mirror of
https://github.com/Z3Prover/z3
synced 2026-02-17 06:11:44 +00:00
309 lines
8.8 KiB
Go
309 lines
8.8 KiB
Go
package z3
|
|
|
|
/*
|
|
#include "z3.h"
|
|
#include <stdlib.h>
|
|
*/
|
|
import "C"
|
|
import (
|
|
"runtime"
|
|
"unsafe"
|
|
)
|
|
|
|
// Status represents the result of a satisfiability check.
|
|
type Status int
|
|
|
|
const (
|
|
// Unsatisfiable means the constraints are unsatisfiable.
|
|
Unsatisfiable Status = -1
|
|
// Unknown means Z3 could not determine satisfiability.
|
|
Unknown Status = 0
|
|
// Satisfiable means the constraints are satisfiable.
|
|
Satisfiable Status = 1
|
|
)
|
|
|
|
// String returns the string representation of the status.
|
|
func (s Status) String() string {
|
|
switch s {
|
|
case Unsatisfiable:
|
|
return "unsat"
|
|
case Unknown:
|
|
return "unknown"
|
|
case Satisfiable:
|
|
return "sat"
|
|
default:
|
|
return "unknown"
|
|
}
|
|
}
|
|
|
|
// Solver represents a Z3 solver.
|
|
type Solver struct {
|
|
ctx *Context
|
|
ptr C.Z3_solver
|
|
}
|
|
|
|
// NewSolver creates a new solver for the given context.
|
|
func (c *Context) NewSolver() *Solver {
|
|
s := &Solver{
|
|
ctx: c,
|
|
ptr: C.Z3_mk_solver(c.ptr),
|
|
}
|
|
C.Z3_solver_inc_ref(c.ptr, s.ptr)
|
|
runtime.SetFinalizer(s, func(solver *Solver) {
|
|
C.Z3_solver_dec_ref(solver.ctx.ptr, solver.ptr)
|
|
})
|
|
return s
|
|
}
|
|
|
|
// NewSolverForLogic creates a solver for a specific logic.
|
|
func (c *Context) NewSolverForLogic(logic string) *Solver {
|
|
sym := c.MkStringSymbol(logic)
|
|
s := &Solver{
|
|
ctx: c,
|
|
ptr: C.Z3_mk_solver_for_logic(c.ptr, sym.ptr),
|
|
}
|
|
C.Z3_solver_inc_ref(c.ptr, s.ptr)
|
|
runtime.SetFinalizer(s, func(solver *Solver) {
|
|
C.Z3_solver_dec_ref(solver.ctx.ptr, solver.ptr)
|
|
})
|
|
return s
|
|
}
|
|
|
|
// String returns the string representation of the solver.
|
|
func (s *Solver) String() string {
|
|
return C.GoString(C.Z3_solver_to_string(s.ctx.ptr, s.ptr))
|
|
}
|
|
|
|
// Assert adds a constraint to the solver.
|
|
func (s *Solver) Assert(constraint *Expr) {
|
|
C.Z3_solver_assert(s.ctx.ptr, s.ptr, constraint.ptr)
|
|
}
|
|
|
|
// AssertAndTrack adds a constraint with a tracking literal.
|
|
func (s *Solver) AssertAndTrack(constraint, track *Expr) {
|
|
C.Z3_solver_assert_and_track(s.ctx.ptr, s.ptr, constraint.ptr, track.ptr)
|
|
}
|
|
|
|
// Check checks the satisfiability of the constraints.
|
|
func (s *Solver) Check() Status {
|
|
result := C.Z3_solver_check(s.ctx.ptr, s.ptr)
|
|
return Status(result)
|
|
}
|
|
|
|
// CheckAssumptions checks satisfiability under assumptions.
|
|
func (s *Solver) CheckAssumptions(assumptions ...*Expr) Status {
|
|
if len(assumptions) == 0 {
|
|
return s.Check()
|
|
}
|
|
cAssumptions := make([]C.Z3_ast, len(assumptions))
|
|
for i, a := range assumptions {
|
|
cAssumptions[i] = a.ptr
|
|
}
|
|
result := C.Z3_solver_check_assumptions(s.ctx.ptr, s.ptr, C.uint(len(assumptions)), &cAssumptions[0])
|
|
return Status(result)
|
|
}
|
|
|
|
// Model returns the model if the constraints are satisfiable.
|
|
func (s *Solver) Model() *Model {
|
|
modelPtr := C.Z3_solver_get_model(s.ctx.ptr, s.ptr)
|
|
if modelPtr == nil {
|
|
return nil
|
|
}
|
|
return newModel(s.ctx, modelPtr)
|
|
}
|
|
|
|
// Push creates a backtracking point.
|
|
func (s *Solver) Push() {
|
|
C.Z3_solver_push(s.ctx.ptr, s.ptr)
|
|
}
|
|
|
|
// Pop removes backtracking points.
|
|
func (s *Solver) Pop(n uint) {
|
|
C.Z3_solver_pop(s.ctx.ptr, s.ptr, C.uint(n))
|
|
}
|
|
|
|
// Reset removes all assertions from the solver.
|
|
func (s *Solver) Reset() {
|
|
C.Z3_solver_reset(s.ctx.ptr, s.ptr)
|
|
}
|
|
|
|
// NumScopes returns the number of backtracking points.
|
|
func (s *Solver) NumScopes() uint {
|
|
return uint(C.Z3_solver_get_num_scopes(s.ctx.ptr, s.ptr))
|
|
}
|
|
|
|
// Assertions returns the assertions in the solver.
|
|
func (s *Solver) Assertions() []*Expr {
|
|
vec := C.Z3_solver_get_assertions(s.ctx.ptr, s.ptr)
|
|
size := uint(C.Z3_ast_vector_size(s.ctx.ptr, vec))
|
|
result := make([]*Expr, size)
|
|
for i := uint(0); i < size; i++ {
|
|
result[i] = newExpr(s.ctx, C.Z3_ast_vector_get(s.ctx.ptr, vec, C.uint(i)))
|
|
}
|
|
return result
|
|
}
|
|
|
|
// UnsatCore returns the unsat core if the constraints are unsatisfiable.
|
|
func (s *Solver) UnsatCore() []*Expr {
|
|
vec := C.Z3_solver_get_unsat_core(s.ctx.ptr, s.ptr)
|
|
size := uint(C.Z3_ast_vector_size(s.ctx.ptr, vec))
|
|
result := make([]*Expr, size)
|
|
for i := uint(0); i < size; i++ {
|
|
result[i] = newExpr(s.ctx, C.Z3_ast_vector_get(s.ctx.ptr, vec, C.uint(i)))
|
|
}
|
|
return result
|
|
}
|
|
|
|
// ReasonUnknown returns the reason why the result is unknown.
|
|
func (s *Solver) ReasonUnknown() string {
|
|
return C.GoString(C.Z3_solver_get_reason_unknown(s.ctx.ptr, s.ptr))
|
|
}
|
|
|
|
// GetStatistics returns the statistics for the solver.
|
|
// Statistics include performance metrics, memory usage, and decision statistics.
|
|
func (s *Solver) GetStatistics() *Statistics {
|
|
ptr := C.Z3_solver_get_statistics(s.ctx.ptr, s.ptr)
|
|
return newStatistics(s.ctx, ptr)
|
|
}
|
|
|
|
// FromFile parses and asserts SMT-LIB2 formulas from a file.
|
|
// The solver will contain the assertions from the file after this call.
|
|
func (s *Solver) FromFile(filename string) {
|
|
cFilename := C.CString(filename)
|
|
defer C.free(unsafe.Pointer(cFilename))
|
|
C.Z3_solver_from_file(s.ctx.ptr, s.ptr, cFilename)
|
|
}
|
|
|
|
// FromString parses and asserts SMT-LIB2 formulas from a string.
|
|
// The solver will contain the assertions from the string after this call.
|
|
func (s *Solver) FromString(str string) {
|
|
cStr := C.CString(str)
|
|
defer C.free(unsafe.Pointer(cStr))
|
|
C.Z3_solver_from_string(s.ctx.ptr, s.ptr, cStr)
|
|
}
|
|
|
|
// GetHelp returns a string describing all available solver parameters.
|
|
func (s *Solver) GetHelp() string {
|
|
return C.GoString(C.Z3_solver_get_help(s.ctx.ptr, s.ptr))
|
|
}
|
|
|
|
// SetParams sets solver parameters.
|
|
// Parameters control solver behavior such as timeout, proof generation, etc.
|
|
func (s *Solver) SetParams(params *Params) {
|
|
C.Z3_solver_set_params(s.ctx.ptr, s.ptr, params.ptr)
|
|
}
|
|
|
|
// GetParamDescrs returns parameter descriptions for the solver.
|
|
func (s *Solver) GetParamDescrs() *ParamDescrs {
|
|
ptr := C.Z3_solver_get_param_descrs(s.ctx.ptr, s.ptr)
|
|
return newParamDescrs(s.ctx, ptr)
|
|
}
|
|
|
|
// Interrupt interrupts the solver execution.
|
|
// This is useful for stopping long-running solver operations gracefully.
|
|
func (s *Solver) Interrupt() {
|
|
C.Z3_solver_interrupt(s.ctx.ptr, s.ptr)
|
|
}
|
|
|
|
// Model represents a Z3 model (satisfying assignment).
|
|
type Model struct {
|
|
ctx *Context
|
|
ptr C.Z3_model
|
|
}
|
|
|
|
// newModel creates a new Model and manages its reference count.
|
|
func newModel(ctx *Context, ptr C.Z3_model) *Model {
|
|
m := &Model{ctx: ctx, ptr: ptr}
|
|
C.Z3_model_inc_ref(ctx.ptr, ptr)
|
|
runtime.SetFinalizer(m, func(model *Model) {
|
|
C.Z3_model_dec_ref(model.ctx.ptr, model.ptr)
|
|
})
|
|
return m
|
|
}
|
|
|
|
// String returns the string representation of the model.
|
|
func (m *Model) String() string {
|
|
return C.GoString(C.Z3_model_to_string(m.ctx.ptr, m.ptr))
|
|
}
|
|
|
|
// NumConsts returns the number of constants in the model.
|
|
func (m *Model) NumConsts() uint {
|
|
return uint(C.Z3_model_get_num_consts(m.ctx.ptr, m.ptr))
|
|
}
|
|
|
|
// NumFuncs returns the number of function interpretations in the model.
|
|
func (m *Model) NumFuncs() uint {
|
|
return uint(C.Z3_model_get_num_funcs(m.ctx.ptr, m.ptr))
|
|
}
|
|
|
|
// GetConstDecl returns the i-th constant declaration in the model.
|
|
func (m *Model) GetConstDecl(i uint) *FuncDecl {
|
|
return newFuncDecl(m.ctx, C.Z3_model_get_const_decl(m.ctx.ptr, m.ptr, C.uint(i)))
|
|
}
|
|
|
|
// GetFuncDecl returns the i-th function declaration in the model.
|
|
func (m *Model) GetFuncDecl(i uint) *FuncDecl {
|
|
return newFuncDecl(m.ctx, C.Z3_model_get_func_decl(m.ctx.ptr, m.ptr, C.uint(i)))
|
|
}
|
|
|
|
// Eval evaluates an expression in the model.
|
|
// If modelCompletion is true, Z3 will assign an interpretation for uninterpreted constants.
|
|
func (m *Model) Eval(expr *Expr, modelCompletion bool) (*Expr, bool) {
|
|
var result C.Z3_ast
|
|
var completion C.bool
|
|
if modelCompletion {
|
|
completion = C.bool(true)
|
|
} else {
|
|
completion = C.bool(false)
|
|
}
|
|
success := C.Z3_model_eval(m.ctx.ptr, m.ptr, expr.ptr, completion, &result)
|
|
if success == C.bool(false) {
|
|
return nil, false
|
|
}
|
|
return newExpr(m.ctx, result), true
|
|
}
|
|
|
|
// GetConstInterp returns the interpretation of a constant.
|
|
func (m *Model) GetConstInterp(decl *FuncDecl) *Expr {
|
|
result := C.Z3_model_get_const_interp(m.ctx.ptr, m.ptr, decl.ptr)
|
|
if result == nil {
|
|
return nil
|
|
}
|
|
return newExpr(m.ctx, result)
|
|
}
|
|
|
|
// FuncInterp represents a function interpretation in a model.
|
|
type FuncInterp struct {
|
|
ctx *Context
|
|
ptr C.Z3_func_interp
|
|
}
|
|
|
|
// GetFuncInterp returns the interpretation of a function.
|
|
func (m *Model) GetFuncInterp(decl *FuncDecl) *FuncInterp {
|
|
result := C.Z3_model_get_func_interp(m.ctx.ptr, m.ptr, decl.ptr)
|
|
if result == nil {
|
|
return nil
|
|
}
|
|
fi := &FuncInterp{ctx: m.ctx, ptr: result}
|
|
C.Z3_func_interp_inc_ref(m.ctx.ptr, result)
|
|
runtime.SetFinalizer(fi, func(f *FuncInterp) {
|
|
C.Z3_func_interp_dec_ref(f.ctx.ptr, f.ptr)
|
|
})
|
|
return fi
|
|
}
|
|
|
|
// NumEntries returns the number of entries in the function interpretation.
|
|
func (fi *FuncInterp) NumEntries() uint {
|
|
return uint(C.Z3_func_interp_get_num_entries(fi.ctx.ptr, fi.ptr))
|
|
}
|
|
|
|
// GetElse returns the else value of the function interpretation.
|
|
func (fi *FuncInterp) GetElse() *Expr {
|
|
result := C.Z3_func_interp_get_else(fi.ctx.ptr, fi.ptr)
|
|
return newExpr(fi.ctx, result)
|
|
}
|
|
|
|
// GetArity returns the arity of the function interpretation.
|
|
func (fi *FuncInterp) GetArity() uint {
|
|
return uint(C.Z3_func_interp_get_arity(fi.ctx.ptr, fi.ptr))
|
|
}
|