3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00
z3/src/sat/tactic/sat_tactic.cpp
Nikolaj Bjorner df6b1a707e remove proof_converter from tactic application, removing nlsat_tactic
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2017-11-17 23:32:29 -08:00

221 lines
7 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
sat_tactic.cpp
Abstract:
Tactic for using the SAT solver and its preprocessing capabilities.
Author:
Leonardo (leonardo) 2011-10-25
Notes:
--*/
#include "ast/ast_pp.h"
#include "tactic/tactical.h"
#include "sat/tactic/goal2sat.h"
#include "sat/sat_solver.h"
#include "model/model_v2_pp.h"
class sat_tactic : public tactic {
struct imp {
ast_manager & m;
goal2sat m_goal2sat;
sat2goal m_sat2goal;
sat::solver m_solver;
params_ref m_params;
imp(ast_manager & _m, params_ref const & p):
m(_m),
m_solver(p, m.limit()),
m_params(p) {
SASSERT(!m.proofs_enabled());
}
void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
expr_dependency_ref & core) {
mc = 0; core = 0;
fail_if_proof_generation("sat", g);
bool produce_models = g->models_enabled();
bool produce_core = g->unsat_core_enabled();
TRACE("before_sat_solver", g->display(tout););
g->elim_redundancies();
atom2bool_var map(m);
obj_map<expr, sat::literal> dep2asm;
sat::literal_vector assumptions;
m_goal2sat(*g, m_params, m_solver, map, dep2asm);
TRACE("sat_solver_unknown", tout << "interpreted_atoms: " << map.interpreted_atoms() << "\n";
for (auto const& kv : map) {
if (!is_uninterp_const(kv.m_key))
tout << mk_ismt2_pp(kv.m_key, m) << "\n";
});
g->reset();
g->m().compact_memory();
CASSERT("sat_solver", m_solver.check_invariant());
IF_VERBOSE(TACTIC_VERBOSITY_LVL, m_solver.display_status(verbose_stream()););
TRACE("sat_dimacs", m_solver.display_dimacs(tout););
dep2assumptions(dep2asm, assumptions);
lbool r = m_solver.check(assumptions.size(), assumptions.c_ptr());
if (r == l_false) {
expr_dependency * lcore = 0;
if (produce_core) {
sat::literal_vector const& ucore = m_solver.get_core();
u_map<expr*> asm2dep;
mk_asm2dep(dep2asm, asm2dep);
for (unsigned i = 0; i < ucore.size(); ++i) {
sat::literal lit = ucore[i];
expr* dep = asm2dep.find(lit.index());
lcore = m.mk_join(lcore, m.mk_leaf(dep));
}
}
g->assert_expr(m.mk_false(), 0, lcore);
}
else if (r == l_true && !map.interpreted_atoms()) {
// register model
if (produce_models) {
model_ref md = alloc(model, m);
sat::model const & ll_m = m_solver.get_model();
TRACE("sat_tactic", for (unsigned i = 0; i < ll_m.size(); i++) tout << i << ":" << ll_m[i] << " "; tout << "\n";);
for (auto const& kv : map) {
expr * n = kv.m_key;
sat::bool_var v = kv.m_value;
TRACE("sat_tactic", tout << "extracting value of " << mk_ismt2_pp(n, m) << "\nvar: " << v << "\n";);
switch (sat::value_at(v, ll_m)) {
case l_true:
md->register_decl(to_app(n)->get_decl(), m.mk_true());
break;
case l_false:
md->register_decl(to_app(n)->get_decl(), m.mk_false());
break;
default:
break;
}
}
TRACE("sat_tactic", model_v2_pp(tout, *md););
mc = model2model_converter(md.get());
}
}
else {
// get simplified problem.
#if 0
IF_VERBOSE(TACTIC_VERBOSITY_LVL, verbose_stream() << "\"formula constains interpreted atoms, recovering formula from sat solver...\"\n";);
#endif
m_solver.pop_to_base_level();
m_sat2goal(m_solver, map, m_params, *(g.get()), mc);
}
g->inc_depth();
result.push_back(g.get());
}
void dep2assumptions(obj_map<expr, sat::literal>& dep2asm,
sat::literal_vector& assumptions) {
for (auto const& kv : dep2asm) {
assumptions.push_back(kv.m_value);
}
}
void mk_asm2dep(obj_map<expr, sat::literal>& dep2asm,
u_map<expr*>& lit2asm) {
for (auto const& kv : dep2asm) {
lit2asm.insert(kv.m_value.index(), kv.m_key);
}
}
};
struct scoped_set_imp {
sat_tactic * m_owner;
scoped_set_imp(sat_tactic * o, imp * i):m_owner(o) {
m_owner->m_imp = i;
}
~scoped_set_imp() {
m_owner->m_imp = 0;
}
};
imp * m_imp;
params_ref m_params;
statistics m_stats;
public:
sat_tactic(ast_manager & m, params_ref const & p):
m_imp(0),
m_params(p) {
}
virtual tactic * translate(ast_manager & m) {
return alloc(sat_tactic, m, m_params);
}
virtual ~sat_tactic() {
SASSERT(m_imp == 0);
}
virtual void updt_params(params_ref const & p) {
m_params = p;
}
virtual void collect_param_descrs(param_descrs & r) {
goal2sat::collect_param_descrs(r);
sat2goal::collect_param_descrs(r);
sat::solver::collect_param_descrs(r);
}
void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
expr_dependency_ref & core) {
imp proc(g->m(), m_params);
scoped_set_imp set(this, &proc);
try {
proc(g, result, mc, core);
proc.m_solver.collect_statistics(m_stats);
}
catch (sat::solver_exception & ex) {
proc.m_solver.collect_statistics(m_stats);
throw tactic_exception(ex.msg());
}
TRACE("sat_stats", m_stats.display_smt2(tout););
}
virtual void cleanup() {
SASSERT(m_imp == 0);
}
virtual void collect_statistics(statistics & st) const {
st.copy(m_stats);
}
virtual void reset_statistics() {
m_stats.reset();
}
protected:
};
tactic * mk_sat_tactic(ast_manager & m, params_ref const & p) {
return clean(alloc(sat_tactic, m, p));
}
tactic * mk_sat_preprocessor_tactic(ast_manager & m, params_ref const & p) {
params_ref p_aux;
p_aux.set_uint("max_conflicts", 0);
tactic * t = clean(using_params(mk_sat_tactic(m, p), p_aux));
t->updt_params(p);
return t;
}