3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 19:53:34 +00:00
z3/src/math/lp/int_solver.cpp
Nikolaj Bjorner df8b14d77c fix #4641
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-08-17 08:35:59 -07:00

607 lines
17 KiB
C++

/*
Copyright (c) 2017 Microsoft Corporation
Author: Lev Nachmanson
*/
#include <utility>
#include "math/lp/int_solver.h"
#include "math/lp/lar_solver.h"
#include "math/lp/lp_utils.h"
#include "math/lp/monic.h"
#include "math/lp/gomory.h"
#include "math/lp/int_branch.h"
#include "math/lp/int_cube.h"
namespace lp {
int_solver::patcher::patcher(int_solver& lia):
lia(lia),
lra(lia.lra),
lrac(lia.lrac),
m_num_nbasic_patches(0),
m_patch_cost(0),
m_next_patch(0),
m_delay(0)
{}
bool int_solver::patcher::should_apply() {
#if 1
return true;
#else
if (m_delay == 0) {
return true;
}
--m_delay;
return false;
#endif
}
lia_move int_solver::patcher::operator()() {
return patch_nbasic_columns();
}
lia_move int_solver::patcher::patch_nbasic_columns() {
lia.settings().stats().m_patches++;
lp_assert(lia.is_feasible());
m_num_nbasic_patches = 0;
m_patch_cost = 0;
for (unsigned j : lia.lrac.m_r_nbasis) {
patch_nbasic_column(j);
}
lp_assert(lia.is_feasible());
if (!lia.has_inf_int()) {
lia.settings().stats().m_patches_success++;
m_delay = 0;
m_next_patch = 0;
return lia_move::sat;
}
if (m_patch_cost > 0 && m_num_nbasic_patches * 10 < m_patch_cost) {
m_delay = std::min(20u, m_next_patch++);
}
else {
m_delay = 0;
m_next_patch = 0;
}
return lia_move::undef;
}
void int_solver::patcher::patch_nbasic_column(unsigned j) {
impq & val = lrac.m_r_x[j];
bool inf_l, inf_u;
impq l, u;
mpq m;
bool has_free = lia.get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m);
m_patch_cost += lra.A_r().number_of_non_zeroes_in_column(j);
if (!has_free) {
return;
}
bool m_is_one = m.is_one();
bool val_is_int = lia.value_is_int(j);
// check whether value of j is already a multiple of m.
if (val_is_int && (m_is_one || (val.x / m).is_int())) {
return;
}
TRACE("patch_int",
tout << "TARGET j" << j << " -> [";
if (inf_l) tout << "-oo"; else tout << l;
tout << ", ";
if (inf_u) tout << "oo"; else tout << u;
tout << "]";
tout << ", m: " << m << ", val: " << val << ", is_int: " << lra.column_is_int(j) << "\n";);
if (!inf_l) {
l = impq(m_is_one ? ceil(l) : m * ceil(l / m));
if (inf_u || l <= u) {
TRACE("patch_int", tout << "patching with l: " << l << '\n';);
lra.set_value_for_nbasic_column(j, l);
}
else {
--m_num_nbasic_patches;
TRACE("patch_int", tout << "not patching " << l << "\n";);
}
}
else if (!inf_u) {
u = impq(m_is_one ? floor(u) : m * floor(u / m));
lra.set_value_for_nbasic_column(j, u);
TRACE("patch_int", tout << "patching with u: " << u << '\n';);
}
else {
lra.set_value_for_nbasic_column(j, impq(0));
TRACE("patch_int", tout << "patching with 0\n";);
}
++m_num_nbasic_patches;
}
int_solver::int_solver(lar_solver& lar_slv) :
lra(lar_slv),
lrac(lra.m_mpq_lar_core_solver),
m_gcd(*this),
m_patcher(*this),
m_number_of_calls(0),
m_hnf_cutter(*this),
m_hnf_cut_period(settings().hnf_cut_period()) {
lra.set_int_solver(this);
}
// this will allow to enable and disable tracking of the pivot rows
struct check_return_helper {
lar_solver& lra;
bool m_track_pivoted_rows;
check_return_helper(lar_solver& ls) :
lra(ls),
m_track_pivoted_rows(lra.get_track_pivoted_rows()) {
lra.set_track_pivoted_rows(false);
}
~check_return_helper() {
lra.set_track_pivoted_rows(m_track_pivoted_rows);
}
};
lia_move int_solver::check(lp::explanation * e) {
SASSERT(lra.ax_is_correct());
if (!has_inf_int()) return lia_move::sat;
m_t.clear();
m_k.reset();
m_ex = e;
m_ex->clear();
m_upper = false;
lia_move r = lia_move::undef;
if (m_gcd.should_apply()) r = m_gcd();
check_return_helper pc(lra);
++m_number_of_calls;
if (r == lia_move::undef && m_patcher.should_apply()) r = m_patcher();
if (r == lia_move::undef && should_find_cube()) r = int_cube(*this)();
if (r == lia_move::undef && should_hnf_cut()) r = hnf_cut();
if (r == lia_move::undef && should_gomory_cut()) r = gomory(*this)();
if (r == lia_move::undef) r = int_branch(*this)();
return r;
}
std::ostream& int_solver::display_inf_rows(std::ostream& out) const {
unsigned num = lra.A_r().column_count();
for (unsigned v = 0; v < num; v++) {
if (column_is_int(v) && !get_value(v).is_int()) {
display_column(out, v);
}
}
num = 0;
for (unsigned i = 0; i < lra.A_r().row_count(); i++) {
unsigned j = lrac.m_r_basis[i];
if (column_is_int_inf(j)) {
num++;
lra.print_row(lra.A_r().m_rows[i], out);
out << "\n";
}
}
out << "num of int infeasible: " << num << "\n";
return out;
}
bool int_solver::cut_indices_are_columns() const {
for (const auto & p: m_t) {
if (p.column().index() >= lra.A_r().column_count())
return false;
}
return true;
}
bool int_solver::current_solution_is_inf_on_cut() const {
SASSERT(cut_indices_are_columns());
const auto & x = lrac.m_r_x;
impq v = m_t.apply(x);
mpq sign = m_upper ? one_of_type<mpq>() : -one_of_type<mpq>();
CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign,
tout << "m_upper = " << m_upper << std::endl;
tout << "v = " << v << ", k = " << m_k << std::endl;
);
return v * sign > impq(m_k) * sign;
}
bool int_solver::has_inf_int() const {
return lra.has_inf_int();
}
constraint_index int_solver::column_upper_bound_constraint(unsigned j) const {
return lra.get_column_upper_bound_witness(j);
}
constraint_index int_solver::column_lower_bound_constraint(unsigned j) const {
return lra.get_column_lower_bound_witness(j);
}
unsigned int_solver::row_of_basic_column(unsigned j) const {
return lra.row_of_basic_column(j);
}
lp_settings& int_solver::settings() {
return lra.settings();
}
const lp_settings& int_solver::settings() const {
return lra.settings();
}
bool int_solver::column_is_int(column_index const& j) const {
return lra.column_is_int(j);
}
bool int_solver::is_real(unsigned j) const {
return !column_is_int(j);
}
bool int_solver::value_is_int(unsigned j) const {
return lra.column_value_is_int(j);
}
unsigned int_solver::random() {
return settings().random_next();
}
const impq& int_solver::upper_bound(unsigned j) const {
return lra.column_upper_bound(j);
}
const impq& int_solver::lower_bound(unsigned j) const {
return lra.column_lower_bound(j);
}
bool int_solver::is_term(unsigned j) const {
return lra.column_corresponds_to_term(j);
}
unsigned int_solver::column_count() const {
return lra.column_count();
}
bool int_solver::should_find_cube() {
return m_number_of_calls % settings().m_int_find_cube_period == 0;
}
bool int_solver::should_gomory_cut() {
return m_number_of_calls % settings().m_int_gomory_cut_period == 0;
}
bool int_solver::should_hnf_cut() {
return settings().enable_hnf() && m_number_of_calls % m_hnf_cut_period == 0;
}
lia_move int_solver::hnf_cut() {
lia_move r = m_hnf_cutter.make_hnf_cut();
if (r == lia_move::undef) {
m_hnf_cut_period *= 2;
}
else {
m_hnf_cut_period = settings().hnf_cut_period();
}
return r;
}
bool int_solver::has_lower(unsigned j) const {
switch (lrac.m_column_types()[j]) {
case column_type::fixed:
case column_type::boxed:
case column_type::lower_bound:
return true;
default:
return false;
}
}
bool int_solver::has_upper(unsigned j) const {
switch (lrac.m_column_types()[j]) {
case column_type::fixed:
case column_type::boxed:
case column_type::upper_bound:
return true;
default:
return false;
}
}
static void set_lower(impq & l, bool & inf_l, impq const & v ) {
if (inf_l || v > l) {
l = v;
inf_l = false;
}
}
static void set_upper(impq & u, bool & inf_u, impq const & v) {
if (inf_u || v < u) {
u = v;
inf_u = false;
}
}
bool int_solver::get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) {
if (lrac.m_r_heading[j] >= 0) // the basic var
return false;
TRACE("random_update", display_column(tout, j) << ", is_int = " << column_is_int(j) << "\n";);
impq const & xj = get_value(j);
inf_l = true;
inf_u = true;
l = u = zero_of_type<impq>();
m = mpq(1);
if (has_lower(j)) {
set_lower(l, inf_l, lower_bound(j) - xj);
}
if (has_upper(j)) {
set_upper(u, inf_u, upper_bound(j) - xj);
}
unsigned row_index;
lp_assert(settings().use_tableau());
const auto & A = lra.A_r();
unsigned rounds = 0;
for (const auto &c : A.column(j)) {
row_index = c.var();
const mpq & a = c.coeff();
unsigned i = lrac.m_r_basis[row_index];
TRACE("random_update", tout << "i = " << i << ", a = " << a << "\n";);
if (column_is_int(i) && !a.is_int())
m = lcm(m, denominator(a));
}
TRACE("random_update", tout << "m = " << m << "\n";);
for (const auto &c : A.column(j)) {
if (!inf_l && !inf_u && l >= u) break;
row_index = c.var();
const mpq & a = c.coeff();
unsigned i = lrac.m_r_basis[row_index];
impq const & xi = get_value(i);
#define SET_BOUND(_fn_, a, b, x, y, z) \
if (x.is_one()) \
_fn_(a, b, y - z); \
else if (x.is_minus_one()) \
_fn_(a, b, z - y); \
else if (z == y) \
_fn_(a, b, zero_of_type<impq>()); \
else \
{ _fn_(a, b, (y - z)/x); } \
if (a.is_neg()) {
if (has_lower(i)) {
SET_BOUND(set_lower, l, inf_l, a, xi, lrac.m_r_lower_bounds()[i]);
}
if (has_upper(i)) {
SET_BOUND(set_upper, u, inf_u, a, xi, lrac.m_r_upper_bounds()[i]);
}
}
else {
if (has_upper(i)) {
SET_BOUND(set_lower, l, inf_l, a, xi, lrac.m_r_upper_bounds()[i]);
}
if (has_lower(i)) {
SET_BOUND(set_upper, u, inf_u, a, xi, lrac.m_r_lower_bounds()[i]);
}
}
++rounds;
}
l += xj;
u += xj;
TRACE("freedom_interval",
tout << "freedom variable for:\n";
tout << lra.get_variable_name(j);
tout << "[";
if (inf_l) tout << "-oo"; else tout << l;
tout << "; ";
if (inf_u) tout << "oo"; else tout << u;
tout << "]\n";
tout << "val = " << get_value(j) << "\n";
tout << "return " << (inf_l || inf_u || l <= u);
);
return (inf_l || inf_u || l <= u);
}
bool int_solver::is_feasible() const {
lp_assert(
lrac.m_r_solver.calc_current_x_is_feasible_include_non_basis() ==
lrac.m_r_solver.current_x_is_feasible());
return lrac.m_r_solver.current_x_is_feasible();
}
const impq & int_solver::get_value(unsigned j) const {
return lrac.m_r_x[j];
}
std::ostream& int_solver::display_column(std::ostream & out, unsigned j) const {
return lrac.m_r_solver.print_column_info(j, out);
}
bool int_solver::column_is_int_inf(unsigned j) const {
return column_is_int(j) && (!value_is_int(j));
}
bool int_solver::is_base(unsigned j) const {
return lrac.m_r_heading[j] >= 0;
}
bool int_solver::is_boxed(unsigned j) const {
return lrac.m_column_types[j] == column_type::boxed;
}
bool int_solver::is_fixed(unsigned j) const {
return lrac.m_column_types[j] == column_type::fixed;
}
bool int_solver::is_free(unsigned j) const {
return lrac.m_column_types[j] == column_type::free_column;
}
bool int_solver::at_bound(unsigned j) const {
auto & mpq_solver = lrac.m_r_solver;
switch (mpq_solver.m_column_types[j] ) {
case column_type::fixed:
case column_type::boxed:
return
mpq_solver.m_lower_bounds[j] == get_value(j) ||
mpq_solver.m_upper_bounds[j] == get_value(j);
case column_type::lower_bound:
return mpq_solver.m_lower_bounds[j] == get_value(j);
case column_type::upper_bound:
return mpq_solver.m_upper_bounds[j] == get_value(j);
default:
return false;
}
}
bool int_solver::at_lower(unsigned j) const {
auto & mpq_solver = lrac.m_r_solver;
switch (mpq_solver.m_column_types[j] ) {
case column_type::fixed:
case column_type::boxed:
case column_type::lower_bound:
return mpq_solver.m_lower_bounds[j] == get_value(j);
default:
return false;
}
}
bool int_solver::at_upper(unsigned j) const {
auto & mpq_solver = lrac.m_r_solver;
switch (mpq_solver.m_column_types[j] ) {
case column_type::fixed:
case column_type::boxed:
case column_type::upper_bound:
return mpq_solver.m_upper_bounds[j] == get_value(j);
default:
return false;
}
}
std::ostream& int_solver::display_row_info(std::ostream & out, unsigned row_index) const {
auto & rslv = lrac.m_r_solver;
bool first = true;
for (const auto &c: rslv.m_A.m_rows[row_index]) {
if (c.coeff().is_one()) {
if (!first)
out << "+";
}
else if (c.coeff().is_minus_one())
out << "-";
else {
if (c.coeff().is_pos()) {
if (!first)
out << "+";
}
if (c.coeff().is_big()) {
out << " b*";
}
else
out << c.coeff();
}
out << rslv.column_name(c.var()) << " ";
first = false;
}
out << "\n";
for (const auto& c: rslv.m_A.m_rows[row_index]) {
rslv.print_column_info(c.var(), out);
if (is_base(c.var())) out << "j" << c.var() << " base\n";
}
return out;
}
bool int_solver::shift_var(unsigned j, unsigned range) {
if (is_fixed(j) || is_base(j))
return false;
bool inf_l, inf_u;
impq l, u;
mpq m;
get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m);
const impq & x = get_value(j);
// x, the value of j column, might be shifted on a multiple of m
if (inf_l && inf_u) {
impq new_val = m * impq(random() % (range + 1)) + x;
lra.set_value_for_nbasic_column(j, new_val);
return true;
}
if (column_is_int(j)) {
if (!inf_l) {
l = impq(ceil(l));
}
if (!inf_u) {
u = impq(floor(u));
}
}
if (!inf_l && !inf_u && l >= u)
return false;
if (inf_u) {
SASSERT(!inf_l);
impq new_val = x + m * impq(random() % (range + 1));
lra.set_value_for_nbasic_column(j, new_val);
return true;
}
if (inf_l) {
SASSERT(!inf_u);
impq new_val = x - m * impq(random() % (range + 1));
lra.set_value_for_nbasic_column(j, new_val);
return true;
}
SASSERT(!inf_l && !inf_u);
// The shift has to be a multiple of m: let us look for s, such that the shift is m*s.
// We have new_val = x+m*s <= u, so m*s <= u-x and, finally, s <= floor((u- x)/m) = a
// The symmetric reasoning gives us s >= ceil((l-x)/m) = b
// We randomly pick s in the segment [b, a]
mpq a = floor((u - x) / m);
mpq b = ceil((l - x) / m);
mpq r = a - b;
if (!r.is_pos())
return false;
TRACE("int_solver", tout << "a = " << a << ", b = " << b << ", r = " << r<< ", m = " << m << "\n";);
if (r < mpq(range))
range = static_cast<unsigned>(r.get_uint64());
mpq s = b + mpq(random() % (range + 1));
impq new_val = x + m * impq(s);
TRACE("int_solver", tout << "new_val = " << new_val << "\n";);
SASSERT(l <= new_val && new_val <= u);
lra.set_value_for_nbasic_column(j, new_val);
return true;
}
// not used:
bool int_solver::non_basic_columns_are_at_bounds() const {
for (unsigned j : lrac.m_r_nbasis) {
auto & val = lrac.m_r_x[j];
switch (lrac.m_column_types()[j]) {
case column_type::boxed:
if (val != lrac.m_r_lower_bounds()[j] && val != lrac.m_r_upper_bounds()[j])
return false;
break;
case column_type::lower_bound:
if (val != lrac.m_r_lower_bounds()[j])
return false;
break;
case column_type::upper_bound:
if (val != lrac.m_r_upper_bounds()[j])
return false;
break;
default:
if (column_is_int(j) && !val.is_int()) {
return false;
}
}
}
return true;
}
}