else {
if (largest_msb < msb.length) {
justifications[i].clear();
justifications[i].push_back(e2);
}
}
}
else {
SASSERT(justifications[i].empty());
justifications[i].push_back(e2);
}
}
largest_msb = std::max(largest_msb, msb.length);
}
e2 = e2->next();
} while(e2 != first);
}
#endif
// TODO: Incomplete - e.g., if we know the trailing bits are not 00 not 10 not 01 and not 11 we could also detect a conflict
// This would require partially clause solving (worth the effort?)
bool_vector removed(postponed.size(), false);
bool changed;
do { // fixed-point required?
changed = false;
for (unsigned j = 0; j < postponed.size(); j++) {
if (removed[j])
continue;
const auto& neg = postponed[j];
unsigned indet = 0;
unsigned last_indet = 0;
unsigned i = 0;
for (; i < neg.second.length; i++) {
if (fixed[i] != l_undef) {
if (fixed[i] != (neg.second.bits.get_bit(i) ? l_true : l_false)) {
removed[j] = true;
break; // this is already satisfied
}
}
else {
indet++;
last_indet = i;
}
}
if (i == neg.second.length) {
if (indet == 0) {
// Already false
LOG("Found conflict with constraint " << neg.first->src);
if (add_conflict) {
for (unsigned k = 0; k < neg.second.length; k++)
add_entry_list(justifications[k]);
add_entry(neg.first);
s.set_conflict(*builder.build());
}
return false;
}
else if (indet == 1) {
// Simple BCP
auto& justification = justifications[last_indet];
SASSERT(justification.empty());
for (unsigned k = 0; k < neg.second.length; k++) {
if (k != last_indet) {
SASSERT(fixed[k] != l_undef);
for (const auto& just : justifications[k])
justification.push_back(just);
}
}
justification.push_back(neg.first);
fixed[last_indet] = neg.second.bits.get_bit(last_indet) ? l_false : l_true;
removed[j] = true;
LOG("Applying fast BCP on bit " << last_indet << " from constraint " << neg.first->src);
changed = true;
}
}
}
} while(changed);
return true;
}
#if 0
bool viable::collect_bit_information(pvar v, bool add_conflict, const vector<signed_constraint>& cnstr, svector<lbool>& fixed, vector<vector<signed_constraint>>& justifications) {
pdd p = s.var(v);
fixed.clear();
justifications.clear();
fixed.resize(p.power_of_2(), l_undef);
justifications.resize(p.power_of_2(), vector<signed_constraint>());
if (cnstr.empty())
return true;
clause_builder builder(s, "bit check");
uint_set already_added;
vector<std::pair<signed_constraint, trailing_bits>> postponed;
auto add_entry = [&builder, &already_added](const signed_constraint& src) {
if (already_added.contains(src.bvar()))
return;
already_added.insert(src.bvar());
builder.insert_eval(~src);
};
auto add_entry_list = [add_entry](const vector<signed_constraint>& list) {
for (const auto& e : list)
add_entry(e);
};
unsigned largest_mask = 0;
for (unsigned i = 0; i < cnstr.size(); i++) {
const signed_constraint& src = cnstr[i];
single_bit bit;
trailing_bits mask;
if (src->is_ule() &&
simplify_clause::get_bit(src->to_ule().lhs(), src->to_ule().rhs(), p, bit, src.is_positive()) && p.is_var()) {
lbool prev = fixed[bit.position];
fixed[bit.position] = bit.positive ? l_true : l_false;
if (prev != l_undef && fixed[bit.position] != prev) {
LOG("Bit conflicting " << src << " with " << justifications[bit.position][0]);
if (add_conflict) {
add_entry_list(justifications[bit.position]);
add_entry(src);
s.set_conflict(*builder.build());
}
return false;
}
justifications[bit.position].clear();
justifications[bit.position].push_back(src);
}
else if (src->is_eq() &&
simplify_clause::get_lsb(src->to_ule().lhs(), src->to_ule().rhs(), p, mask, src.is_positive()) && p.is_var()) {
if (src.is_positive()) {
for (unsigned i = 0; i < mask.length; i++) {
lbool prev = fixed[i];
fixed[i] = mask.bits.get_bit(i) ? l_true : l_false;
//verbose_stream() << "Setting bit " << i << " to " << mask.bits.get_bit(i) << " because of parity " << e->src << "\n";
if (prev != l_undef) {
if (fixed[i] != prev) {
LOG("Positive parity conflicting " << src << " with " << justifications[i][0]);
if (add_conflict) {
add_entry_list(justifications[i]);
add_entry(src);
s.set_conflict(*builder.build());
}
return false;
}
else {
if (largest_mask < mask.length) {
largest_mask = mask.length;
justifications[i].clear();
justifications[i].push_back(src);
}
}
}
else {
SASSERT(justifications[i].empty());
justifications[i].push_back(src);
}
}
}
else
postponed.push_back({ src, mask });
}
}
bool_vector removed(postponed.size(), false);
bool changed;
do {
changed = false;
for (unsigned j = 0; j < postponed.size(); j++) {
if (removed[j])
continue;
const auto& neg = postponed[j];
unsigned indet = 0;
unsigned last_indet = 0;
unsigned i = 0;
for (; i < neg.second.length; i++) {
if (fixed[i] != l_undef) {
if (fixed[i] != (neg.second.bits.get_bit(i) ? l_true : l_false)) {
removed[j] = true;
break; // this is already satisfied
}
}
else {
indet++;
last_indet = i;
}
}
if (i == neg.second.length) {
if (indet == 0) {
// Already false
LOG("Found conflict with constraint " << neg.first);
if (add_conflict) {
for (unsigned k = 0; k < neg.second.length; k++)
add_entry_list(justifications[k]);
add_entry(neg.first);
s.set_conflict(*builder.build());
}
return false;
}
else if (indet == 1) {
// Simple BCP
auto& justification = justifications[last_indet];
SASSERT(justification.empty());
for (unsigned k = 0; k < neg.second.length; k++) {
if (k != last_indet) {
SASSERT(fixed[k] != l_undef);
for (const auto& just : justifications[k])
justification.push_back(just);
}
}
justification.push_back(neg.first);
fixed[last_indet] = neg.second.bits.get_bit(last_indet) ? l_false : l_true;
removed[j] = true;
LOG("Applying fast BCP on bit " << last_indet << " from constraint " << neg.first);
changed = true;
}
}
}
} while(changed);
return true;
}
#endif
bool viable::has_viable(pvar v) {
svector<lbool> fixed;
vector<ptr_vector<entry>> justifications;
if (!collect_bit_information(v, false, fixed, justifications))
return false;
refined:
auto* e = m_units[v];
#define CHECK_RETURN(val) { if (refine_viable<true>(v, val, fixed, justifications)) return true; else goto refined; }
if (!e)
CHECK_RETURN(rational::zero());
entry* first = e;
entry* last = e->prev();
if (e->interval.is_full())
return false;
// quick check: last interval doesn't wrap around, so hi_val
// has not been covered
if (last->interval.lo_val() < last->interval.hi_val())
CHECK_RETURN(last->interval.hi_val());
do {
if (e->interval.is_full())
return false;
entry* n = e->next();
if (n == e)
CHECK_RETURN(e->interval.hi_val());
if (!n->interval.currently_contains(e->interval.hi_val()))
CHECK_RETURN(e->interval.hi_val());
if (n == first) {
if (e->interval.lo_val() > e->interval.hi_val())
return false;
CHECK_RETURN(e->interval.hi_val());
}
e = n;
}
while (e != first);
return false;
#undef CHECK_RETURN
}
bool viable::is_viable(pvar v, rational const& val) {
svector<lbool> fixed;
vector<ptr_vector<entry>> justifications;
if (!collect_bit_information(v, false, fixed, justifications))
return false;
auto* e = m_units[v];
if (!e)
return refine_viable<true>(v, val, fixed, justifications);
entry* first = e;
entry* last = first->prev();
if (last->interval.currently_contains(val))
return false;
for (; e != last; e = e->next()) {
if (e->interval.currently_contains(val))
return false;
if (val < e->interval.lo_val())
return refine_viable<true>(v, val, fixed, justifications);
}
return refine_viable<true>(v, val, fixed, justifications);
}
find_t viable::find_viable(pvar v, rational& lo) {
rational hi;
switch (find_viable2(v, lo, hi)) {
case l_true:
if (hi < 0) {
// fallback solver, treat propagations as decisions for now
// (this is because the propagation justification currently always uses intervals, which is unsound in this case)
return find_t::multiple;
}
return (lo == hi) ? find_t::singleton : find_t::multiple;
case l_false:
return find_t::empty;
default:
return find_t::resource_out;
}
}
lbool viable::find_viable2(pvar v, rational& lo, rational& hi) {
std::pair<rational&, rational&> args{lo, hi};
return query<query_t::find_viable>(v, args);
}
lbool viable::min_viable(pvar v, rational& lo) {
return query<query_t::min_viable>(v, lo);
}
lbool viable::max_viable(pvar v, rational& hi) {
return query<query_t::max_viable>(v, hi);
}
bool viable::has_upper_bound(pvar v, rational& out_hi, vector<signed_constraint>& out_c) {
entry const* first = m_units[v];
entry const* e = first;
bool found = false;
out_c.reset();
if (!e)
return false;
do {
found = false;
do {
if (e->refined.empty() && e->side_cond.empty()) {
auto const& lo = e->interval.lo();
auto const& hi = e->interval.hi();
if (lo.is_val() && hi.is_val()) {
if (out_c.empty() && lo.val() > hi.val()) {
for (signed_constraint src : e->src)
out_c.push_back(src);
out_hi = lo.val() - 1;
found = true;
}
else if (!out_c.empty() && lo.val() <= out_hi && out_hi < hi.val()) {
for (signed_constraint src : e->src)
out_c.push_back(src);
out_hi = lo.val() - 1;
found = true;
}
}
}
e = e->next();
}
while (e != first);
}
while (found);
return !out_c.empty();
}
bool viable::has_lower_bound(pvar v, rational& out_lo, vector<signed_constraint>& out_c) {
entry const* first = m_units[v];
entry const* e = first;
bool found = false;
out_c.reset();
if (!e)
return false;
do {
found = false;
do {
if (e->refined.empty() && e->side_cond.empty()) {
auto const& lo = e->interval.lo();
auto const& hi = e->interval.hi();
if (lo.is_val() && hi.is_val()) {
if (out_c.empty() && hi.val() != 0 && (lo.val() == 0 || lo.val() > hi.val())) {
for (signed_constraint src : e->src)
out_c.push_back(src);
out_lo = hi.val();
found = true;
}
else if (!out_c.empty() && lo.val() <= out_lo && out_lo < hi.val()) {
for (signed_constraint src : e->src)
out_c.push_back(src);
out_lo = hi.val();
found = true;
}
}
}
e = e->next();
}
while (e != first);
}
while (found);
return !out_c.empty();
}
bool viable::has_max_forbidden(pvar v, signed_constraint const& c, rational& out_lo, rational& out_hi, vector<signed_constraint>& out_c) {
// TODO:
// - skip intervals adjacent to c's interval if they contain side conditions on y?
// constraints over y are allowed if level(c) < level(y) (e.g., boolean propagated)
out_c.reset();
entry const* first = m_units[v];
entry const* e = first;
if (!e)
return false;
bool found = false;
do {
found = e->src.contains(c);
if (found)
break;
e = e->next();
}
while (e != first);
if (!found)
return false;
entry const* e0 = e;
if (e0->interval.is_full())
return false;
entry const* e0_prev = nullptr;
entry const* e0_next = nullptr;
do {
entry const* n = e->next();
while (n != e0) {
entry const* n1 = n->next();
if (n1 == e)
break;
if (!n1->interval.currently_contains(e->interval.hi_val()))
break;
n = n1;
}
if (e == n) {
VERIFY_EQ(e, e0);
return false;
}
if (!n->interval.currently_contains(e->interval.hi_val()))
return false; // gap
if (e == e0) {
e0_next = n;
out_lo = n->interval.lo_val();
}
else if (n == e0) {
e0_prev = e;
out_hi = e->interval.hi_val();
}
else if (e->src.contains(c)) {
// multiple intervals from the same constraint c
// TODO: adjacent intervals would fine but they should be merged at insertion instead of considering them here.
return false;
}
else {
VERIFY(!e->interval.is_full()); // if e were full then there would be no e0
signed_constraint c = s.m_constraints.elem(e->interval.hi(), n->interval.symbolic());
out_c.push_back(c);
}
if (e != e0) {
for (signed_constraint sc : e->side_cond)
out_c.push_back(sc);
for (signed_constraint src : e->src)
out_c.push_back(src);
}
e = n;
}
while (e != e0);
// Other intervals fully cover c's interval, e.g.:
// [---------[ e0 from c
// [---------[ e0_prev
// [-------------[ e0_next
if (e0_next->interval.currently_contains(e0_prev->interval.hi_val()))
return false;
// Conclusion:
// v \not\in [out_lo; out_hi[, or equivalently
// v \in [out_hi; out_lo[
auto& m = s.var2pdd(v);
// To justify the endpoints, pretend that instead of e0 (coming from constraint c) we have the interval [out_hi; out_lo[.
out_c.push_back(s.m_constraints.elem(e0_prev->interval.hi(), m.mk_val(out_hi), m.mk_val(out_lo)));
out_c.push_back(s.m_constraints.elem(m.mk_val(out_lo), e0_next->interval.symbolic()));
IF_VERBOSE(2,
verbose_stream() << "has-max-forbidden " << e->src << "\n";
verbose_stream() << "v" << v << " " << out_lo << " " << out_hi << " " << out_c << "\n";
display(verbose_stream(), v) << "\n");
return true;
}
template <query_t mode>
lbool viable::query(pvar v, typename query_result<mode>::result_t& result) {
svector<lbool> fixed;
vector<ptr_vector<entry>> justifications;
if (!collect_bit_information(v, true, fixed, justifications))
return l_false; // conflict already added
// max number of interval refinements before falling back to the univariate solver
unsigned const refinement_budget = 1000;
unsigned refinements = refinement_budget;
while (refinements--) {
lbool res = l_undef;
if constexpr (mode == query_t::find_viable)
res = query_find(v, result.first, result.second, fixed, justifications);
else if constexpr (mode == query_t::min_viable)
res = query_min(v, result, fixed, justifications);
else if constexpr (mode == query_t::max_viable)
res = query_max(v, result, fixed, justifications);
else if constexpr (mode == query_t::has_viable) {
NOT_IMPLEMENTED_YET();
}
else {
UNREACHABLE();
}
IF_VERBOSE(10, {
if (refinements % 100 == 0)
verbose_stream() << "Refinements " << refinements << "\n";
});
if (res != l_undef)
return res;
}
IF_VERBOSE(10, verbose_stream() << "Fallback\n";);
LOG("Refinement budget exhausted! Fall back to univariate solver.");
return query_fallback<mode>(v, result);
}
lbool viable::query_find(pvar v, rational& lo, rational& hi, const svector<lbool>& fixed, const vector<ptr_vector<entry>>& justifications) {
auto const& max_value = s.var2pdd(v).max_value();
lbool const refined = l_undef;
// After a refinement, any of the existing entries may have been replaced
// (if it is subsumed by the new entry created during refinement).
// For this reason, we start chasing the intervals from the start again.
lo = 0;
hi = max_value;
auto* e = m_units[v];
if (!e && !refine_viable<true>(v, lo, fixed, justifications))
return refined;
if (!e && !refine_viable<false>(v, hi, fixed, justifications))
return refined;
if (!e)
return l_true;
if (e->interval.is_full()) {
s.set_conflict_by_viable_interval(v);
return l_false;
}
entry* first = e;
entry* last = first->prev();
// quick check: last interval does not wrap around
// and has space for 2 unassigned values.
if (last->interval.lo_val() < last->interval.hi_val() &&
last->interval.hi_val() < max_value) {
lo = last->interval.hi_val();
if (!refine_viable<true>(v, lo, fixed, justifications))
return refined;
if (!refine_viable<false>(v, max_value, fixed, justifications))
return refined;
return l_true;
}
// find lower bound
if (last->interval.currently_contains(lo))
lo = last->interval.hi_val();
do {
if (!e->interval.currently_contains(lo))
break;
lo = e->interval.hi_val();
e = e->next();
}
while (e != first);
if (e->interval.currently_contains(lo)) {
s.set_conflict_by_viable_interval(v);
return l_false;
}
// find upper bound
hi = max_value;
e = last;
do {
if (!e->interval.currently_contains(hi))
break;
hi = e->interval.lo_val() - 1;
e = e->prev();
}
while (e != last);
if (!refine_viable<true>(v, lo, fixed, justifications))
return refined;
if (!refine_viable<false>(v, hi, fixed, justifications))
return refined;
return l_true;
}
lbool viable::query_min(pvar v, rational& lo, const svector<lbool>& fixed, const vector<ptr_vector<entry>>& justifications) {
// TODO: should be able to deal with UNSAT case; since also min_viable has to deal with it due to fallback solver
lo = 0;
entry* e = m_units[v];
if (!e && !refine_viable<true>(v, lo, fixed, justifications))
return l_undef;
if (!e)
return l_true;
entry* first = e;
entry* last = first->prev();
if (last->interval.currently_contains(lo))
lo = last->interval.hi_val();
do {
if (!e->interval.currently_contains(lo))
break;
lo = e->interval.hi_val();
e = e->next();
}
while (e != first);
if (!refine_viable<true>(v, lo, fixed, justifications))
return l_undef;
SASSERT(is_viable(v, lo));
return l_true;
}
lbool viable::query_max(pvar v, rational& hi, const svector<lbool>& fixed, const vector<ptr_vector<entry>>& justifications) {
// TODO: should be able to deal with UNSAT case; since also max_viable has to deal with it due to fallback solver
hi = s.var2pdd(v).max_value();
auto* e = m_units[v];
if (!e && !refine_viable<false>(v, hi, fixed, justifications))
return l_undef;
if (!e)
return l_true;
entry* last = e->prev();
e = last;
do {
if (!e->interval.currently_contains(hi))
break;
hi = e->interval.lo_val() - 1;
e = e->prev();
}
while (e != last);
if (!refine_viable<false>(v, hi, fixed, justifications))
return l_undef;
SASSERT(is_viable(v, hi));
return l_true;
}
template <query_t mode>
lbool viable::query_fallback(pvar v, typename query_result<mode>::result_t& result) {
unsigned const bit_width = s.size(v);
univariate_solver* us = s.m_viable_fallback.usolver(bit_width);
sat::literal_set added;
// First step: only query the looping constraints and see if they alone are already UNSAT.
// The constraints which caused the refinement loop will be reached from m_units.
LOG_H3("Checking looping univariate constraints for v" << v << "...");
LOG("Assignment: " << assignments_pp(s));
entry const* first = m_units[v];
entry const* e = first;
do {
ptr_vector<entry const> to_process = e->refined;
while (!to_process.empty()) {
auto current = to_process.back();
to_process.pop_back();
if (!current->refined.empty()) {
for (auto& ref : current->refined)
to_process.push_back(ref);
continue;
}
const entry* origin = current;
for (const auto& src : origin->src) {
sat::literal const lit = src.blit();
if (!added.contains(lit)) {
added.insert(lit);
LOG("Adding " << lit_pp(s, lit));
IF_VERBOSE(10, verbose_stream() << ";; " << lit_pp(s, lit) << "\n");
src.add_to_univariate_solver(v, s, *us, lit.to_uint());
}
}
}
e = e->next();
}
while (e != first);
switch (us->check()) {
case l_false:
s.set_conflict_by_viable_fallback(v, *us);
return l_false;
case l_true:
// At this point we don't know much because we did not add all relevant constraints
break;
default:
// resource limit
return l_undef;
}
// Second step: looping constraints aren't UNSAT, so add the remaining relevant constraints
LOG_H3("Checking all univariate constraints for v" << v << "...");
auto const& cs = s.m_viable_fallback.m_constraints[v];
for (unsigned i = cs.size(); i-- > 0; ) {
sat::literal const lit = cs[i].blit();
if (added.contains(lit))
continue;
LOG("Adding " << lit_pp(s, lit));
IF_VERBOSE(10, verbose_stream() << ";; " << lit_pp(s, lit) << "\n");
added.insert(lit);
cs[i].add_to_univariate_solver(v, s, *us, lit.to_uint());
}
switch (us->check()) {
case l_false:
s.set_conflict_by_viable_fallback(v, *us);
return l_false;
case l_true:
// pass solver to mode-specific query
break;
default:
// resource limit
return l_undef;
}
if constexpr (mode == query_t::find_viable)
return query_find_fallback(v, *us, result.first, result.second);
if constexpr (mode == query_t::min_viable)
return query_min_fallback(v, *us, result);
if constexpr (mode == query_t::max_viable)
return query_max_fallback(v, *us, result);
if constexpr (mode == query_t::has_viable) {
NOT_IMPLEMENTED_YET();
return l_undef;
}
UNREACHABLE();
return l_undef;
}
lbool viable::query_find_fallback(pvar v, univariate_solver& us, rational& lo, rational& hi) {
lo = us.model();
hi = -1;
return l_true;
// return us.find_two(lo, hi) ? l_true : l_undef;
}
lbool viable::query_min_fallback(pvar v, univariate_solver& us, rational& lo) {
return us.find_min(lo) ? l_true : l_undef;
}
lbool viable::query_max_fallback(pvar v, univariate_solver& us, rational& hi) {
return us.find_max(hi) ? l_true : l_undef;
}
bool viable::resolve_fallback(pvar v, univariate_solver& us, conflict& core) {
// The conflict is the unsat core of the univariate solver,
// and the current assignment (under which the constraints are univariate in v)
// TODO:
// - currently we add variables directly, which is sound:
// e.g.: v^2 + w^2 == 0; w := 1
// - but we could use side constraints on the coefficients instead (coefficients when viewed as polynomial over v):
// e.g.: v^2 + w^2 == 0; w^2 == 1
for (unsigned dep : us.unsat_core()) {
sat::literal lit = sat::to_literal(dep);
signed_constraint c = s.lit2cnstr(lit);
core.insert(c);
core.insert_vars(c);
}
SASSERT(!core.vars().contains(v));
core.add_lemma("viable unsat core", core.build_lemma());
IF_VERBOSE(10, verbose_stream() << "unsat core " << core << "\n";);
return true;
}
#if 0
void viable::make_bit_justification(pvar v) {
if (!m_units[v] || m_units[v]->interval.is_full())
return;
// TODO: Maybe this helps? This prefers justifications from bits
svector<lbool> fixed;
vector<ptr_vector<entry>> justifications;
if (!collect_bit_information(v, false, fixed, justifications))
return;
entry* first = m_units[v];
entry* e = first;
vector<eval_interval> intervals;
do {
intervals.push_back(e->interval);
e = e->next();
}
while (e != first);
int additional = 0;
for (unsigned i = 0; i < intervals.size(); i++) { // Try to justify by bits as good as possible
if (intervals[i].hi_val().is_zero())
additional += refine_bits<true>(v, s.var(v).manager().max_value(), fixed, justifications);
else
additional += refine_bits<true>(v, intervals[i].hi_val() - 1, fixed, justifications);
}
verbose_stream() << "Found " << additional << " intervals\n";
}
void viable::get_bit_min_max(pvar v, conflict& core, rational& min, rational& max, vector<signed_constraint>& justifications_min, vector<signed_constraint>& justifications_max) {
pdd v_pdd = s.var(v);
min = 0;
max = v_pdd.manager().max_value();
svector<lbool> fixed;
vector<vector<signed_constraint>> justifications;
vector<signed_constraint> candidates;
for (const auto& c : core) {
if (!c->is_ule())
continue;
ule_constraint ule = c->to_ule();
pdd sum = ule.lhs() + ule.rhs();
if (sum.is_univariate_in(v) && sum.degree(v) == 1)
candidates.push_back(c);
}
if (candidates.empty() || !collect_bit_information(v, false, candidates, fixed, justifications))
return;
for (unsigned i = 0; i < fixed.size(); i++) {
verbose_stream() << (fixed[fixed.size() - 1] == l_true ? '1' : fixed[fixed.size() - 1] == l_false ? '0' : '?');
}
verbose_stream() << "\n";
max = 0;
for (unsigned i = fixed.size(); i > 0; i--) {
min *= 2;
max *= 2;
lbool val = fixed[i - 1];
if (val == l_true) {
min++;
max++;
for (auto& add : justifications[i - 1])
justifications_min.push_back(add);
}
else if (val == l_undef)
max++;
else {
SASSERT(val == l_false);
for (auto& add : justifications[i - 1])
justifications_max.push_back(add);
}
}
}
#endif
bool viable::resolve_interval(pvar v, conflict& core) {
DEBUG_CODE( log(v); );
VERIFY(!has_viable(v)); // does a pass over interval refinement, making sure the intervals actually exist
#if 0
// Prefer bit information as justifications
make_bit_justification(v);
#endif
entry const* e = m_units[v];
// TODO: in the forbidden interval paper, they start with the longest interval. We should also try that at some point.
entry const* first = e;
SASSERT(e);
// If there is a full interval, all others would have been removed
clause_builder lemma(s);
if (first->interval.is_full()) {
SASSERT(first->next() == first);
for (auto sc : first->side_cond)
lemma.insert_eval(~sc);
for (const auto& src : first->src) {
lemma.insert(~src);
core.insert(src);
core.insert_vars(src);
}
core.add_lemma("viable", lemma.build());
core.logger().log(inf_fi(*this, v));
return true;
}
SASSERT(all_of(*first, [](entry const& f) { return !f.interval.is_full(); }));
do {
// Build constraint: upper bound of each interval is not contained in the next interval,
// using the equivalence: t \in [l;h[ <=> t-l < h-l
entry const* n = e->next();
// Choose the next interval which furthest extends the covered region.
// Example:
// covered: [-------]
// e: [-------] <--- not required for the lemma because all points are also covered by other intervals
// n: [-------]
//
// Note that intervals are sorted by their starting points,
// so the intervals to be considered (i.e., those that
// contain the current endpoint), form a prefix of the list.
//
// Furthermore, because we remove intervals that are subsets
// of other intervals, also the endpoints must be increasing,
// so the last interval of this prefix is the best choice.
//
// current: [------[
// next: [---[ <--- impossible, would have been removed.
//
// current: [------[
// next: [-------[ <--- thus, the next interval is always the better choice.
//
// The interval 'first' is always part of the lemma. If we reach first again here, we have covered the complete domain.
while (n != first) {
entry const* n1 = n->next();
// Check if n1 is eligible; if yes, then n1 is better than n.
//
// Case 1, n1 overlaps e (unless n1 == e):
// e: [------[
// n1: [----[
// Case 2, n1 connects to e:
// e: [------[
// n1: [----[
if (n1 == e)
break;
if (!n1->interval.currently_contains(e->interval.hi_val()))
break;
n = n1;
}
signed_constraint c = s.m_constraints.elem(e->interval.hi(), n->interval.symbolic());
// lemma.insert_try_eval(~c);
VERIFY(c.is_currently_true(s));
if (c.bvalue(s) == l_false) {
core.reset();
core.init(~c);
return false;
}
lemma.insert_eval(~c);
for (auto sc : e->side_cond)
lemma.insert_eval(~sc);
for (const auto& src : e->src) {
lemma.insert(~src);
core.insert(src);
core.insert_vars(src);
}
e = n;
}
while (e != first);
// TODO: violated in 5133-min.smt2:
//
// viable lemma:
// 35: -31 <= -1*v17 + -1*v11*v0 + -1*v5*v2 + 32 [ b:l_true p:l_false bprop@0 idx:28 pwatched ]
// -22: v17 + v11*v0 + v6 + v5*v2 != 0 [ b:l_false p:l_undef assert@0 idx:8 pwatched dep:16 ]
// 36: v17 + v11*v0 + v5*v2 + 1 == 0 [ b:l_false p:l_false eval@39 idx:75 ]
// -7: -31 > v6 + 32 [ b:l_false p:l_undef assert@0 idx:17 pwatched dep:33 ]
// ASSERTION VIOLATION
// File: /Users/jakob/projects/z3/src/math/polysat/viable.cpp
// Line: 2036
// all_of(lemma, [this](sat::literal lit) { return s.m_bvars.value(lit) != l_true; })
//
// Reason: there is an eval/bool conflict that we didn't discover before,
// because not-yet-assigned variables are watched but the constraint already evaluates due to cancellation of some terms.
//
// verbose_stream() << "viable lemma:\n";
// for (auto lit : lemma)
// verbose_stream() << " " << lit_pp(s, lit) << "\n";
VERIFY(all_of(lemma, [this](sat::literal lit) { return s.m_bvars.value(lit) != l_true; }));
core.add_lemma("viable", lemma.build());
core.logger().log(inf_fi(*this, v));
return true;
}
void viable::log(pvar v) {
if (!well_formed(m_units[v]))
LOG("v" << v << " not well formed");
auto* e = m_units[v];
if (!e)
return;
entry* first = e;
do {
IF_LOGGING(
verbose_stream() << "v" << v << ": " << e->interval << " " << e->side_cond << " ";
for (const auto& src : e->src)
verbose_stream() << src << " ";
verbose_stream() << "\n";
);
e = e->next();
}
while (e != first);
}
void viable::log() {
for (pvar v = 0; v < m_units.size(); ++v)
log(v);
}
std::ostream& viable::display_one(std::ostream& out, pvar v, entry const* e) const {
auto& m = s.var2pdd(v);
if (e->coeff == -1) {
// p*val + q > r*val + s if e->src.is_positive()
// p*val + q >= r*val + s if e->src.is_negative()
// Note that e->interval is meaningless in this case,
// we just use it to transport the values p,q,r,s
rational const& p = e->interval.lo_val();
rational const& q_ = e->interval.lo().val();
rational const& r = e->interval.hi_val();
rational const& s_ = e->interval.hi().val();
out << "[ ";
out << val_pp(m, p, true) << "*v" << v << " + " << val_pp(m, q_);
out << (e->src[0].is_positive() ? " > " : " >= ");
out << val_pp(m, r, true) << "*v" << v << " + " << val_pp(m, s_);
out << " ] ";
}
else if (e->coeff != 1)
out << e->coeff << " * v" << v << " " << e->interval << " ";
else
out << e->interval << " ";
if (e->side_cond.size() <= 5)
out << e->side_cond << " ";
else
out << e->side_cond.size() << " side-conditions ";
unsigned count = 0;
for (const auto& src : e->src) {
++count;
out << src << "; ";
if (count > 10) {
out << " ...";
break;
}
}
return out;
}
std::ostream& viable::display_all(std::ostream& out, pvar v, entry const* e, char const* delimiter) const {
if (!e)
return out;
entry const* first = e;
unsigned count = 0;
do {
display_one(out, v, e) << delimiter;
e = e->next();
++count;
if (count > 10) {
out << " ...";
break;
}
}
while (e != first);
return out;
}
std::ostream& viable::display(std::ostream& out, pvar v, char const* delimiter) const {
display_all(out, v, m_units[v], delimiter);
display_all(out, v, m_equal_lin[v], delimiter);
display_all(out, v, m_diseq_lin[v], delimiter);
return out;
}
std::ostream& viable::display(std::ostream& out, char const* delimiter) const {
for (pvar v = 0; v < m_units.size(); ++v)
display(out << "v" << v << ": ", v, delimiter) << "\n";
return out;
}
/*
* Lower bounds are strictly ascending.
* intervals don't contain each-other (since lower bounds are ascending,
* it suffices to check containment in one direction).
*/
bool viable::well_formed(entry* e) {
if (!e)
return true;
entry* first = e;
while (true) {
if (e->interval.is_full())
return e->next() == e;
if (e->interval.is_currently_empty())
return false;
auto* n = e->next();
if (n != e && e->interval.currently_contains(n->interval))
return false;
if (n == first)
break;
if (e->interval.lo_val() >= n->interval.lo_val())
return false;
e = n;
}
return true;
}
//************************************************************************
// viable_fallback
//************************************************************************
viable_fallback::viable_fallback(solver& s):
s(s) {
m_usolver_factory = mk_univariate_bitblast_factory();
}
void viable_fallback::push_var(unsigned bit_width) {
m_constraints.push_back({});
}
void viable_fallback::pop_var() {
m_constraints.pop_back();
}
void viable_fallback::push_constraint(pvar v, signed_constraint const& c) {
// v is the only unassigned variable in c.
SASSERT(c->vars().size() == 1 || !s.is_assigned(v));
DEBUG_CODE(for (pvar w : c->vars()) { if (v != w) SASSERT(s.is_assigned(w)); });
m_constraints[v].push_back(c);
m_constraints_trail.push_back(v);
s.m_trail.push_back(trail_instr_t::viable_constraint_i);
}
void viable_fallback::pop_constraint() {
pvar v = m_constraints_trail.back();
m_constraints_trail.pop_back();
m_constraints[v].pop_back();
}
signed_constraint viable_fallback::find_violated_constraint(assignment const& a, pvar v) {
for (signed_constraint const c : m_constraints[v]) {
// for this check, all variables need to be assigned
DEBUG_CODE(for (pvar w : c->vars()) { SASSERT(a.contains(w)); });
if (c.is_currently_false(a)) {
LOG(assignment_pp(s, v, a.value(v)) << " violates constraint " << lit_pp(s, c));
return c;
}
SASSERT(c.is_currently_true(a));
}
return {};
}
univariate_solver* viable_fallback::usolver(unsigned bit_width) {
univariate_solver* us;
auto it = m_usolver.find_iterator(bit_width);
if (it != m_usolver.end()) {
us = it->m_value.get();
us->pop(1);
}
else {
auto& mk_solver = *m_usolver_factory;
m_usolver.insert(bit_width, mk_solver(bit_width));
us = m_usolver[bit_width].get();
}
SASSERT_EQ(us->scope_level(), 0);
// push once on the empty solver so we can reset it before the next use
us->push();
return us;
}
find_t viable_fallback::find_viable(pvar v, rational& out_val) {
unsigned const bit_width = s.m_size[v];
univariate_solver* us = usolver(bit_width);
auto const& cs = m_constraints[v];
for (unsigned i = cs.size(); i-- > 0; ) {
signed_constraint const c = cs[i];
LOG("Univariate constraint: " << c);
c.add_to_univariate_solver(v, s, *us, c.blit().to_uint());
}
switch (us->check()) {
case l_true:
out_val = us->model();
// we don't know whether the SMT instance has a unique solution
return find_t::multiple;
case l_false:
s.set_conflict_by_viable_fallback(v, *us);
return find_t::empty;
default:
return find_t::resource_out;
}
}
std::ostream& operator<<(std::ostream& out, find_t x) {
switch (x) {
case find_t::empty:
return out << "empty";
case find_t::singleton:
return out << "singleton";
case find_t::multiple:
return out << "multiple";
case find_t::resource_out:
return out << "resource_out";
}
UNREACHABLE();
return out;
}
}