3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00
z3/lib/upolynomial_factorization_int.h
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

421 lines
15 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
upolynomial_factorization_int.h
Abstract:
(Internal) header file for univariate polynomial factorization.
This classes are exposed for debugging purposes only.
Author:
Dejan (t-dejanj) 2011-11-29
Notes:
[1] Elwyn Ralph Berlekamp. Factoring Polynomials over Finite Fields. Bell System Technical Journal,
46(8-10):18531859, 1967.
[2] Donald Ervin Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms. Addison Wesley, third
edition, 1997.
[3] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer Verlag, 1993.
--*/
#ifndef _UPOLYNOMIAL_FACTORIZATION_INT_H_
#define _UPOLYNOMIAL_FACTORIZATION_INT_H_
#include"upolynomial_factorization.h"
namespace upolynomial {
// copy p from some manager to zp_p in Z_p[x]
inline void to_zp_manager(zp_manager & zp_upm, numeral_vector & p) {
zp_numeral_manager & zp_nm(zp_upm.m());
for (unsigned i = 0; i < p.size(); ++ i) {
zp_nm.p_normalize(p[i]);
}
zp_upm.trim(p);
}
// copy p from some manager to zp_p in Z_p[x]
inline void to_zp_manager(zp_manager & zp_upm, numeral_vector const & p, numeral_vector & zp_p) {
zp_numeral_manager & zp_nm(zp_upm.m());
zp_upm.reset(zp_p);
for (unsigned i = 0; i < p.size(); ++ i) {
numeral p_i; // no need to delete, we keep it pushed in zp_p
zp_nm.set(p_i, p[i]);
zp_p.push_back(p_i);
}
zp_upm.trim(zp_p);
}
/**
\brief Contains all possible degrees of a factorization of a polynomial.
If
p = p1^{k_1} * ... * pn^{k_n} with p_i of degree d_i
then it is represents numbers of the for \sum a_i*d_i, where a_i <= k_i. Two numbers always in the set are
deg(p) and 0.
*/
class factorization_degree_set {
// the set itself, a (m_max_degree)-binary number
bit_vector m_set;
public:
factorization_degree_set() { }
factorization_degree_set(zp_factors const & factors)
{
zp_manager & upm = factors.upm();
// the set contains only {0}
m_set.push_back(true);
for (unsigned i = 0; i < factors.distinct_factors(); ++ i) {
unsigned degree = upm.degree(factors[i]);
unsigned multiplicity = factors.get_degree(i);
for (unsigned k = 0; k < multiplicity; ++ k) {
bit_vector tmp(m_set);
m_set.shift_right(degree);
m_set |= tmp;
}
}
SASSERT(in_set(0) && in_set(factors.get_degree()));
}
unsigned max_degree() const { return m_set.size() - 1; }
void swap(factorization_degree_set & other) {
m_set.swap(other.m_set);
}
bool is_trivial() const {
// check if set = {0, n}
for (int i = 1; i < (int) m_set.size() - 1; ++ i) {
if (m_set.get(i)) return false;
}
return true;
}
void remove(unsigned k) {
m_set.set(k, false);
}
bool in_set(unsigned k) const {
return m_set.get(k);
}
void intersect(const factorization_degree_set& other) {
m_set &= other.m_set;
}
void display(std::ostream & out) const {
out << "[0";
for (unsigned i = 1; i <= max_degree(); ++ i) {
if (in_set(i)) {
out << ", " << i;
}
}
out << "] represented by " << m_set;
}
};
/**
\brief A to iterate through all combinations of factors. This is only needed for the factorization, and we
always iterate through the
*/
template <typename factors_type>
class factorization_combination_iterator_base {
protected:
// total size of available factors
int m_total_size;
// maximal size of the selection
int m_max_size;
// the factors to select from
factors_type const & m_factors;
// which factors are enabled
svector<bool> m_enabled;
// the size of the current selection
int m_current_size;
// the current selection: indices at positions < m_current_size, other values are maxed out
svector<int> m_current;
/**
Assuming a valid selection m_current[0], ..., m_current[position], try to find the next option for
m_current[position], i.e. the first bigger one that's enabled.
*/
int find(int position, int upper_bound) {
int current = m_current[position] + 1;
while (current < upper_bound && !m_enabled[current]) {
current ++;
}
if (current == upper_bound) {
return -1;
} else {
return current;
}
}
public:
factorization_combination_iterator_base(factors_type const & factors)
: m_total_size(factors.distinct_factors()),
m_max_size(factors.distinct_factors()/2),
m_factors(factors)
{
SASSERT(factors.total_factors() > 1);
SASSERT(factors.total_factors() == factors.distinct_factors());
// enable all to start with
m_enabled.resize(m_factors.distinct_factors(), true);
// max out the m_current so that it always fits
m_current.resize(m_factors.distinct_factors()+1, m_factors.distinct_factors());
m_current_size = 0;
}
/**
\brief Returns the factors we are enumerating through.
*/
factors_type const & get_factors() const {
return m_factors;
}
/**
\brief Computes the next combination of factors and returns true if it exists. If remove current is true
it will eliminate the current selected elements from any future selection.
*/
bool next(bool remove_current) {
int max_upper_bound = m_factors.distinct_factors();
do {
// the index we are currently trying to fix
int current_i = m_current_size - 1;
// the value we found as plausable (-1 we didn't find anything)
int current_value = -1;
if (remove_current) {
SASSERT(m_current_size > 0);
// disable the elements of the current selection from ever appearing again
for (current_i = m_current_size - 1; current_i > 0; -- current_i) {
SASSERT(m_enabled[m_current[current_i]]);
m_enabled[m_current[current_i]] = false;
m_current[current_i] = max_upper_bound;
}
// the last one
SASSERT(m_enabled[m_current[0]]);
m_enabled[m_current[0]] = false;
// not removing current anymore
remove_current = false;
// out max size is also going down
m_total_size -= m_current_size;
m_max_size = m_total_size/2;
}
// we go back to the first one that can be increased (if removing current go all the way)
while (current_i >= 0) {
current_value = find(current_i, m_current[current_i + 1]);
if (current_value >= 0) {
// found one
m_current[current_i] = current_value;
break;
} else {
// go back some more
current_i --;
}
}
do {
if (current_value == -1) {
// we couldn't find any options, we have to increse size and start from the first one of that size
if (m_current_size >= m_max_size) {
return false;
} else {
m_current_size ++;
m_current[0] = -1;
current_i = 0;
current_value = find(current_i, max_upper_bound);
// if we didn't find any, we are done
if (current_value == -1) {
return false;
} else {
m_current[current_i] = current_value;
}
}
}
// ok we have a new selection for the current one
for (current_i ++; current_i < m_current_size; ++ current_i) {
// start from the previous one
m_current[current_i] = m_current[current_i-1];
current_value = find(current_i, max_upper_bound);
if (current_value == -1) {
// screwed, didn't find the next one, this means we need to increase the size
m_current[0] = -1;
break;
} else {
m_current[current_i] = current_value;
}
}
} while (current_value == -1);
} while (filter_current());
// found the next one, hurray
return true;
}
/**
\brief A function that returns true if the current combination should be ignored.
*/
virtual bool filter_current() const = 0;
/**
\brief Returns the size of the current selection (cardinality)
*/
unsigned left_size() const {
return m_current_size;
}
/**
\brief Returns the size of the rest of the current selection (cardinality)
*/
unsigned right_size() const {
return m_total_size - m_current_size;
}
void display(std::ostream& out) const {
out << "[ ";
for (unsigned i = 0; i < m_current.size(); ++ i) {
out << m_current[i] << " ";
}
out << "] from [ ";
for (unsigned i = 0; i < m_factors.distinct_factors(); ++ i) {
if (m_enabled[i]) {
out << i << " ";
}
}
out << "]" << std::endl;
}
};
class ufactorization_combination_iterator : public factorization_combination_iterator_base<zp_factors> {
// the degree sets to choose from
factorization_degree_set const & m_degree_set;
public:
ufactorization_combination_iterator(zp_factors const & factors, factorization_degree_set const & degree_set)
: factorization_combination_iterator_base<zp_factors>(factors),
m_degree_set(degree_set)
{}
/**
\brief Filter the ones not in the degree set.
*/
bool filter_current() const {
// select only the ones that have degrees in the degree set
if (!m_degree_set.in_set(current_degree())) {
return true;
}
return false;
}
/**
\brief Returns the degree of the current selection.
*/
unsigned current_degree() const {
unsigned degree = 0;
zp_manager & upm = m_factors.pm();
for (unsigned i = 0; i < left_size(); ++ i) {
degree += upm.degree(m_factors[m_current[i]]);
}
return degree;
}
void left(numeral_vector & out) const {
SASSERT(m_current_size > 0);
zp_manager & upm = m_factors.upm();
upm.set(m_factors[m_current[0]].size(), m_factors[m_current[0]].c_ptr(), out);
for (int i = 1; i < m_current_size; ++ i) {
upm.mul(out.size(), out.c_ptr(), m_factors[m_current[i]].size(), m_factors[m_current[i]].c_ptr(), out);
}
}
void get_left_tail_coeff(numeral const & m, numeral & out) {
zp_numeral_manager & nm = m_factors.upm().m();
nm.set(out, m);
for (int i = 0; i < m_current_size; ++ i) {
nm.mul(out, m_factors[m_current[i]][0], out);
}
}
void get_right_tail_coeff(numeral const & m, numeral & out) {
zp_numeral_manager & nm = m_factors.upm().m();
nm.set(out, m);
unsigned current = 0;
unsigned selection_i = 0;
// selection is ordered, so we just take the ones in between that are not disable
while (current < m_factors.distinct_factors()) {
if (!m_enabled[current]) {
// by skipping the disabled we never skip a selected one
current ++;
} else {
if (selection_i >= m_current.size() || (int) current < m_current[selection_i]) {
SASSERT(m_factors.get_degree(current) == 1);
nm.mul(out, m_factors[current][0], out);
current ++;
} else {
current ++;
selection_i ++;
}
}
}
}
void right(numeral_vector & out) const {
SASSERT(m_current_size > 0);
zp_manager & upm = m_factors.upm();
upm.reset(out);
unsigned current = 0;
unsigned selection_i = 0;
// selection is ordered, so we just take the ones in between that are not disable
while (current < m_factors.distinct_factors()) {
if (!m_enabled[current]) {
// by skipping the disabled we never skip a selected one
current ++;
} else {
if (selection_i >= m_current.size() || (int) current < m_current[selection_i]) {
SASSERT(m_factors.get_degree(current) == 1);
if (out.size() == 0) {
upm.set(m_factors[current].size(), m_factors[current].c_ptr(), out);
} else {
upm.mul(out.size(), out.c_ptr(), m_factors[current].size(), m_factors[current].c_ptr(), out);
}
current ++;
} else {
current ++;
selection_i ++;
}
}
}
}
};
};
#endif