3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-08 00:05:46 +00:00
z3/src/math/polysat/viable.h
Nikolaj Bjorner 611c28fc47 push outline of using cjust for overflow premise
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2021-09-09 09:56:00 +02:00

206 lines
5.6 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
maintain viable domains
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
Notes:
NEW_VIABLE uses cheaper book-keeping, but is partial.
Alternative to using rational, instead use fixed-width numerals.
map from num_bits to template set
class viable_trail_base {
public:
virtual pop(pvar v) = 0;
virtual push(pvar v) = 0;
static viable_trail_base* mk_trail(unsigned num_bits);
};
class viable_trail<Numeral> : public viable_trail_base {
vector<viable_set<Numeral>> m_viable;
vector<viable_set<Numeral>> m_trail;
public:
void pop(pvar v) override {
m_viable[v] = m_trail.back();
m_trail.pop_back();
}
void push(pvar v) override {
m_trail.push_back(m_viable[v]);
}
};
// from num-bits to viable_trail_base*
scoped_ptr_vector<viable_trail_base> m_viable_trails;
viable_set_base& to_viable(pvar v) {
return (*m_viable_trails[num_bits(v)])[v];
}
viable_set_base is required to expose functions:
lo, hi,
prev, next alternative as bit-vectors
update_lo (a)
update_hi (a)
intersect_le (a, b, c, d)
intersect_diff (a, b)
intersect_eq (a, b)
is_empty
contains
--*/
#pragma once
#define NEW_VIABLE 0
#include <limits>
#include "math/dd/dd_bdd.h"
#include "math/polysat/types.h"
#if NEW_VIABLE
#include "math/polysat/viable_set.h"
#endif
namespace polysat {
class solver;
class viable {
typedef dd::bdd bdd;
typedef dd::fdd fdd;
solver& s;
dd::bdd_manager m_bdd;
scoped_ptr_vector<dd::fdd> m_bits;
#if NEW_VIABLE
struct cached_constraint {
enum op_code { is_ule, is_eq };
op_code m_op;
unsigned m_num_bits;
rational a, b, c, d;
bdd repr;
unsigned m_activity = 0;
cached_constraint(unsigned n, rational const& a, rational const& b, rational const& c, rational const& d, bdd& f) :
m_op(op_code::is_ule), m_num_bits(n), a(a), b(b), c(c), d(d), repr(f) {}
cached_constraint(unsigned n, rational const& a, rational const& b, bdd& f) :
m_op(op_code::is_eq), m_num_bits(n), a(a), b(b), repr(f) {}
struct hash {
unsigned operator()(cached_constraint const* e) const {
return mk_mix(e->a.hash(), e->b.hash(), mk_mix(e->c.hash(), e->d.hash(), e->m_num_bits)) + e->m_op;
}
};
struct eq {
bool operator()(cached_constraint const* x, cached_constraint const* y) const {
return x->m_op == y->m_op && x->a == y->a && x->b == y->b && x->c == y->c && x->d == y->d && x->m_num_bits == y->m_num_bits;
}
};
};
scoped_ptr_vector<viable_set> m_viable;
vector<std::pair<pvar, viable_set*>> m_viable_trail;
hashtable<cached_constraint*, cached_constraint::hash, cached_constraint::eq> m_constraint_cache;
void intersect_ule_bdd(pvar v, rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive);
void intersect_eq_bdd(pvar v, rational const& a, rational const& b, bool is_positive);
cached_constraint& cache_constraint(pvar v, cached_constraint& entry0, std::function<bdd(void)>& mk_constraint);
void gc_cached_constraints();
void narrow(pvar v, bdd const& is_false);
#else
vector<bdd> m_viable; // set of viable values.
vector<std::pair<pvar, bdd>> m_viable_trail;
/**
* Register all values that are not contained in vals as non-viable.
*/
void intersect_viable(pvar v, bdd vals);
#endif
dd::bdd_manager& get_bdd() { return m_bdd; }
dd::fdd const& sz2bits(unsigned sz);
dd::fdd const& var2bits(pvar v);
public:
viable(solver& s);
~viable();
void push(unsigned num_bits) {
#if NEW_VIABLE
m_viable.push_back(alloc(viable_set, num_bits));
#else
m_viable.push_back(m_bdd.mk_true());
#endif
}
void pop() {
m_viable.pop_back();
}
void push_viable(pvar v);
void pop_viable();
/**
* update state of viable for pvar v
* based on affine constraints
*/
void intersect_eq(rational const& a, pvar v, rational const& b, bool is_positive);
void intersect_ule(pvar v, rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive);
/**
* Check whether variable v has any viable values left according to m_viable.
*/
bool has_viable(pvar v);
bool is_false(pvar v) { return !has_viable(v); }
/**
* check if value is viable according to m_viable.
*/
bool is_viable(pvar v, rational const& val);
/**
* register that val is non-viable for var.
*/
void add_non_viable(pvar v, rational const& val);
/*
* Extract min and max viable values for v
*/
rational min_viable(pvar v);
rational max_viable(pvar v);
/**
* Find a next viable value for variable.
*/
dd::find_t find_viable(pvar v, rational & val);
/** Log all viable values for the given variable.
* (Inefficient, but useful for debugging small instances.)
*/
void log(pvar v);
/** Like log(v) but for all variables */
void log();
};
}