3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00
z3/src/math/simplex/model_based_opt.h
Nikolaj Bjorner 6aa6102891 factor out model-based-opt code
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2016-04-27 15:08:10 -07:00

116 lines
3.1 KiB
C++

/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
model_based_opt.h
Abstract:
Model-based optimization for linear real arithmetic.
Author:
Nikolaj Bjorner (nbjorner) 2016-27-4
Revision History:
--*/
#ifndef __MODEL_BASED_OPT_H__
#define __MODEL_BASED_OPT_H__
#include "util.h"
#include "rational.h"
namespace opt {
enum ineq_type {
t_eq,
t_lt,
t_le
};
enum bound_type {
unbounded,
strict,
non_strict
};
class model_based_opt {
public:
struct var {
unsigned m_id;
rational m_coeff;
var(unsigned id, rational const& c): m_id(id), m_coeff(c) {}
struct compare {
bool operator()(var x, var y) {
return x.m_id < y.m_id;
}
};
};
private:
struct row {
row(): m_type(t_le), m_value(0), m_alive(false) {}
vector<var> m_vars; // variables with coefficients
rational m_coeff; // constant in inequality
ineq_type m_type; // inequality type
rational m_value; // value of m_vars + m_coeff under interpretation of m_var2value.
bool m_alive; // rows can be marked dead if they have been processed.
};
vector<row> m_rows;
unsigned m_objective_id;
vector<unsigned_vector> m_var2row_ids;
vector<rational> m_var2value;
vector<var> m_new_vars;
bool invariant();
bool invariant(row const& r);
row& objective() { return m_rows[0]; }
bool find_bound(unsigned x, unsigned& bound_index, unsigned_vector& other, bool is_pos);
rational get_coefficient(unsigned row_id, unsigned var_id);
bool resolve(unsigned row_id1, rational const& a1, unsigned row_id2, unsigned x);
void multiply(rational const& c, unsigned row_id);
void add(unsigned row_id1, unsigned row_id2);
void set_row(row& r, vector<var> const& coeffs, rational const& c, ineq_type rel);
public:
model_based_opt();
// add a fresh variable with value 'value'.
unsigned add_var(rational const& value);
// add a constraint. We assume that the constraint is
// satisfied under the values provided to the variables.
void add_constraint(vector<var> const& coeffs, rational const& c, ineq_type r);
// Set the objective function (linear).
void set_objective(vector<var> const& coeffs, rational const& c);
// find a maximal value for the objective function over the current values.
// in other words, the returned maximal value may not be globally optimal,
// but the current evaluation of variables are used to select a local
// optimal.
bound_type maximize(rational& value);
void display(std::ostream& out) const;
void display(std::ostream& out, row const& r) const;
};
}
#endif