mirror of
https://github.com/Z3Prover/z3
synced 2025-04-11 19:53:34 +00:00
607 lines
17 KiB
C++
607 lines
17 KiB
C++
/*
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
Author: Lev Nachmanson
|
|
*/
|
|
|
|
#include <utility>
|
|
#include "math/lp/int_solver.h"
|
|
#include "math/lp/lar_solver.h"
|
|
#include "math/lp/lp_utils.h"
|
|
#include "math/lp/monic.h"
|
|
#include "math/lp/gomory.h"
|
|
#include "math/lp/int_branch.h"
|
|
#include "math/lp/int_cube.h"
|
|
|
|
namespace lp {
|
|
|
|
int_solver::patcher::patcher(int_solver& lia):
|
|
lia(lia),
|
|
lra(lia.lra),
|
|
lrac(lia.lrac),
|
|
m_num_nbasic_patches(0),
|
|
m_patch_cost(0),
|
|
m_next_patch(0),
|
|
m_delay(0)
|
|
{}
|
|
|
|
bool int_solver::patcher::should_apply() {
|
|
#if 1
|
|
return true;
|
|
#else
|
|
if (m_delay == 0) {
|
|
return true;
|
|
}
|
|
--m_delay;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
lia_move int_solver::patcher::operator()() {
|
|
return patch_nbasic_columns();
|
|
}
|
|
|
|
lia_move int_solver::patcher::patch_nbasic_columns() {
|
|
lia.settings().stats().m_patches++;
|
|
lp_assert(lia.is_feasible());
|
|
m_num_nbasic_patches = 0;
|
|
m_patch_cost = 0;
|
|
for (unsigned j : lia.lrac.m_r_nbasis) {
|
|
patch_nbasic_column(j);
|
|
}
|
|
lp_assert(lia.is_feasible());
|
|
if (!lia.has_inf_int()) {
|
|
lia.settings().stats().m_patches_success++;
|
|
m_delay = 0;
|
|
m_next_patch = 0;
|
|
return lia_move::sat;
|
|
}
|
|
if (m_patch_cost > 0 && m_num_nbasic_patches * 10 < m_patch_cost) {
|
|
m_delay = std::min(20u, m_next_patch++);
|
|
}
|
|
else {
|
|
m_delay = 0;
|
|
m_next_patch = 0;
|
|
}
|
|
return lia_move::undef;
|
|
}
|
|
|
|
void int_solver::patcher::patch_nbasic_column(unsigned j) {
|
|
impq & val = lrac.m_r_x[j];
|
|
bool inf_l, inf_u;
|
|
impq l, u;
|
|
mpq m;
|
|
bool has_free = lia.get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m);
|
|
m_patch_cost += lra.A_r().number_of_non_zeroes_in_column(j);
|
|
if (!has_free) {
|
|
return;
|
|
}
|
|
bool m_is_one = m.is_one();
|
|
bool val_is_int = lia.value_is_int(j);
|
|
|
|
// check whether value of j is already a multiple of m.
|
|
if (val_is_int && (m_is_one || (val.x / m).is_int())) {
|
|
return;
|
|
}
|
|
TRACE("patch_int",
|
|
tout << "TARGET j" << j << " -> [";
|
|
if (inf_l) tout << "-oo"; else tout << l;
|
|
tout << ", ";
|
|
if (inf_u) tout << "oo"; else tout << u;
|
|
tout << "]";
|
|
tout << ", m: " << m << ", val: " << val << ", is_int: " << lra.column_is_int(j) << "\n";);
|
|
if (!inf_l) {
|
|
l = impq(m_is_one ? ceil(l) : m * ceil(l / m));
|
|
if (inf_u || l <= u) {
|
|
TRACE("patch_int", tout << "patching with l: " << l << '\n';);
|
|
lra.set_value_for_nbasic_column(j, l);
|
|
}
|
|
else {
|
|
--m_num_nbasic_patches;
|
|
TRACE("patch_int", tout << "not patching " << l << "\n";);
|
|
}
|
|
}
|
|
else if (!inf_u) {
|
|
u = impq(m_is_one ? floor(u) : m * floor(u / m));
|
|
lra.set_value_for_nbasic_column(j, u);
|
|
TRACE("patch_int", tout << "patching with u: " << u << '\n';);
|
|
}
|
|
else {
|
|
lra.set_value_for_nbasic_column(j, impq(0));
|
|
TRACE("patch_int", tout << "patching with 0\n";);
|
|
}
|
|
++m_num_nbasic_patches;
|
|
}
|
|
|
|
int_solver::int_solver(lar_solver& lar_slv) :
|
|
lra(lar_slv),
|
|
lrac(lra.m_mpq_lar_core_solver),
|
|
m_gcd(*this),
|
|
m_patcher(*this),
|
|
m_number_of_calls(0),
|
|
m_hnf_cutter(*this),
|
|
m_hnf_cut_period(settings().hnf_cut_period()) {
|
|
lra.set_int_solver(this);
|
|
}
|
|
|
|
// this will allow to enable and disable tracking of the pivot rows
|
|
struct check_return_helper {
|
|
lar_solver& lra;
|
|
bool m_track_pivoted_rows;
|
|
check_return_helper(lar_solver& ls) :
|
|
lra(ls),
|
|
m_track_pivoted_rows(lra.get_track_pivoted_rows()) {
|
|
lra.set_track_pivoted_rows(false);
|
|
}
|
|
~check_return_helper() {
|
|
lra.set_track_pivoted_rows(m_track_pivoted_rows);
|
|
}
|
|
};
|
|
|
|
lia_move int_solver::check(lp::explanation * e) {
|
|
SASSERT(lra.ax_is_correct());
|
|
if (!has_inf_int()) return lia_move::sat;
|
|
|
|
m_t.clear();
|
|
m_k.reset();
|
|
m_ex = e;
|
|
m_ex->clear();
|
|
m_upper = false;
|
|
lia_move r = lia_move::undef;
|
|
|
|
if (m_gcd.should_apply()) r = m_gcd();
|
|
|
|
check_return_helper pc(lra);
|
|
|
|
++m_number_of_calls;
|
|
if (r == lia_move::undef && m_patcher.should_apply()) r = m_patcher();
|
|
if (r == lia_move::undef && should_find_cube()) r = int_cube(*this)();
|
|
if (r == lia_move::undef && should_hnf_cut()) r = hnf_cut();
|
|
if (r == lia_move::undef && should_gomory_cut()) r = gomory(*this)();
|
|
if (r == lia_move::undef) r = int_branch(*this)();
|
|
return r;
|
|
}
|
|
|
|
std::ostream& int_solver::display_inf_rows(std::ostream& out) const {
|
|
unsigned num = lra.A_r().column_count();
|
|
for (unsigned v = 0; v < num; v++) {
|
|
if (column_is_int(v) && !get_value(v).is_int()) {
|
|
display_column(out, v);
|
|
}
|
|
}
|
|
|
|
num = 0;
|
|
for (unsigned i = 0; i < lra.A_r().row_count(); i++) {
|
|
unsigned j = lrac.m_r_basis[i];
|
|
if (column_is_int_inf(j)) {
|
|
num++;
|
|
lra.print_row(lra.A_r().m_rows[i], out);
|
|
out << "\n";
|
|
}
|
|
}
|
|
out << "num of int infeasible: " << num << "\n";
|
|
return out;
|
|
}
|
|
|
|
bool int_solver::cut_indices_are_columns() const {
|
|
for (const auto & p: m_t) {
|
|
if (p.column().index() >= lra.A_r().column_count())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool int_solver::current_solution_is_inf_on_cut() const {
|
|
SASSERT(cut_indices_are_columns());
|
|
const auto & x = lrac.m_r_x;
|
|
impq v = m_t.apply(x);
|
|
mpq sign = m_upper ? one_of_type<mpq>() : -one_of_type<mpq>();
|
|
CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign,
|
|
tout << "m_upper = " << m_upper << std::endl;
|
|
tout << "v = " << v << ", k = " << m_k << std::endl;
|
|
);
|
|
return v * sign > impq(m_k) * sign;
|
|
}
|
|
|
|
bool int_solver::has_inf_int() const {
|
|
return lra.has_inf_int();
|
|
}
|
|
|
|
constraint_index int_solver::column_upper_bound_constraint(unsigned j) const {
|
|
return lra.get_column_upper_bound_witness(j);
|
|
}
|
|
|
|
constraint_index int_solver::column_lower_bound_constraint(unsigned j) const {
|
|
return lra.get_column_lower_bound_witness(j);
|
|
}
|
|
|
|
unsigned int_solver::row_of_basic_column(unsigned j) const {
|
|
return lra.row_of_basic_column(j);
|
|
}
|
|
|
|
lp_settings& int_solver::settings() {
|
|
return lra.settings();
|
|
}
|
|
|
|
const lp_settings& int_solver::settings() const {
|
|
return lra.settings();
|
|
}
|
|
|
|
bool int_solver::column_is_int(column_index const& j) const {
|
|
return lra.column_is_int(j);
|
|
}
|
|
|
|
bool int_solver::is_real(unsigned j) const {
|
|
return !column_is_int(j);
|
|
}
|
|
|
|
bool int_solver::value_is_int(unsigned j) const {
|
|
return lra.column_value_is_int(j);
|
|
}
|
|
|
|
unsigned int_solver::random() {
|
|
return settings().random_next();
|
|
}
|
|
|
|
const impq& int_solver::upper_bound(unsigned j) const {
|
|
return lra.column_upper_bound(j);
|
|
}
|
|
|
|
const impq& int_solver::lower_bound(unsigned j) const {
|
|
return lra.column_lower_bound(j);
|
|
}
|
|
|
|
bool int_solver::is_term(unsigned j) const {
|
|
return lra.column_corresponds_to_term(j);
|
|
}
|
|
|
|
unsigned int_solver::column_count() const {
|
|
return lra.column_count();
|
|
}
|
|
|
|
bool int_solver::should_find_cube() {
|
|
return m_number_of_calls % settings().m_int_find_cube_period == 0;
|
|
}
|
|
|
|
|
|
bool int_solver::should_gomory_cut() {
|
|
return m_number_of_calls % settings().m_int_gomory_cut_period == 0;
|
|
}
|
|
|
|
bool int_solver::should_hnf_cut() {
|
|
return settings().enable_hnf() && m_number_of_calls % m_hnf_cut_period == 0;
|
|
}
|
|
|
|
lia_move int_solver::hnf_cut() {
|
|
lia_move r = m_hnf_cutter.make_hnf_cut();
|
|
if (r == lia_move::undef) {
|
|
m_hnf_cut_period *= 2;
|
|
}
|
|
else {
|
|
m_hnf_cut_period = settings().hnf_cut_period();
|
|
}
|
|
return r;
|
|
}
|
|
|
|
bool int_solver::has_lower(unsigned j) const {
|
|
switch (lrac.m_column_types()[j]) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
case column_type::lower_bound:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool int_solver::has_upper(unsigned j) const {
|
|
switch (lrac.m_column_types()[j]) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
case column_type::upper_bound:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void set_lower(impq & l, bool & inf_l, impq const & v ) {
|
|
if (inf_l || v > l) {
|
|
l = v;
|
|
inf_l = false;
|
|
}
|
|
}
|
|
|
|
static void set_upper(impq & u, bool & inf_u, impq const & v) {
|
|
if (inf_u || v < u) {
|
|
u = v;
|
|
inf_u = false;
|
|
}
|
|
}
|
|
|
|
bool int_solver::get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) {
|
|
if (lrac.m_r_heading[j] >= 0) // the basic var
|
|
return false;
|
|
|
|
TRACE("random_update", display_column(tout, j) << ", is_int = " << column_is_int(j) << "\n";);
|
|
impq const & xj = get_value(j);
|
|
|
|
inf_l = true;
|
|
inf_u = true;
|
|
l = u = zero_of_type<impq>();
|
|
m = mpq(1);
|
|
|
|
if (has_lower(j)) {
|
|
set_lower(l, inf_l, lower_bound(j) - xj);
|
|
}
|
|
if (has_upper(j)) {
|
|
set_upper(u, inf_u, upper_bound(j) - xj);
|
|
}
|
|
|
|
unsigned row_index;
|
|
lp_assert(settings().use_tableau());
|
|
const auto & A = lra.A_r();
|
|
unsigned rounds = 0;
|
|
for (const auto &c : A.column(j)) {
|
|
row_index = c.var();
|
|
const mpq & a = c.coeff();
|
|
unsigned i = lrac.m_r_basis[row_index];
|
|
TRACE("random_update", tout << "i = " << i << ", a = " << a << "\n";);
|
|
if (column_is_int(i) && !a.is_int())
|
|
m = lcm(m, denominator(a));
|
|
}
|
|
TRACE("random_update", tout << "m = " << m << "\n";);
|
|
|
|
for (const auto &c : A.column(j)) {
|
|
if (!inf_l && !inf_u && l >= u) break;
|
|
row_index = c.var();
|
|
const mpq & a = c.coeff();
|
|
unsigned i = lrac.m_r_basis[row_index];
|
|
impq const & xi = get_value(i);
|
|
|
|
#define SET_BOUND(_fn_, a, b, x, y, z) \
|
|
if (x.is_one()) \
|
|
_fn_(a, b, y - z); \
|
|
else if (x.is_minus_one()) \
|
|
_fn_(a, b, z - y); \
|
|
else if (z == y) \
|
|
_fn_(a, b, zero_of_type<impq>()); \
|
|
else \
|
|
{ _fn_(a, b, (y - z)/x); } \
|
|
|
|
|
|
if (a.is_neg()) {
|
|
if (has_lower(i)) {
|
|
SET_BOUND(set_lower, l, inf_l, a, xi, lrac.m_r_lower_bounds()[i]);
|
|
}
|
|
if (has_upper(i)) {
|
|
SET_BOUND(set_upper, u, inf_u, a, xi, lrac.m_r_upper_bounds()[i]);
|
|
}
|
|
}
|
|
else {
|
|
if (has_upper(i)) {
|
|
SET_BOUND(set_lower, l, inf_l, a, xi, lrac.m_r_upper_bounds()[i]);
|
|
}
|
|
if (has_lower(i)) {
|
|
SET_BOUND(set_upper, u, inf_u, a, xi, lrac.m_r_lower_bounds()[i]);
|
|
}
|
|
}
|
|
++rounds;
|
|
}
|
|
|
|
l += xj;
|
|
u += xj;
|
|
|
|
TRACE("freedom_interval",
|
|
tout << "freedom variable for:\n";
|
|
tout << lra.get_variable_name(j);
|
|
tout << "[";
|
|
if (inf_l) tout << "-oo"; else tout << l;
|
|
tout << "; ";
|
|
if (inf_u) tout << "oo"; else tout << u;
|
|
tout << "]\n";
|
|
tout << "val = " << get_value(j) << "\n";
|
|
tout << "return " << (inf_l || inf_u || l <= u);
|
|
);
|
|
return (inf_l || inf_u || l <= u);
|
|
}
|
|
|
|
|
|
bool int_solver::is_feasible() const {
|
|
lp_assert(
|
|
lrac.m_r_solver.calc_current_x_is_feasible_include_non_basis() ==
|
|
lrac.m_r_solver.current_x_is_feasible());
|
|
return lrac.m_r_solver.current_x_is_feasible();
|
|
}
|
|
|
|
const impq & int_solver::get_value(unsigned j) const {
|
|
return lrac.m_r_x[j];
|
|
}
|
|
|
|
std::ostream& int_solver::display_column(std::ostream & out, unsigned j) const {
|
|
return lrac.m_r_solver.print_column_info(j, out);
|
|
}
|
|
|
|
bool int_solver::column_is_int_inf(unsigned j) const {
|
|
return column_is_int(j) && (!value_is_int(j));
|
|
}
|
|
|
|
bool int_solver::is_base(unsigned j) const {
|
|
return lrac.m_r_heading[j] >= 0;
|
|
}
|
|
|
|
bool int_solver::is_boxed(unsigned j) const {
|
|
return lrac.m_column_types[j] == column_type::boxed;
|
|
}
|
|
|
|
bool int_solver::is_fixed(unsigned j) const {
|
|
return lrac.m_column_types[j] == column_type::fixed;
|
|
}
|
|
|
|
bool int_solver::is_free(unsigned j) const {
|
|
return lrac.m_column_types[j] == column_type::free_column;
|
|
}
|
|
|
|
bool int_solver::at_bound(unsigned j) const {
|
|
auto & mpq_solver = lrac.m_r_solver;
|
|
switch (mpq_solver.m_column_types[j] ) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
return
|
|
mpq_solver.m_lower_bounds[j] == get_value(j) ||
|
|
mpq_solver.m_upper_bounds[j] == get_value(j);
|
|
case column_type::lower_bound:
|
|
return mpq_solver.m_lower_bounds[j] == get_value(j);
|
|
case column_type::upper_bound:
|
|
return mpq_solver.m_upper_bounds[j] == get_value(j);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool int_solver::at_lower(unsigned j) const {
|
|
auto & mpq_solver = lrac.m_r_solver;
|
|
switch (mpq_solver.m_column_types[j] ) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
case column_type::lower_bound:
|
|
return mpq_solver.m_lower_bounds[j] == get_value(j);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool int_solver::at_upper(unsigned j) const {
|
|
auto & mpq_solver = lrac.m_r_solver;
|
|
switch (mpq_solver.m_column_types[j] ) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
case column_type::upper_bound:
|
|
return mpq_solver.m_upper_bounds[j] == get_value(j);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
std::ostream& int_solver::display_row_info(std::ostream & out, unsigned row_index) const {
|
|
auto & rslv = lrac.m_r_solver;
|
|
bool first = true;
|
|
for (const auto &c: rslv.m_A.m_rows[row_index]) {
|
|
if (c.coeff().is_one()) {
|
|
if (!first)
|
|
out << "+";
|
|
}
|
|
else if (c.coeff().is_minus_one())
|
|
out << "-";
|
|
else {
|
|
if (c.coeff().is_pos()) {
|
|
if (!first)
|
|
out << "+";
|
|
}
|
|
if (c.coeff().is_big()) {
|
|
out << " b*";
|
|
}
|
|
else
|
|
out << c.coeff();
|
|
}
|
|
out << rslv.column_name(c.var()) << " ";
|
|
first = false;
|
|
}
|
|
out << "\n";
|
|
for (const auto& c: rslv.m_A.m_rows[row_index]) {
|
|
rslv.print_column_info(c.var(), out);
|
|
if (is_base(c.var())) out << "j" << c.var() << " base\n";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
bool int_solver::shift_var(unsigned j, unsigned range) {
|
|
if (is_fixed(j) || is_base(j))
|
|
return false;
|
|
|
|
bool inf_l, inf_u;
|
|
impq l, u;
|
|
mpq m;
|
|
get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m);
|
|
const impq & x = get_value(j);
|
|
// x, the value of j column, might be shifted on a multiple of m
|
|
if (inf_l && inf_u) {
|
|
impq new_val = m * impq(random() % (range + 1)) + x;
|
|
lra.set_value_for_nbasic_column(j, new_val);
|
|
return true;
|
|
}
|
|
if (column_is_int(j)) {
|
|
if (!inf_l) {
|
|
l = impq(ceil(l));
|
|
}
|
|
if (!inf_u) {
|
|
u = impq(floor(u));
|
|
}
|
|
}
|
|
if (!inf_l && !inf_u && l >= u)
|
|
return false;
|
|
|
|
if (inf_u) {
|
|
SASSERT(!inf_l);
|
|
impq new_val = x + m * impq(random() % (range + 1));
|
|
lra.set_value_for_nbasic_column(j, new_val);
|
|
return true;
|
|
}
|
|
|
|
if (inf_l) {
|
|
SASSERT(!inf_u);
|
|
impq new_val = x - m * impq(random() % (range + 1));
|
|
lra.set_value_for_nbasic_column(j, new_val);
|
|
return true;
|
|
}
|
|
|
|
SASSERT(!inf_l && !inf_u);
|
|
// The shift has to be a multiple of m: let us look for s, such that the shift is m*s.
|
|
// We have new_val = x+m*s <= u, so m*s <= u-x and, finally, s <= floor((u- x)/m) = a
|
|
// The symmetric reasoning gives us s >= ceil((l-x)/m) = b
|
|
// We randomly pick s in the segment [b, a]
|
|
mpq a = floor((u - x) / m);
|
|
mpq b = ceil((l - x) / m);
|
|
mpq r = a - b;
|
|
if (!r.is_pos())
|
|
return false;
|
|
TRACE("int_solver", tout << "a = " << a << ", b = " << b << ", r = " << r<< ", m = " << m << "\n";);
|
|
if (r < mpq(range))
|
|
range = static_cast<unsigned>(r.get_uint64());
|
|
|
|
mpq s = b + mpq(random() % (range + 1));
|
|
impq new_val = x + m * impq(s);
|
|
TRACE("int_solver", tout << "new_val = " << new_val << "\n";);
|
|
SASSERT(l <= new_val && new_val <= u);
|
|
lra.set_value_for_nbasic_column(j, new_val);
|
|
return true;
|
|
}
|
|
|
|
// not used:
|
|
bool int_solver::non_basic_columns_are_at_bounds() const {
|
|
for (unsigned j : lrac.m_r_nbasis) {
|
|
auto & val = lrac.m_r_x[j];
|
|
switch (lrac.m_column_types()[j]) {
|
|
case column_type::boxed:
|
|
if (val != lrac.m_r_lower_bounds()[j] && val != lrac.m_r_upper_bounds()[j])
|
|
return false;
|
|
break;
|
|
case column_type::lower_bound:
|
|
if (val != lrac.m_r_lower_bounds()[j])
|
|
return false;
|
|
break;
|
|
case column_type::upper_bound:
|
|
if (val != lrac.m_r_upper_bounds()[j])
|
|
return false;
|
|
break;
|
|
default:
|
|
if (column_is_int(j) && !val.is_int()) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
}
|