mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
378 lines
14 KiB
C++
378 lines
14 KiB
C++
/*++
|
|
Copyright (c) 2023 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
simplifier_solver.cpp
|
|
|
|
Abstract:
|
|
|
|
Implements a solver with simplifying pre-processing.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2023-01-30
|
|
|
|
Notes:
|
|
|
|
- add translation for preprocess state.
|
|
- If the pre-processors are stateful, they need to be properly translated.
|
|
|
|
--*/
|
|
#include "util/params.h"
|
|
#include "ast/ast_util.h"
|
|
#include "ast/rewriter/expr_safe_replace.h"
|
|
#include "ast/simplifiers/dependent_expr_state.h"
|
|
#include "ast/simplifiers/then_simplifier.h"
|
|
#include "solver/solver.h"
|
|
#include "solver/simplifier_solver.h"
|
|
#include "solver/solver_preprocess.h"
|
|
|
|
|
|
class simplifier_solver : public solver {
|
|
|
|
|
|
struct dep_expr_state : public dependent_expr_state {
|
|
simplifier_solver& s;
|
|
model_reconstruction_trail m_reconstruction_trail;
|
|
dep_expr_state(simplifier_solver& s) :dependent_expr_state(s.m), s(s), m_reconstruction_trail(s.m, m_trail) {}
|
|
~dep_expr_state() override {}
|
|
virtual unsigned qtail() const override { return s.m_fmls.size(); }
|
|
dependent_expr const& operator[](unsigned i) override { return s.m_fmls[i]; }
|
|
void update(unsigned i, dependent_expr const& j) override {
|
|
SASSERT(j.fml());
|
|
check_false(j.fml());
|
|
s.m_fmls[i] = j;
|
|
}
|
|
void add(dependent_expr const& j) override { check_false(j.fml()); s.m_fmls.push_back(j); }
|
|
bool inconsistent() override { return s.m_inconsistent; }
|
|
model_reconstruction_trail& model_trail() override { return m_reconstruction_trail; }
|
|
std::ostream& display(std::ostream& out) const override {
|
|
unsigned i = 0;
|
|
for (auto const& d : s.m_fmls) {
|
|
if (i > 0 && i == qhead())
|
|
out << "---- head ---\n";
|
|
out << d << "\n";
|
|
++i;
|
|
}
|
|
m_reconstruction_trail.display(out);
|
|
return out;
|
|
}
|
|
void check_false(expr* f) {
|
|
if (s.m.is_false(f))
|
|
s.set_inconsistent();
|
|
}
|
|
void replay(unsigned qhead, expr_ref_vector& assumptions) { m_reconstruction_trail.replay(qhead, assumptions, *this); }
|
|
void flatten_suffix() override {
|
|
expr_mark seen;
|
|
unsigned j = qhead();
|
|
for (unsigned i = qhead(); i < qtail(); ++i) {
|
|
expr* f = s.m_fmls[i].fml();
|
|
if (seen.is_marked(f))
|
|
continue;
|
|
seen.mark(f, true);
|
|
if (s.m.is_true(f))
|
|
continue;
|
|
if (s.m.is_and(f)) {
|
|
auto* d = s.m_fmls[i].dep();
|
|
for (expr* arg : *to_app(f))
|
|
add(dependent_expr(s.m, arg, nullptr, d));
|
|
continue;
|
|
}
|
|
if (i != j)
|
|
s.m_fmls[j] = s.m_fmls[i];
|
|
++j;
|
|
}
|
|
s.m_fmls.shrink(j);
|
|
}
|
|
};
|
|
|
|
ast_manager& m;
|
|
solver_ref s;
|
|
vector<dependent_expr> m_fmls;
|
|
dep_expr_state m_preprocess_state;
|
|
then_simplifier m_preprocess;
|
|
expr_ref_vector m_assumptions;
|
|
model_converter_ref m_mc;
|
|
bool m_inconsistent = false;
|
|
expr_safe_replace m_core_replace;
|
|
|
|
void replace(expr_ref_vector& r) {
|
|
expr_ref tmp(m);
|
|
for (unsigned i = 0; i < r.size(); ++i) {
|
|
m_core_replace(r.get(i), tmp);
|
|
r[i] = tmp;
|
|
}
|
|
}
|
|
|
|
void flush(expr_ref_vector& assumptions) {
|
|
unsigned qhead = m_preprocess_state.qhead();
|
|
expr_ref_vector orig_assumptions(assumptions);
|
|
m_core_replace.reset();
|
|
if (qhead < m_fmls.size() || !assumptions.empty()) {
|
|
m_preprocess_state.replay(qhead, assumptions);
|
|
m_preprocess_state.freeze(assumptions);
|
|
m_preprocess.reduce();
|
|
if (!m.inc())
|
|
return;
|
|
TRACE("solver", tout << "qhead " << qhead << "\n";
|
|
m_preprocess_state.display(tout));
|
|
m_preprocess_state.advance_qhead();
|
|
for (unsigned i = 0; i < assumptions.size(); ++i)
|
|
m_core_replace.insert(assumptions.get(i), orig_assumptions.get(i));
|
|
}
|
|
m_mc = m_preprocess_state.model_trail().get_model_converter();
|
|
m_cached_mc = nullptr;
|
|
for (; qhead < m_fmls.size(); ++qhead)
|
|
add_with_dependency(m_fmls[qhead]);
|
|
}
|
|
|
|
ptr_vector<expr> m_deps;
|
|
void add_with_dependency(dependent_expr const& de) {
|
|
if (!de.dep()) {
|
|
s->assert_expr(de.fml());
|
|
return;
|
|
}
|
|
m_deps.reset();
|
|
m.linearize(de.dep(), m_deps);
|
|
m_assumptions.reset();
|
|
for (expr* d : m_deps)
|
|
m_assumptions.push_back(d);
|
|
s->assert_expr(de.fml(), mk_and(m_assumptions));
|
|
}
|
|
|
|
bool inconsistent() const {
|
|
return m_inconsistent;
|
|
}
|
|
|
|
void set_inconsistent() {
|
|
if (!m_inconsistent) {
|
|
m_preprocess_state.m_trail.push(value_trail(m_inconsistent));
|
|
m_inconsistent = true;
|
|
}
|
|
}
|
|
|
|
public:
|
|
|
|
simplifier_solver(solver* s, simplifier_factory* fac) :
|
|
solver(s->get_manager()),
|
|
m(s->get_manager()),
|
|
s(s),
|
|
m_preprocess_state(*this),
|
|
m_preprocess(m, s->get_params(), m_preprocess_state),
|
|
m_assumptions(m),
|
|
m_core_replace(m),
|
|
m_proof(m)
|
|
{
|
|
if (fac)
|
|
m_preprocess.add_simplifier((*fac)(m, s->get_params(), m_preprocess_state));
|
|
else
|
|
init_preprocess(m, s->get_params(), m_preprocess, m_preprocess_state);
|
|
}
|
|
|
|
void assert_expr_core2(expr* t, expr* a) override {
|
|
m_cached_model = nullptr;
|
|
m_cached_mc = nullptr;
|
|
proof* pr = m.proofs_enabled() ? m.mk_asserted(t) : nullptr;
|
|
m_fmls.push_back(dependent_expr(m, t, pr, m.mk_leaf(a)));
|
|
}
|
|
|
|
void assert_expr_core(expr* t) override {
|
|
m_cached_model = nullptr;
|
|
m_cached_mc = nullptr;
|
|
proof* pr = m.proofs_enabled() ? m.mk_asserted(t) : nullptr;
|
|
m_fmls.push_back(dependent_expr(m, t, pr, nullptr));
|
|
}
|
|
|
|
void push() override {
|
|
expr_ref_vector none(m);
|
|
flush(none);
|
|
m_preprocess_state.push();
|
|
m_preprocess.push();
|
|
m_preprocess_state.m_trail.push(restore_vector(m_fmls));
|
|
s->push();
|
|
}
|
|
|
|
void pop(unsigned n) override {
|
|
s->pop(n);
|
|
m_cached_model = nullptr;
|
|
m_preprocess.pop(n);
|
|
m_preprocess_state.pop(n);
|
|
}
|
|
|
|
lbool check_sat_core(unsigned num_assumptions, expr* const* assumptions) override {
|
|
expr_ref_vector _assumptions(m, num_assumptions, assumptions);
|
|
flush(_assumptions);
|
|
return s->check_sat_core(num_assumptions, _assumptions.data());
|
|
}
|
|
|
|
void collect_statistics(statistics& st) const override {
|
|
s->collect_statistics(st);
|
|
m_preprocess.collect_statistics(st);
|
|
}
|
|
|
|
model_ref m_cached_model;
|
|
void get_model_core(model_ref& m) override {
|
|
CTRACE("simplifier", m_mc.get(), m_mc->display(tout));
|
|
if (m_cached_model) {
|
|
m = m_cached_model;
|
|
return;
|
|
}
|
|
s->get_model(m);
|
|
if (m_mc)
|
|
(*m_mc)(m);
|
|
m_cached_model = m;
|
|
}
|
|
|
|
proof_ref m_proof;
|
|
proof* get_proof_core() override {
|
|
proof* p = s->get_proof();
|
|
m_proof = p;
|
|
if (p) {
|
|
expr_ref tmp(p, m);
|
|
expr_safe_replace sub(m);
|
|
for (auto const& d : m_fmls) {
|
|
if (d.pr())
|
|
sub.insert(m.mk_asserted(d.fml()), d.pr());
|
|
}
|
|
sub(tmp);
|
|
SASSERT(is_app(tmp));
|
|
m_proof = to_app(tmp);
|
|
}
|
|
return m_proof;
|
|
}
|
|
|
|
solver* translate(ast_manager& m, params_ref const& p) override {
|
|
solver* new_s = s->translate(m, p);
|
|
ast_translation tr(get_manager(), m);
|
|
simplifier_solver* result = alloc(simplifier_solver, new_s, nullptr); // factory?
|
|
for (dependent_expr const& f : m_fmls)
|
|
result->m_fmls.push_back(dependent_expr(tr, f));
|
|
if (m_mc)
|
|
result->m_mc = dynamic_cast<generic_model_converter*>(m_mc->translate(tr));
|
|
|
|
// copy m_preprocess_state?
|
|
return result;
|
|
}
|
|
|
|
void updt_params(params_ref const& p) override {
|
|
s->updt_params(p);
|
|
m_preprocess.updt_params(p);
|
|
}
|
|
|
|
mutable model_converter_ref m_cached_mc;
|
|
model_converter_ref get_model_converter() const override {
|
|
if (!m_cached_mc)
|
|
m_cached_mc = concat(solver::get_model_converter().get(), m_mc.get(), s->get_model_converter().get());
|
|
return m_cached_mc;
|
|
}
|
|
|
|
unsigned get_num_assertions() const override { return s->get_num_assertions(); }
|
|
expr* get_assertion(unsigned idx) const override { return s->get_assertion(idx); }
|
|
std::string reason_unknown() const override { return s->reason_unknown(); }
|
|
void set_reason_unknown(char const* msg) override { s->set_reason_unknown(msg); }
|
|
void get_labels(svector<symbol>& r) override { s->get_labels(r); }
|
|
void get_unsat_core(expr_ref_vector& r) override { s->get_unsat_core(r); replace(r); }
|
|
ast_manager& get_manager() const override { return s->get_manager(); }
|
|
void reset_params(params_ref const& p) override { s->reset_params(p); }
|
|
params_ref const& get_params() const override { return s->get_params(); }
|
|
void collect_param_descrs(param_descrs& r) override { s->collect_param_descrs(r); }
|
|
void push_params() override { s->push_params(); }
|
|
void pop_params() override { s->pop_params(); }
|
|
void set_produce_models(bool f) override { s->set_produce_models(f); }
|
|
void set_phase(expr* e) override { s->set_phase(e); }
|
|
void move_to_front(expr* e) override { s->move_to_front(e); }
|
|
phase* get_phase() override { return s->get_phase(); }
|
|
void set_phase(phase* p) override { s->set_phase(p); }
|
|
unsigned get_num_assumptions() const override { return s->get_num_assumptions(); }
|
|
expr* get_assumption(unsigned idx) const override { return s->get_assumption(idx); }
|
|
unsigned get_scope_level() const override { return s->get_scope_level(); }
|
|
void set_progress_callback(progress_callback* callback) override { s->set_progress_callback(callback); }
|
|
|
|
lbool get_consequences(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) override {
|
|
expr_ref_vector es(m);
|
|
es.append(asms);
|
|
es.append(vars);
|
|
flush(es);
|
|
expr_ref_vector asms1(m, asms.size(), es.data());
|
|
expr_ref_vector vars1(m, vars.size(), es.data() + asms.size());
|
|
lbool r = s->get_consequences(asms1, vars1, consequences);
|
|
replace(consequences);
|
|
return r;
|
|
}
|
|
|
|
lbool check_sat_cc(expr_ref_vector const& cube, vector<expr_ref_vector> const& clauses) override {
|
|
expr_ref_vector es(m);
|
|
es.append(cube);
|
|
for (auto const& c : clauses)
|
|
es.append(c);
|
|
flush(es);
|
|
expr_ref_vector cube1(m, cube.size(), es.data());
|
|
vector<expr_ref_vector> clauses1;
|
|
unsigned offset = cube.size();
|
|
for (auto const& c : clauses) {
|
|
clauses1.push_back(expr_ref_vector(m, c.size(), es.data() + offset));
|
|
offset += c.size();
|
|
}
|
|
return s->check_sat_cc(cube1, clauses1);
|
|
}
|
|
|
|
lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) override {
|
|
expr_ref_vector vars1(vars);
|
|
flush(vars1);
|
|
lbool r = s->find_mutexes(vars1, mutexes);
|
|
for (auto& mux : mutexes)
|
|
replace(mux);
|
|
return r;
|
|
}
|
|
|
|
lbool preferred_sat(expr_ref_vector const& asms, vector<expr_ref_vector>& cores) override {
|
|
expr_ref_vector asms1(asms);
|
|
flush(asms1);
|
|
lbool r = s->preferred_sat(asms1, cores);
|
|
for (auto& c : cores)
|
|
replace(c);
|
|
return r;
|
|
}
|
|
|
|
// todo flush?
|
|
expr_ref_vector cube(expr_ref_vector& vars, unsigned backtrack_level) override {
|
|
return s->cube(vars, backtrack_level);
|
|
}
|
|
|
|
expr* congruence_root(expr* e) override { return s->congruence_root(e); }
|
|
expr* congruence_next(expr* e) override { return s->congruence_next(e); }
|
|
std::ostream& display(std::ostream& out, unsigned n, expr* const* assumptions) const override {
|
|
return s->display(out, n, assumptions);
|
|
}
|
|
void get_units_core(expr_ref_vector& units) override { s->get_units_core(units); }
|
|
expr_ref_vector get_trail(unsigned max_level) override { return s->get_trail(max_level); }
|
|
void get_levels(ptr_vector<expr> const& vars, unsigned_vector& depth) override { s->get_levels(vars, depth); }
|
|
|
|
void register_on_clause(void* ctx, user_propagator::on_clause_eh_t& on_clause) override {
|
|
s->register_on_clause(ctx, on_clause);
|
|
}
|
|
|
|
void user_propagate_init(
|
|
void* ctx,
|
|
user_propagator::push_eh_t& push_eh,
|
|
user_propagator::pop_eh_t& pop_eh,
|
|
user_propagator::fresh_eh_t& fresh_eh) override {
|
|
s->user_propagate_init(ctx, push_eh, pop_eh, fresh_eh);
|
|
}
|
|
void user_propagate_register_fixed(user_propagator::fixed_eh_t& fixed_eh) override { s->user_propagate_register_fixed(fixed_eh); }
|
|
void user_propagate_register_final(user_propagator::final_eh_t& final_eh) override { s->user_propagate_register_final(final_eh); }
|
|
void user_propagate_register_eq(user_propagator::eq_eh_t& eq_eh) override { s->user_propagate_register_eq(eq_eh); }
|
|
void user_propagate_register_diseq(user_propagator::eq_eh_t& diseq_eh) override { s->user_propagate_register_diseq(diseq_eh); }
|
|
void user_propagate_register_expr(expr* e) override { m_preprocess_state.freeze(e); s->user_propagate_register_expr(e); }
|
|
void user_propagate_register_created(user_propagator::created_eh_t& r) override { s->user_propagate_register_created(r); }
|
|
void user_propagate_register_decide(user_propagator::decide_eh_t& r) override { s->user_propagate_register_decide(r); }
|
|
|
|
|
|
};
|
|
|
|
solver* mk_simplifier_solver(solver* s, simplifier_factory* fac) {
|
|
return alloc(simplifier_solver, s, fac);
|
|
}
|
|
|