3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 05:18:44 +00:00
z3/src/util/lp/int_solver.cpp
Nikolaj Bjorner d00ffdda82 strengthen filter for specialized tactic conditions, add flag to disable hnf to lp_params
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2018-07-15 22:35:47 -07:00

1299 lines
40 KiB
C++

/*
Copyright (c) 2017 Microsoft Corporation
Author: Lev Nachmanson
*/
#include "util/lp/int_solver.h"
#include "util/lp/lar_solver.h"
#include "util/lp/lp_utils.h"
#include <utility>
#include "util/lp/monomial.h"
namespace lp {
void int_solver::trace_inf_rows() const {
TRACE("arith_int_rows",
unsigned num = m_lar_solver->A_r().column_count();
for (unsigned v = 0; v < num; v++) {
if (is_int(v) && !get_value(v).is_int()) {
display_column(tout, v);
}
}
num = 0;
for (unsigned i = 0; i < m_lar_solver->A_r().row_count(); i++) {
unsigned j = m_lar_solver->m_mpq_lar_core_solver.m_r_basis[i];
if (column_is_int_inf(j)) {
num++;
m_lar_solver->print_row(m_lar_solver->A_r().m_rows[i], tout);
tout << "\n";
}
}
tout << "num of int infeasible: " << num << "\n";
);
}
bool int_solver::has_inf_int() const {
return m_lar_solver->has_inf_int();
}
int int_solver::find_inf_int_base_column() {
unsigned inf_int_count = 0;
int j = find_inf_int_boxed_base_column_with_smallest_range(inf_int_count);
if (j != -1)
return j;
if (inf_int_count == 0)
return -1;
unsigned k = random() % inf_int_count;
return get_kth_inf_int(k);
}
int int_solver::get_kth_inf_int(unsigned k) const {
for (unsigned j : m_lar_solver->r_basis())
if (column_is_int_inf(j) && k-- == 0)
return j;
lp_assert(false);
return -1;
}
int int_solver::find_inf_int_nbasis_column() const {
for (unsigned j : m_lar_solver->r_nbasis())
if (!column_is_int_inf(j))
return j;
return -1;
}
int int_solver::find_inf_int_boxed_base_column_with_smallest_range(unsigned & inf_int_count) {
inf_int_count = 0;
int result = -1;
mpq range;
mpq new_range;
mpq small_range_thresold(1024);
unsigned n = 0;
lar_core_solver & lcs = m_lar_solver->m_mpq_lar_core_solver;
for (unsigned j : m_lar_solver->r_basis()) {
if (!column_is_int_inf(j))
continue;
inf_int_count++;
if (!is_boxed(j))
continue;
lp_assert(!is_fixed(j));
new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_lower_bounds()[j].x;
if (new_range > small_range_thresold)
continue;
if (result == -1 || new_range < range) {
result = j;
range = new_range;
n = 1;
}
else if (new_range == range && settings().random_next() % (++n) == 0) {
lp_assert(n > 1);
result = j;
}
}
return result;
}
bool int_solver::is_gomory_cut_target(const row_strip<mpq>& row) {
// All non base variables must be at their bounds and assigned to rationals (that is, infinitesimals are not allowed).
unsigned j;
for (const auto & p : row) {
j = p.var();
if (is_base(j)) continue;
if (!at_bound(j))
return false;
if (!is_zero(get_value(j).y)) {
TRACE("gomory_cut", tout << "row is not gomory cut target:\n";
display_column(tout, j);
tout << "infinitesimal: " << !is_zero(get_value(j).y) << "\n";);
return false;
}
}
return true;
}
void int_solver::real_case_in_gomory_cut(const mpq & a, unsigned x_j, const mpq& f_0, const mpq& one_minus_f_0) {
TRACE("gomory_cut_detail_real", tout << "real\n";);
mpq new_a;
if (at_low(x_j)) {
if (a.is_pos()) {
new_a = a / one_minus_f_0;
}
else {
new_a = a / f_0;
new_a.neg();
}
m_k->addmul(new_a, lower_bound(x_j).x); // is it a faster operation than
// k += lower_bound(x_j).x * new_a;
m_ex->push_justification(column_lower_bound_constraint(x_j), new_a);
}
else {
lp_assert(at_upper(x_j));
if (a.is_pos()) {
new_a = a / f_0;
new_a.neg(); // the upper terms are inverted.
}
else {
new_a = a / one_minus_f_0;
}
m_k->addmul(new_a, upper_bound(x_j).x); // k += upper_bound(x_j).x * new_a;
m_ex->push_justification(column_upper_bound_constraint(x_j), new_a);
}
TRACE("gomory_cut_detail_real", tout << a << "*v" << x_j << " k: " << *m_k << "\n";);
m_t->add_monomial(new_a, x_j);
}
constraint_index int_solver::column_upper_bound_constraint(unsigned j) const {
return m_lar_solver->get_column_upper_bound_witness(j);
}
constraint_index int_solver::column_lower_bound_constraint(unsigned j) const {
return m_lar_solver->get_column_lower_bound_witness(j);
}
void int_solver::int_case_in_gomory_cut(const mpq & a, unsigned x_j,
mpq & lcm_den, const mpq& f_0, const mpq& one_minus_f_0) {
lp_assert(is_int(x_j));
lp_assert(!a.is_int());
mpq f_j = fractional_part(a);
TRACE("gomory_cut_detail",
tout << a << " x_j" << x_j << " k = " << *m_k << "\n";
tout << "f_j: " << f_j << "\n";
tout << "f_0: " << f_0 << "\n";
tout << "1 - f_0: " << 1 - f_0 << "\n";
tout << "at_low(" << x_j << ") = " << at_low(x_j) << std::endl;
);
lp_assert (!f_j.is_zero());
mpq new_a;
if (at_low(x_j)) {
if (f_j <= one_minus_f_0) {
new_a = f_j / one_minus_f_0;
}
else {
new_a = (1 - f_j) / f_0;
}
m_k->addmul(new_a, lower_bound(x_j).x);
m_ex->push_justification(column_lower_bound_constraint(x_j), new_a);
}
else {
lp_assert(at_upper(x_j));
if (f_j <= f_0) {
new_a = f_j / f_0;
}
else {
new_a = (mpq(1) - f_j) / one_minus_f_0;
}
new_a.neg(); // the upper terms are inverted
m_k->addmul(new_a, upper_bound(x_j).x);
m_ex->push_justification(column_upper_bound_constraint(x_j), new_a);
}
TRACE("gomory_cut_detail", tout << "new_a: " << new_a << " k: " << *m_k << "\n";);
m_t->add_monomial(new_a, x_j);
lcm_den = lcm(lcm_den, denominator(new_a));
}
lia_move int_solver::report_conflict_from_gomory_cut() {
TRACE("empty_pol",);
lp_assert(m_k->is_pos());
// conflict 0 >= k where k is positive
m_k->neg(); // returning 0 <= -k
return lia_move::conflict;
}
void int_solver::gomory_cut_adjust_t_and_k(vector<std::pair<mpq, unsigned>> & pol,
lar_term & t,
mpq &k,
bool some_ints,
mpq & lcm_den) {
if (!some_ints)
return;
t.clear();
if (pol.size() == 1) {
unsigned v = pol[0].second;
lp_assert(is_int(v));
bool k_is_int = k.is_int();
const mpq& a = pol[0].first;
k /= a;
if (a.is_pos()) { // we have av >= k
if (!k_is_int)
k = ceil(k);
// switch size
t.add_monomial(- mpq(1), v);
k.neg();
} else {
if (!k_is_int)
k = floor(k);
t.add_monomial(mpq(1), v);
}
} else if (some_ints) {
lcm_den = lcm(lcm_den, denominator(k));
lp_assert(lcm_den.is_pos());
if (!lcm_den.is_one()) {
// normalize coefficients of integer parameters to be integers.
for (auto & pi: pol) {
pi.first *= lcm_den;
SASSERT(!is_int(pi.second) || pi.first.is_int());
}
k *= lcm_den;
}
// negate everything to return -pol <= -k
for (const auto & pi: pol)
t.add_monomial(-pi.first, pi.second);
k.neg();
}
}
bool int_solver::current_solution_is_inf_on_cut() const {
const auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x;
impq v = m_t->apply(x);
mpq sign = *m_upper ? one_of_type<mpq>() : -one_of_type<mpq>();
CTRACE("current_solution_is_inf_on_cut", v * sign <= (*m_k) * sign,
tout << "m_upper = " << *m_upper << std::endl;
tout << "v = " << v << ", k = " << (*m_k) << std::endl;
);
return v * sign > (*m_k) * sign;
}
void int_solver::adjust_term_and_k_for_some_ints_case_gomory(mpq &lcm_den) {
lp_assert(!m_t->is_empty());
auto pol = m_t->coeffs_as_vector();
m_t->clear();
if (pol.size() == 1) {
TRACE("gomory_cut_detail", tout << "pol.size() is 1" << std::endl;);
unsigned v = pol[0].second;
lp_assert(is_int(v));
const mpq& a = pol[0].first;
(*m_k) /= a;
if (a.is_pos()) { // we have av >= k
if (!(*m_k).is_int())
(*m_k) = ceil((*m_k));
// switch size
m_t->add_monomial(- mpq(1), v);
(*m_k).neg();
} else {
if (!(*m_k).is_int())
(*m_k) = floor((*m_k));
m_t->add_monomial(mpq(1), v);
}
} else {
TRACE("gomory_cut_detail", tout << "pol.size() > 1" << std::endl;);
lcm_den = lcm(lcm_den, denominator((*m_k)));
lp_assert(lcm_den.is_pos());
if (!lcm_den.is_one()) {
// normalize coefficients of integer parameters to be integers.
for (auto & pi: pol) {
pi.first *= lcm_den;
SASSERT(!is_int(pi.second) || pi.first.is_int());
}
(*m_k) *= lcm_den;
}
// negate everything to return -pol <= -(*m_k)
for (const auto & pi: pol)
m_t->add_monomial(-pi.first, pi.second);
(*m_k).neg();
}
TRACE("gomory_cut_detail", tout << "k = " << (*m_k) << std::endl;);
lp_assert((*m_k).is_int());
}
lia_move int_solver::mk_gomory_cut( unsigned inf_col, const row_strip<mpq> & row) {
lp_assert(column_is_int_inf(inf_col));
TRACE("gomory_cut",
tout << "applying cut at:\n"; m_lar_solver->print_row(row, tout); tout << std::endl;
for (auto & p : row) {
m_lar_solver->m_mpq_lar_core_solver.m_r_solver.print_column_info(p.var(), tout);
}
tout << "inf_col = " << inf_col << std::endl;
);
// gomory will be t <= k and the current solution has a property t > k
*m_k = 1;
mpq lcm_den(1);
unsigned x_j;
mpq a;
bool some_int_columns = false;
mpq f_0 = int_solver::fractional_part(get_value(inf_col));
mpq one_min_f_0 = 1 - f_0;
for (auto & p : row) {
x_j = p.var();
if (x_j == inf_col)
continue;
// make the format compatible with the format used in: Integrating Simplex with DPLL(T)
a = p.coeff();
a.neg();
if (is_real(x_j))
real_case_in_gomory_cut(a, x_j, f_0, one_min_f_0);
else if (!a.is_int()) { // f_j will be zero and no monomial will be added
some_int_columns = true;
int_case_in_gomory_cut(a, x_j, lcm_den, f_0, one_min_f_0);
}
}
if (m_t->is_empty())
return report_conflict_from_gomory_cut();
if (some_int_columns)
adjust_term_and_k_for_some_ints_case_gomory(lcm_den);
lp_assert(current_solution_is_inf_on_cut());
m_lar_solver->subs_term_columns(*m_t);
TRACE("gomory_cut", tout<<"precut:"; m_lar_solver->print_term(*m_t, tout); tout << " <= " << *m_k << std::endl;);
return lia_move::cut;
}
int int_solver::find_free_var_in_gomory_row(const row_strip<mpq>& row) {
unsigned j;
for (const auto & p : row) {
j = p.var();
if (!is_base(j) && is_free(j))
return static_cast<int>(j);
}
return -1;
}
lia_move int_solver::proceed_with_gomory_cut(unsigned j) {
const row_strip<mpq>& row = m_lar_solver->get_row(row_of_basic_column(j));
if (-1 != find_free_var_in_gomory_row(row))
return lia_move::undef;
if (!is_gomory_cut_target(row))
return lia_move::undef;
*m_upper = true;
return mk_gomory_cut(j, row);
}
unsigned int_solver::row_of_basic_column(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_r_heading[j];
}
// template <typename T>
// void int_solver::fill_cut_solver_for_constraint(constraint_index ci, cut_solver<T> & cs) {
// const lar_base_constraint* c = m_lar_solver->constraints()[ci];
// vector<std::pair<T, var_index>> coeffs;
// T rs;
// get_int_coeffs_from_constraint(c, coeffs, rs);
// vector<constraint_index> explanation;
// explanation.push_back(ci);
// cs.add_ineq(coeffs, -rs, explanation);
// }
typedef monomial mono;
// this will allow to enable and disable tracking of the pivot rows
struct pivoted_rows_tracking_control {
lar_solver * m_lar_solver;
bool m_track_pivoted_rows;
pivoted_rows_tracking_control(lar_solver* ls) :
m_lar_solver(ls),
m_track_pivoted_rows(ls->get_track_pivoted_rows())
{
TRACE("pivoted_rows", tout << "pivoted rows = " << ls->m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows->size() << std::endl;);
m_lar_solver->set_track_pivoted_rows(false);
}
~pivoted_rows_tracking_control() {
TRACE("pivoted_rows", tout << "pivoted rows = " << m_lar_solver->m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows->size() << std::endl;);
m_lar_solver->set_track_pivoted_rows(m_track_pivoted_rows);
}
};
impq int_solver::get_cube_delta_for_term(const lar_term& t) const {
if (t.size() == 2) {
bool seen_minus = false;
bool seen_plus = false;
for(const auto & p : t) {
if (!is_int(p.var()))
goto usual_delta;
const mpq & c = p.coeff();
if (c == one_of_type<mpq>()) {
seen_plus = true;
} else if (c == -one_of_type<mpq>()) {
seen_minus = true;
} else {
goto usual_delta;
}
}
if (seen_minus && seen_plus)
return zero_of_type<impq>();
return impq(0, 1);
}
usual_delta:
mpq delta = zero_of_type<mpq>();
for (const auto & p : t)
if (is_int(p.var()))
delta += abs(p.coeff());
delta *= mpq(1, 2);
return impq(delta);
}
bool int_solver::tighten_term_for_cube(unsigned i) {
unsigned ti = i + m_lar_solver->terms_start_index();
if (!m_lar_solver->term_is_used_as_row(ti))
return true;
const lar_term* t = m_lar_solver->terms()[i];
impq delta = get_cube_delta_for_term(*t);
TRACE("cube", m_lar_solver->print_term_as_indices(*t, tout); tout << ", delta = " << delta;);
if (is_zero(delta))
return true;
return m_lar_solver->tighten_term_bounds_by_delta(i, delta);
}
bool int_solver::tighten_terms_for_cube() {
for (unsigned i = 0; i < m_lar_solver->terms().size(); i++)
if (!tighten_term_for_cube(i)) {
TRACE("cube", tout << "cannot tighten";);
return false;
}
return true;
}
lia_move int_solver::find_cube() {
if (m_number_of_calls % settings().m_int_find_cube_period != 0)
return lia_move::undef;
settings().st().m_cube_calls++;
TRACE("cube",
for (unsigned j = 0; j < m_lar_solver->A_r().column_count(); j++)
display_column(tout, j);
m_lar_solver->print_terms(tout);
);
lar_solver::scoped_push _sp(*m_lar_solver);
if (!tighten_terms_for_cube()) {
return lia_move::undef;
}
lp_status st = m_lar_solver->find_feasible_solution();
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
TRACE("cube", tout << "cannot find a feasiblie solution";);
_sp.pop();
move_non_basic_columns_to_bounds();
find_feasible_solution();
// it can happen that we found an integer solution here
return !m_lar_solver->r_basis_has_inf_int()? lia_move::sat: lia_move::undef;
}
_sp.pop();
m_lar_solver->round_to_integer_solution();
settings().st().m_cube_success++;
return lia_move::sat;
}
void int_solver::find_feasible_solution() {
m_lar_solver->find_feasible_solution();
lp_assert(lp_status::OPTIMAL == m_lar_solver->get_status() || lp_status::FEASIBLE == m_lar_solver->get_status());
}
lia_move int_solver::run_gcd_test() {
if (settings().m_int_run_gcd_test) {
settings().st().m_gcd_calls++;
if (!gcd_test()) {
settings().st().m_gcd_conflicts++;
return lia_move::conflict;
}
}
return lia_move::undef;
}
lia_move int_solver::gomory_cut() {
if ((m_number_of_calls) % settings().m_int_gomory_cut_period != 0)
return lia_move::undef;
if (move_non_basic_columns_to_bounds()) {
#if Z3DEBUG
lp_status st =
#endif
m_lar_solver->find_feasible_solution();
#if Z3DEBUG
lp_assert(st == lp_status::FEASIBLE || st == lp_status::OPTIMAL);
#endif
}
int j = find_inf_int_base_column();
if (j == -1) {
j = find_inf_int_nbasis_column();
return j == -1? lia_move::sat : create_branch_on_column(j);
}
return proceed_with_gomory_cut(j);
}
void int_solver::try_add_term_to_A_for_hnf(unsigned i) {
mpq rs;
const lar_term* t = m_lar_solver->terms()[i];
constraint_index ci;
bool upper_bound;
if (!hnf_cutter_is_full() && m_lar_solver->get_equality_and_right_side_for_term_on_current_x(i, rs, ci, upper_bound)) {
m_hnf_cutter.add_term(t, rs, ci, upper_bound);
}
}
bool int_solver::hnf_cutter_is_full() const {
return
m_hnf_cutter.terms_count() >= settings().limit_on_rows_for_hnf_cutter
||
m_hnf_cutter.vars().size() >= settings().limit_on_columns_for_hnf_cutter;
}
lp_settings& int_solver::settings() {
return m_lar_solver->settings();
}
const lp_settings& int_solver::settings() const {
return m_lar_solver->settings();
}
bool int_solver::hnf_has_var_with_non_integral_value() const {
for (unsigned j : m_hnf_cutter.vars())
if (get_value(j).is_int() == false)
return true;
return false;
}
bool int_solver::init_terms_for_hnf_cut() {
m_hnf_cutter.clear();
for (unsigned i = 0; i < m_lar_solver->terms().size() && !hnf_cutter_is_full(); i++) {
try_add_term_to_A_for_hnf(i);
}
return hnf_has_var_with_non_integral_value();
}
lia_move int_solver::make_hnf_cut() {
if (!init_terms_for_hnf_cut()) {
return lia_move::undef;
}
settings().st().m_hnf_cutter_calls++;
TRACE("hnf_cut", tout << "settings().st().m_hnf_cutter_calls = " << settings().st().m_hnf_cutter_calls;);
#ifdef Z3DEBUG
vector<mpq> x0 = m_hnf_cutter.transform_to_local_columns(m_lar_solver->m_mpq_lar_core_solver.m_r_x);
#endif
lia_move r = m_hnf_cutter.create_cut(*m_t, *m_k, *m_ex, *m_upper
#ifdef Z3DEBUG
, x0
#endif
);
CTRACE("hnf_cut", r == lia_move::cut, tout<< "cut:"; m_lar_solver->print_term(*m_t, tout); tout << " <= " << *m_k << std::endl;);
if (r == lia_move::cut) {
lp_assert(current_solution_is_inf_on_cut());
settings().st().m_hnf_cuts++;
m_ex->clear();
for (unsigned i : m_hnf_cutter.constraints_for_explanation()) {
m_ex->push_justification(i);
}
}
return r;
}
lia_move int_solver::hnf_cut() {
if (!settings().m_enable_hnf) {
return lia_move::undef;
}
if ((m_number_of_calls) % settings().hnf_cut_period() == 0) {
return make_hnf_cut();
}
return lia_move::undef;
}
lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex, bool & upper) {
if (!has_inf_int()) return lia_move::sat;
m_t = &t; m_k = &k; m_ex = &ex; m_upper = &upper;
lia_move r = run_gcd_test();
if (r != lia_move::undef) return r;
pivoted_rows_tracking_control pc(m_lar_solver);
if(settings().m_int_pivot_fixed_vars_from_basis)
m_lar_solver->pivot_fixed_vars_from_basis();
r = patch_nbasic_columns();
if (r != lia_move::undef) return r;
++m_number_of_calls;
r = find_cube();
if (r != lia_move::undef) return r;
r = hnf_cut();
if (r != lia_move::undef) return r;
r = gomory_cut();
return (r == lia_move::undef)? branch_or_sat() : r;
}
lia_move int_solver::branch_or_sat() {
int j = find_any_inf_int_column_basis_first();
return j == -1? lia_move::sat : create_branch_on_column(j);
}
int int_solver::find_any_inf_int_column_basis_first() {
int j = find_inf_int_base_column();
if (j != -1)
return j;
return find_inf_int_nbasis_column();
}
bool int_solver::move_non_basic_column_to_bounds(unsigned j) {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
auto & val = lcs.m_r_x[j];
switch (lcs.m_column_types()[j]) {
case column_type::boxed:
if (val != lcs.m_r_lower_bounds()[j] && val != lcs.m_r_upper_bounds()[j]) {
if (random() % 2 == 0)
set_value_for_nbasic_column(j, lcs.m_r_lower_bounds()[j]);
else
set_value_for_nbasic_column(j, lcs.m_r_upper_bounds()[j]);
return true;
}
break;
case column_type::lower_bound:
if (val != lcs.m_r_lower_bounds()[j]) {
set_value_for_nbasic_column(j, lcs.m_r_lower_bounds()[j]);
return true;
}
break;
case column_type::upper_bound:
if (val != lcs.m_r_upper_bounds()[j]) {
set_value_for_nbasic_column(j, lcs.m_r_upper_bounds()[j]);
return true;
}
break;
default:
if (is_int(j) && !val.is_int()) {
set_value_for_nbasic_column(j, impq(floor(val)));
return true;
}
break;
}
return false;
}
bool int_solver::move_non_basic_columns_to_bounds() {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
bool change = false;
for (unsigned j : lcs.m_r_nbasis) {
if (move_non_basic_column_to_bounds(j))
change = true;
}
if (settings().simplex_strategy() == simplex_strategy_enum::tableau_costs)
m_lar_solver->update_x_and_inf_costs_for_columns_with_changed_bounds_tableau();
return change;
}
void int_solver::set_value_for_nbasic_column_ignore_old_values(unsigned j, const impq & new_val) {
lp_assert(!is_base(j));
auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
auto delta = new_val - x;
x = new_val;
m_lar_solver->change_basic_columns_dependend_on_a_given_nb_column(j, delta);
}
void int_solver::set_value_for_nbasic_column(unsigned j, const impq & new_val) {
lp_assert(!is_base(j));
auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
auto delta = new_val - x;
x = new_val;
m_lar_solver->change_basic_columns_dependend_on_a_given_nb_column(j, delta);
}
void int_solver::patch_nbasic_column(unsigned j, bool patch_only_int_vals) {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
impq & val = lcs.m_r_x[j];
bool val_is_int = val.is_int();
if (patch_only_int_vals && !val_is_int)
return;
bool inf_l, inf_u;
impq l, u;
mpq m;
if (!get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m)) {
return;
}
bool m_is_one = m.is_one();
if (m.is_one() && val_is_int)
return;
// check whether value of j is already a multiple of m.
if (val_is_int && (val.x / m).is_int())
return;
TRACE("patch_int",
tout << "TARGET j" << j << " -> [";
if (inf_l) tout << "-oo"; else tout << l;
tout << ", ";
if (inf_u) tout << "oo"; else tout << u;
tout << "]";
tout << ", m: " << m << ", val: " << val << ", is_int: " << m_lar_solver->column_is_int(j) << "\n";);
if (!inf_l) {
l = m_is_one ? ceil(l) : m * ceil(l / m);
if (inf_u || l <= u) {
TRACE("patch_int",
tout << "patching with l: " << l << '\n';);
set_value_for_nbasic_column(j, l);
}
else {
TRACE("patch_int",
tout << "not patching " << l << "\n";);
}
}
else if (!inf_u) {
u = m_is_one ? floor(u) : m * floor(u / m);
set_value_for_nbasic_column(j, u);
TRACE("patch_int",
tout << "patching with u: " << u << '\n';);
}
else {
set_value_for_nbasic_column(j, impq(0));
TRACE("patch_int",
tout << "patching with 0\n";);
}
}
lia_move int_solver::patch_nbasic_columns() {
settings().st().m_patches++;
lp_assert(is_feasible());
for (unsigned j : m_lar_solver->m_mpq_lar_core_solver.m_r_nbasis) {
patch_nbasic_column(j, settings().m_int_patch_only_integer_values);
}
lp_assert(is_feasible());
if (!has_inf_int()) {
settings().st().m_patches_success++;
return lia_move::sat;
}
return lia_move::undef;
}
mpq get_denominators_lcm(const row_strip<mpq> & row) {
mpq r(1);
for (auto & c : row) {
r = lcm(r, denominator(c.coeff()));
}
return r;
}
bool int_solver::gcd_test_for_row(static_matrix<mpq, numeric_pair<mpq>> & A, unsigned i) {
mpq lcm_den = get_denominators_lcm(A.m_rows[i]);
mpq consts(0);
mpq gcds(0);
mpq least_coeff(0);
bool least_coeff_is_bounded = false;
unsigned j;
for (auto &c : A.m_rows[i]) {
j = c.var();
const mpq& a = c.coeff();
if (m_lar_solver->column_is_fixed(j)) {
mpq aux = lcm_den * a;
consts += aux * m_lar_solver->column_lower_bound(j).x;
}
else if (m_lar_solver->column_is_real(j)) {
return true;
}
else if (gcds.is_zero()) {
gcds = abs(lcm_den * a);
least_coeff = gcds;
least_coeff_is_bounded = m_lar_solver->column_is_bounded(j);
}
else {
mpq aux = abs(lcm_den * a);
gcds = gcd(gcds, aux);
if (aux < least_coeff) {
least_coeff = aux;
least_coeff_is_bounded = m_lar_solver->column_is_bounded(j);
}
else if (least_coeff_is_bounded && aux == least_coeff) {
least_coeff_is_bounded = m_lar_solver->column_is_bounded(j);
}
}
SASSERT(gcds.is_int());
SASSERT(least_coeff.is_int());
TRACE("gcd_test_bug", tout << "coeff: " << a << ", gcds: " << gcds
<< " least_coeff: " << least_coeff << " consts: " << consts << "\n";);
}
if (gcds.is_zero()) {
// All variables are fixed.
// This theory guarantees that the assignment satisfies each row, and
// fixed integer variables are assigned to integer values.
return true;
}
if (!(consts / gcds).is_int()) {
TRACE("gcd_test", tout << "row failed the GCD test:\n"; display_row_info(tout, i););
fill_explanation_from_fixed_columns(A.m_rows[i]);
return false;
}
if (least_coeff.is_one() && !least_coeff_is_bounded) {
SASSERT(gcds.is_one());
return true;
}
if (least_coeff_is_bounded) {
return ext_gcd_test(A.m_rows[i], least_coeff, lcm_den, consts);
}
return true;
}
void int_solver::add_to_explanation_from_fixed_or_boxed_column(unsigned j) {
constraint_index lc, uc;
m_lar_solver->get_bound_constraint_witnesses_for_column(j, lc, uc);
m_ex->m_explanation.push_back(std::make_pair(mpq(1), lc));
m_ex->m_explanation.push_back(std::make_pair(mpq(1), uc));
}
void int_solver::fill_explanation_from_fixed_columns(const row_strip<mpq> & row) {
for (const auto & c : row) {
if (!m_lar_solver->column_is_fixed(c.var()))
continue;
add_to_explanation_from_fixed_or_boxed_column(c.var());
}
}
bool int_solver::gcd_test() {
auto & A = m_lar_solver->A_r(); // getting the matrix
for (unsigned i = 0; i < A.row_count(); i++)
if (!gcd_test_for_row(A, i))
return false;
return true;
}
bool int_solver::ext_gcd_test(const row_strip<mpq> & row,
mpq const & least_coeff,
mpq const & lcm_den,
mpq const & consts) {
mpq gcds(0);
mpq l(consts);
mpq u(consts);
mpq a;
unsigned j;
for (const auto & c : row) {
j = c.var();
const mpq & a = c.coeff();
if (m_lar_solver->column_is_fixed(j))
continue;
SASSERT(!m_lar_solver->column_is_real(j));
mpq ncoeff = lcm_den * a;
SASSERT(ncoeff.is_int());
mpq abs_ncoeff = abs(ncoeff);
if (abs_ncoeff == least_coeff) {
SASSERT(m_lar_solver->column_is_bounded(j));
if (ncoeff.is_pos()) {
// l += ncoeff * m_lar_solver->column_lower_bound(j).x;
l.addmul(ncoeff, m_lar_solver->column_lower_bound(j).x);
// u += ncoeff * m_lar_solver->column_upper_bound(j).x;
u.addmul(ncoeff, m_lar_solver->column_upper_bound(j).x);
}
else {
// l += ncoeff * upper_bound(j).get_rational();
l.addmul(ncoeff, m_lar_solver->column_upper_bound(j).x);
// u += ncoeff * lower_bound(j).get_rational();
u.addmul(ncoeff, m_lar_solver->column_lower_bound(j).x);
}
add_to_explanation_from_fixed_or_boxed_column(j);
}
else if (gcds.is_zero()) {
gcds = abs_ncoeff;
}
else {
gcds = gcd(gcds, abs_ncoeff);
}
SASSERT(gcds.is_int());
}
if (gcds.is_zero()) {
return true;
}
mpq l1 = ceil(l/gcds);
mpq u1 = floor(u/gcds);
if (u1 < l1) {
fill_explanation_from_fixed_columns(row);
return false;
}
return true;
}
/*
linear_combination_iterator<mpq> * int_solver::get_column_iterator(unsigned j) {
if (m_lar_solver->use_tableau())
return new iterator_on_column<mpq, impq>(m_lar_solver->A_r().m_columns[j], m_lar_solver->A_r());
return new iterator_on_indexed_vector<mpq>(m_lar_solver->get_column_in_lu_mode(j));
}
*/
int_solver::int_solver(lar_solver* lar_slv) :
m_lar_solver(lar_slv),
m_number_of_calls(0),
m_hnf_cutter(settings()) {
m_lar_solver->set_int_solver(this);
}
bool int_solver::has_low(unsigned j) const {
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
case column_type::fixed:
case column_type::boxed:
case column_type::lower_bound:
return true;
default:
return false;
}
}
bool int_solver::has_upper(unsigned j) const {
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
case column_type::fixed:
case column_type::boxed:
case column_type::upper_bound:
return true;
default:
return false;
}
}
void set_lower(impq & l,
bool & inf_l,
impq const & v ) {
if (inf_l || v > l) {
l = v;
inf_l = false;
}
}
void set_upper(impq & u,
bool & inf_u,
impq const & v) {
if (inf_u || v < u) {
u = v;
inf_u = false;
}
}
bool int_solver::get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
if (lcs.m_r_heading[j] >= 0) // the basic var
return false;
impq const & xj = get_value(j);
inf_l = true;
inf_u = true;
l = u = zero_of_type<impq>();
m = mpq(1);
if (has_low(j)) {
set_lower(l, inf_l, lower_bound(j));
}
if (has_upper(j)) {
set_upper(u, inf_u, upper_bound(j));
}
mpq a; // the coefficient in the column
unsigned row_index;
lp_assert(settings().use_tableau());
const auto & A = m_lar_solver->A_r();
for (const auto &c : A.column(j)) {
row_index = c.var();
const mpq & a = c.coeff();
unsigned i = lcs.m_r_basis[row_index];
impq const & xi = get_value(i);
if (is_int(i) && is_int(j) && !a.is_int())
m = lcm(m, denominator(a));
if (a.is_neg()) {
if (has_low(i))
set_lower(l, inf_l, xj + (xi - lcs.m_r_lower_bounds()[i]) / a);
if (has_upper(i))
set_upper(u, inf_u, xj + (xi - lcs.m_r_upper_bounds()[i]) / a);
}
else {
if (has_upper(i))
set_lower(l, inf_l, xj + (xi - lcs.m_r_upper_bounds()[i]) / a);
if (has_low(i))
set_upper(u, inf_u, xj + (xi - lcs.m_r_lower_bounds()[i]) / a);
}
if (!inf_l && !inf_u && l >= u) break;
}
TRACE("freedom_interval",
tout << "freedom variable for:\n";
tout << m_lar_solver->get_column_name(j);
tout << "[";
if (inf_l) tout << "-oo"; else tout << l;
tout << "; ";
if (inf_u) tout << "oo"; else tout << u;
tout << "]\n";
tout << "val = " << get_value(j) << "\n";
tout << "return " << (inf_l || inf_u || l <= u);
);
return (inf_l || inf_u || l <= u);
}
bool int_solver::is_int(unsigned j) const {
return m_lar_solver->column_is_int(j);
}
bool int_solver::is_real(unsigned j) const {
return !is_int(j);
}
bool int_solver::value_is_int(unsigned j) const {
return m_lar_solver->column_value_is_int(j);
}
bool int_solver::is_feasible() const {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
lp_assert(
lcs.m_r_solver.calc_current_x_is_feasible_include_non_basis() ==
lcs.m_r_solver.current_x_is_feasible());
return lcs.m_r_solver.current_x_is_feasible();
}
const impq & int_solver::get_value(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
}
void int_solver::display_column(std::ostream & out, unsigned j) const {
m_lar_solver->m_mpq_lar_core_solver.m_r_solver.print_column_info(j, out);
}
bool int_solver::column_is_int_inf(unsigned j) const {
return is_int(j) && (!value_is_int(j));
}
bool int_solver::is_base(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_r_heading[j] >= 0;
}
bool int_solver::is_boxed(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::boxed;
}
bool int_solver::is_fixed(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::fixed;
}
bool int_solver::is_free(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::free_column;
}
bool int_solver::at_bound(unsigned j) const {
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
switch (mpq_solver.m_column_types[j] ) {
case column_type::fixed:
case column_type::boxed:
return
mpq_solver.m_lower_bounds[j] == get_value(j) ||
mpq_solver.m_upper_bounds[j] == get_value(j);
case column_type::lower_bound:
return mpq_solver.m_lower_bounds[j] == get_value(j);
case column_type::upper_bound:
return mpq_solver.m_upper_bounds[j] == get_value(j);
default:
return false;
}
}
bool int_solver::at_low(unsigned j) const {
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
switch (mpq_solver.m_column_types[j] ) {
case column_type::fixed:
case column_type::boxed:
case column_type::lower_bound:
return mpq_solver.m_lower_bounds[j] == get_value(j);
default:
return false;
}
}
bool int_solver::at_upper(unsigned j) const {
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
switch (mpq_solver.m_column_types[j] ) {
case column_type::fixed:
case column_type::boxed:
case column_type::upper_bound:
return mpq_solver.m_upper_bounds[j] == get_value(j);
default:
return false;
}
}
void int_solver::display_row_info(std::ostream & out, unsigned row_index) const {
auto & rslv = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
for (auto &c: rslv.m_A.m_rows[row_index]) {
if (numeric_traits<mpq>::is_pos(c.coeff()))
out << "+";
out << c.coeff() << rslv.column_name(c.var()) << " ";
}
for (auto& c: rslv.m_A.m_rows[row_index]) {
rslv.print_column_bound_info(c.var(), out);
}
rslv.print_column_bound_info(rslv.m_basis[row_index], out);
}
unsigned int_solver::random() {
return m_lar_solver->get_core_solver().settings().random_next();
}
bool int_solver::shift_var(unsigned j, unsigned range) {
if (is_fixed(j) || is_base(j))
return false;
bool inf_l, inf_u;
impq l, u;
mpq m;
get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m);
if (inf_l && inf_u) {
impq new_val = impq(random() % (range + 1));
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
if (is_int(j)) {
if (!inf_l) {
l = ceil(l);
if (!m.is_one())
l = m*ceil(l/m);
}
if (!inf_u) {
u = floor(u);
if (!m.is_one())
u = m*floor(u/m);
}
}
if (!inf_l && !inf_u && l >= u)
return false;
if (inf_u) {
SASSERT(!inf_l);
impq delta = impq(random() % (range + 1));
impq new_val = l + m*delta;
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
if (inf_l) {
SASSERT(!inf_u);
impq delta = impq(random() % (range + 1));
impq new_val = u - m*delta;
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
if (!is_int(j)) {
SASSERT(!inf_l && !inf_u);
mpq delta = mpq(random() % (range + 1));
impq new_val = l + ((delta * (u - l)) / mpq(range));
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
else {
mpq r = (u.x - l.x) / m;
if (r < mpq(range))
range = static_cast<unsigned>(r.get_uint64());
impq new_val = l + m * (impq(random() % (range + 1)));
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
}
bool int_solver::non_basic_columns_are_at_bounds() const {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
for (unsigned j :lcs.m_r_nbasis) {
auto & val = lcs.m_r_x[j];
switch (lcs.m_column_types()[j]) {
case column_type::boxed:
if (val != lcs.m_r_lower_bounds()[j] && val != lcs.m_r_upper_bounds()[j])
return false;
break;
case column_type::lower_bound:
if (val != lcs.m_r_lower_bounds()[j])
return false;
break;
case column_type::upper_bound:
if (val != lcs.m_r_upper_bounds()[j])
return false;
break;
default:
if (is_int(j) && !val.is_int()) {
return false;
}
}
}
return true;
}
const impq& int_solver::lower_bound(unsigned j) const {
return m_lar_solver->column_lower_bound(j);
}
lia_move int_solver::create_branch_on_column(int j) {
TRACE("check_main_int", tout << "branching" << std::endl;);
lp_assert(m_t->is_empty());
lp_assert(j != -1);
m_t->add_monomial(mpq(1), m_lar_solver->adjust_column_index_to_term_index(j));
if (is_free(j)) {
*m_upper = true;
*m_k = mpq(0);
} else {
*m_upper = left_branch_is_more_narrow_than_right(j);
*m_k = *m_upper? floor(get_value(j)) : ceil(get_value(j));
}
TRACE("arith_int", tout << "branching v" << j << " = " << get_value(j) << "\n";
display_column(tout, j);
tout << "k = " << *m_k << std::endl;
);
return lia_move::branch;
}
bool int_solver::left_branch_is_more_narrow_than_right(unsigned j) {
switch (m_lar_solver->m_mpq_lar_core_solver.m_r_solver.m_column_types[j] ) {
case column_type::fixed:
return false;
case column_type::boxed:
{
auto k = floor(get_value(j));
return k - lower_bound(j).x < upper_bound(j).x - (k + mpq(1));
}
case column_type::lower_bound:
return true;
case column_type::upper_bound:
return false;
default:
return false;
}
}
const impq& int_solver::upper_bound(unsigned j) const {
return m_lar_solver->column_upper_bound(j);
}
bool int_solver::is_term(unsigned j) const {
return m_lar_solver->column_corresponds_to_term(j);
}
unsigned int_solver::column_count() const { return m_lar_solver->column_count(); }
}