3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 09:34:08 +00:00
z3/examples/msf/SolverFoundation.Plugin.Z3/Utils.cs
Nikolaj Bjorner 1657cdd8b4 add missing copyright
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2015-06-17 12:47:19 -07:00

131 lines
3.7 KiB
C#
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 2015 Microsoft Corporation
--*/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
using Microsoft.Z3;
using Microsoft.SolverFoundation.Common;
namespace Microsoft.SolverFoundation.Plugin.Z3
{
public class Utils
{
/// <summary>
/// Returns the Z3 term corresponding to the MSF rational number.
/// </summary>
/// <param name="rational">The MSF rational</param>
/// <returns>The Z3 term</returns>
public static ArithExpr GetNumeral(Context context, Rational rational, Sort sort = null)
{
try
{
sort = rational.IsInteger() ? ((Sort)context.IntSort) : (sort == null ? (Sort)context.RealSort : sort);
return (ArithExpr)context.MkNumeral(rational.ToString(), sort);
}
catch (Z3Exception e)
{
Console.Error.WriteLine("Conversion of {0} failed:\n {1}", rational, e);
throw new NotSupportedException();
}
}
private static long BASE = 10 ^ 18;
private static Rational ToRational(System.Numerics.BigInteger bi)
{
if (System.Numerics.BigInteger.Abs(bi) <= BASE)
{
return (Rational)((long)bi);
}
return BASE * ToRational(bi / BASE) + ToRational(bi % BASE);
}
public static Rational ToRational(IntNum i)
{
return ToRational(i.BigInteger);
}
public static Rational ToRational(RatNum r)
{
return ToRational(r.BigIntNumerator) / ToRational(r.BigIntDenominator);
}
public static Rational ToRational(Expr expr)
{
Debug.Assert(expr is ArithExpr, "Only accept ArithExpr for now.");
var e = expr as ArithExpr;
if (e is IntNum)
{
Debug.Assert(expr.IsIntNum, "Number should be an integer.");
return ToRational(expr as IntNum);
}
if (e is RatNum)
{
Debug.Assert(expr.IsRatNum, "Number should be a rational.");
return ToRational(expr as RatNum);
}
if (e.IsAdd)
{
Rational r = Rational.Zero;
foreach (var arg in e.Args)
{
r += ToRational(arg);
}
return r;
}
if (e.IsMul)
{
Rational r = Rational.One;
foreach (var arg in e.Args)
{
r *= ToRational(arg);
}
return r;
}
if (e.IsUMinus)
{
return -ToRational(e.Args[0]);
}
if (e.IsDiv)
{
return ToRational(e.Args[0]) / ToRational(e.Args[1]);
}
if (e.IsSub)
{
Rational r = ToRational(e.Args[0]);
for (int i = 1; i < e.Args.Length; ++i)
{
r -= ToRational(e.Args[i]);
}
return r;
}
if (e.IsConst && e.FuncDecl.Name.ToString() == "oo")
{
return Rational.PositiveInfinity;
}
if (e.IsConst && e.FuncDecl.Name.ToString() == "epsilon")
{
return Rational.One/Rational.PositiveInfinity;
}
Debug.Assert(false, "Should not happen");
return Rational.One;
}
}
}