3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 01:54:08 +00:00
z3/src/sat/smt/bv_solver.cpp
Nikolaj Bjorner cfa7c733db
fixing #4670 (#4682)
* fixing #4670

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* init

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* arrays

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* arrays

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* arrays

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* na

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-09-10 04:35:11 -07:00

671 lines
25 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
bv_solver.cpp
Abstract:
Solving utilities for bit-vectors.
Author:
Nikolaj Bjorner (nbjorner) 2020-09-02
based on smt/theory_bv
--*/
#include "ast/ast_ll_pp.h"
#include "sat/smt/bv_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/sat_th.h"
#include "tactic/tactic_exception.h"
namespace bv {
class solver::bit_trail : public trail<euf::solver> {
solver& s;
solver::var_pos vp;
sat::literal lit;
public:
bit_trail(solver& s, var_pos vp) : s(s), vp(vp), lit(s.m_bits[vp.first][vp.second]) {}
virtual void undo(euf::solver& euf) {
s.m_bits[vp.first][vp.second] = lit;
}
};
solver::solver(euf::solver& ctx, theory_id id) :
euf::th_euf_solver(ctx, id),
bv(m),
m_autil(m),
m_ackerman(*this),
m_bb(m, get_config()),
m_find(*this) {
}
void solver::fixed_var_eh(theory_var v1) {
numeral val1, val2;
VERIFY(get_fixed_value(v1, val1));
unsigned sz = m_bits[v1].size();
value_sort_pair key(val1, sz);
theory_var v2;
bool is_current =
m_fixed_var_table.find(key, v2) &&
v2 < static_cast<int>(get_num_vars()) &&
is_bv(v2) &&
get_bv_size(v2) == sz &&
get_fixed_value(v2, val2) && val1 == val2;
if (!is_current)
m_fixed_var_table.insert(key, v1);
else if (var2enode(v1)->get_root() != var2enode(v2)->get_root()) {
SASSERT(get_bv_size(v1) == get_bv_size(v2));
TRACE("bv", tout << "detected equality: v" << v1 << " = v" << v2 << "\n" << pp(v1) << pp(v2););
m_stats.m_num_th2core_eq++;
add_fixed_eq(v1, v2);
ctx.propagate(var2enode(v1), var2enode(v2), mk_bit2bv_justification(v1, v2));
}
}
void solver::add_fixed_eq(theory_var v1, theory_var v2) {
if (!get_config().m_bv_eq_axioms)
return;
m_ackerman.used_eq_eh(v1, v2);
}
bool solver::get_fixed_value(theory_var v, numeral& result) const {
result.reset();
unsigned i = 0;
for (literal b : m_bits[v]) {
switch (ctx.s().value(b)) {
case l_false:
break;
case l_undef:
return false;
case l_true:
result += power2(i);
break;
}
++i;
}
return true;
}
/**
\brief Find an unassigned bit for m_wpos[v], if such bit cannot be found invoke fixed_var_eh
*/
void solver::find_wpos(theory_var v) {
literal_vector const& bits = m_bits[v];
unsigned sz = bits.size();
unsigned& wpos = m_wpos[v];
for (unsigned i = 0; i < sz; ++i) {
unsigned idx = (i + wpos) % sz;
if (s().value(bits[idx]) == l_undef) {
wpos = idx;
TRACE("bv", tout << "moved wpos of v" << v << " to " << wpos << "\n";);
return;
}
}
TRACE("bv", tout << "v" << v << " is a fixed variable.\n";);
fixed_var_eh(v);
}
/**
*\brief v[idx] = ~v'[idx], then v /= v' is a theory axiom.
*/
void solver::find_new_diseq_axioms(bit_atom& a, theory_var v, unsigned idx) {
if (!get_config().m_bv_eq_axioms)
return;
literal l = m_bits[v][idx];
l.neg();
for (auto vp : a) {
theory_var v2 = vp.first;
unsigned idx2 = vp.second;
if (idx == idx2 && m_bits[v2][idx2] == l && get_bv_size(v2) == get_bv_size(v))
mk_new_diseq_axiom(v, v2, idx);
}
}
/**
\brief v1[idx] = ~v2[idx], then v1 /= v2 is a theory axiom.
*/
void solver::mk_new_diseq_axiom(theory_var v1, theory_var v2, unsigned idx) {
if (!get_config().m_bv_eq_axioms)
return;
// TBD: disabled until new literal creation is supported
return;
SASSERT(m_bits[v1][idx] == ~m_bits[v2][idx]);
TRACE("bv", tout << "found new diseq axiom\n" << pp(v1) << pp(v2););
m_stats.m_num_diseq_static++;
expr_ref eq(m.mk_eq(var2expr(v1), var2expr(v2)), m);
add_unit(~ctx.internalize(eq, false, false, m_is_redundant));
}
std::ostream& solver::display(std::ostream& out, theory_var v) const {
expr* e = var2expr(v);
out << "v";
out.width(4);
out << std::left << v;
out << " ";
out.width(4);
out << e->get_id() << " -> ";
out.width(4);
out << var2enode(find(v))->get_expr_id();
out << std::right;
out.flush();
atom* a = nullptr;
if (is_bv(v)) {
numeral val;
if (get_fixed_value(v, val))
out << " (= " << val << ")";
for (literal lit : m_bits[v]) {
out << " " << lit << ":" << mk_bounded_pp(literal2expr(lit), m, 1);
}
}
else if (m.is_bool(e) && (a = m_bool_var2atom.get(expr2literal(e).var(), nullptr))) {
if (a->is_bit()) {
for (var_pos vp : a->to_bit())
out << " " << var2enode(vp.first)->get_expr_id() << "[" << vp.second << "]";
}
else
out << "def-atom";
}
else
out << " " << mk_bounded_pp(e, m, 1);
out << "\n";
return out;
}
void solver::new_eq_eh(euf::th_eq const& eq) {
TRACE("bv", tout << "new eq " << eq.m_v1 << " == " << eq.m_v2 << "\n";);
if (is_bv(eq.m_v1))
m_find.merge(eq.m_v1, eq.m_v2);
}
double solver::get_reward(literal l, sat::ext_constraint_idx idx, sat::literal_occs_fun& occs) const { return 0; }
bool solver::is_extended_binary(sat::ext_justification_idx idx, literal_vector& r) { return false; }
bool solver::is_external(bool_var v) { return true; }
bool solver::propagate(literal l, sat::ext_constraint_idx idx) { return false; }
void solver::get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) {
auto& c = bv_justification::from_index(idx);
TRACE("bv", display_constraint(tout, idx););
switch (c.m_kind) {
case bv_justification::kind_t::bv2bit:
r.push_back(c.m_antecedent);
ctx.add_antecedent(var2enode(c.m_v1), var2enode(c.m_v2));
break;
case bv_justification::kind_t::bit2bv:
SASSERT(m_bits[c.m_v1].size() == m_bits[c.m_v2].size());
for (unsigned i = m_bits[c.m_v1].size(); i-- > 0; ) {
sat::literal a = m_bits[c.m_v1][i];
sat::literal b = m_bits[c.m_v2][i];
SASSERT(a == b || s().value(a) != l_undef);
SASSERT(s().value(a) == s().value(b));
if (a == b)
continue;
if (s().value(a) == l_false) {
a.neg();
b.neg();
}
r.push_back(a);
r.push_back(b);
}
break;
}
if (!probing && ctx.use_drat())
log_drat(c);
}
void solver::log_drat(bv_justification const& c) {
// this has a side-effect so changes provability:
expr_ref eq(m.mk_eq(var2expr(c.m_v1), var2expr(c.m_v2)), m);
sat::literal leq = ctx.internalize(eq, false, false, false);
sat::literal_vector lits;
auto add_bit = [&](sat::literal lit) {
if (s().value(lit) == l_true)
lit.neg();
lits.push_back(lit);
};
switch (c.m_kind) {
case bv_justification::kind_t::bv2bit:
lits.push_back(~leq);
lits.push_back(~c.m_antecedent);
lits.push_back(c.m_consequent);
break;
case bv_justification::kind_t::bit2bv:
lits.push_back(leq);
for (unsigned i = m_bits[c.m_v1].size(); i-- > 0; ) {
sat::literal a = m_bits[c.m_v1][i];
sat::literal b = m_bits[c.m_v2][i];
if (a != b) {
add_bit(a);
add_bit(b);
}
}
break;
}
ctx.get_drat().add(lits, status());
}
void solver::asserted(literal l) {
atom* a = get_bv2a(l.var());
TRACE("bv", tout << "asserted: " << l << "\n";);
if (a->is_bit())
for (auto vp : a->to_bit())
m_prop_queue.push_back(vp);
}
bool solver::unit_propagate() {
if (m_prop_queue_head == m_prop_queue.size())
return false;
ctx.push(value_trail<euf::solver, unsigned>(m_prop_queue_head));
for (; m_prop_queue_head < m_prop_queue.size() && !s().inconsistent(); ++m_prop_queue_head)
propagate_bits(m_prop_queue[m_prop_queue_head]);
return true;
}
void solver::propagate_bits(var_pos entry) {
theory_var v1 = entry.first;
unsigned idx = entry.second;
SASSERT(idx < m_bits[v1].size());
if (m_wpos[v1] == idx)
find_wpos(v1);
literal bit1 = m_bits[v1][idx];
lbool val = s().value(bit1);
TRACE("bv", tout << "propagating v" << v1 << " #" << var2enode(v1)->get_expr_id() << "[" << idx << "] = " << val << "\n";);
if (val == l_undef)
return;
if (val == l_false)
bit1.neg();
for (theory_var v2 = m_find.next(v1); v2 != v1 && !s().inconsistent(); v2 = m_find.next(v2)) {
literal bit2 = m_bits[v2][idx];
SASSERT(m_bits[v1][idx] != ~m_bits[v2][idx]);
TRACE("bv", tout << "propagating #" << var2enode(v2)->get_expr_id() << "[" << idx << "] = " << s().value(bit2) << "\n";);
if (val == l_false)
bit2.neg();
if (l_true != s().value(bit2))
assign_bit(bit2, v1, v2, idx, bit1, false);
}
}
sat::check_result solver::check() {
SASSERT(m_prop_queue.size() == m_prop_queue_head);
return sat::check_result::CR_DONE;
}
void solver::push() {
th_euf_solver::lazy_push();
m_prop_queue_lim.push_back(m_prop_queue.size());
}
void solver::pop(unsigned n) {
unsigned old_sz = m_prop_queue_lim.size() - n;
m_prop_queue.shrink(m_prop_queue_lim[old_sz]);
m_prop_queue_lim.shrink(old_sz);
n = lazy_pop(n);
if (n > 0) {
old_sz = get_num_vars();
m_bits.shrink(old_sz);
m_wpos.shrink(old_sz);
m_zero_one_bits.shrink(old_sz);
}
}
void solver::pre_simplify() {}
void solver::simplify() {
m_ackerman.propagate();
}
bool solver::set_root(literal l, literal r) {
atom* a = get_bv2a(l.var());
if (!a || !a->is_bit())
return true;
for (auto vp : a->to_bit()) {
sat::literal l2 = m_bits[vp.first][vp.second];
sat::literal r2 = (l.sign() == l2.sign()) ? r : ~r;
SASSERT(l2.var() == l.var());
ctx.push(bit_trail(*this, vp));
m_bits[vp.first][vp.second] = r2;
set_bit_eh(vp.first, r2, vp.second);
}
return true;
}
/**
* Instantiate Ackerman axioms for bit-vectors that have become equal after roots have been added.
*/
void solver::flush_roots() {
struct eq {
solver& s;
eq(solver& s) :s(s) {}
bool operator()(theory_var v1, theory_var v2) const {
return s.m_bits[v1] == s.m_bits[v2];
}
};
struct hash {
solver& s;
hash(solver& s) :s(s) {}
bool operator()(theory_var v) const {
literal_vector const& a = s.m_bits[v];
return string_hash(reinterpret_cast<char*>(a.c_ptr()), a.size() * sizeof(sat::literal), 3);
}
};
eq eq_proc(*this);
hash hash_proc(*this);
map<theory_var, theory_var, hash, eq> table(hash_proc, eq_proc);
for (unsigned v = 0; v < get_num_vars(); ++v) {
if (!m_bits[v].empty()) {
theory_var w = table.insert_if_not_there(v, v);
if (v != w && m_find.find(v) != m_find.find(w))
assert_ackerman(v, w);
}
}
TRACE("bv", tout << "infer new equations for bit-vectors that are now equal\n";);
}
void solver::clauses_modifed() {}
lbool solver::get_phase(bool_var v) { return l_undef; }
std::ostream& solver::display(std::ostream& out) const {
unsigned num_vars = get_num_vars();
if (num_vars > 0)
out << "bv-solver:\n";
for (unsigned v = 0; v < num_vars; v++)
out << pp(v);
return out;
}
std::ostream& solver::display_justification(std::ostream& out, sat::ext_justification_idx idx) const {
return display_constraint(out, idx);
}
std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
auto& c = bv_justification::from_index(idx);
switch (c.m_kind) {
case bv_justification::kind_t::bv2bit:
return out << c.m_consequent << " <= " << c.m_antecedent << " v" << c.m_v1 << " == v" << c.m_v2 << "\n";
case bv_justification::kind_t::bit2bv:
return out << m_bits[c.m_v1] << " == " << m_bits[c.m_v2] << " => v" << c.m_v1 << " == v" << c.m_v2 << "\n";
default:
UNREACHABLE();
break;
}
return out;
}
void solver::collect_statistics(statistics& st) const {
st.update("bv conflicts", m_stats.m_num_conflicts);
st.update("bv diseqs", m_stats.m_num_diseq_static);
st.update("bv dynamic diseqs", m_stats.m_num_diseq_dynamic);
st.update("bv bit2core", m_stats.m_num_bit2core);
st.update("bv->core eq", m_stats.m_num_th2core_eq);
st.update("bv ackerman", m_stats.m_ackerman);
}
sat::extension* solver::copy(sat::solver* s) { UNREACHABLE(); return nullptr; }
euf::th_solver* solver::fresh(sat::solver* s, euf::solver& ctx) {
bv::solver* result = alloc(bv::solver, ctx, get_id());
ast_translation tr(m, ctx.get_manager());
for (unsigned i = 0; i < get_num_vars(); ++i) {
expr* e1 = var2expr(i);
expr* e2 = tr(e1);
euf::enode* n2 = ctx.get_enode(e2);
SASSERT(n2);
result->mk_var(n2);
result->m_bits[i].append(m_bits[i]);
result->m_zero_one_bits[i].append(m_zero_one_bits[i]);
}
for (unsigned i = 0; i < get_num_vars(); ++i)
if (find(i) != i)
result->m_find.merge(i, find(i));
result->m_prop_queue.append(m_prop_queue);
for (unsigned i = 0; i < m_bool_var2atom.size(); ++i) {
atom* a = m_bool_var2atom[i];
if (!a)
continue;
if (a->is_bit()) {
bit_atom* new_a = new (result->get_region()) bit_atom();
m_bool_var2atom.setx(i, new_a, nullptr);
for (auto vp : a->to_bit())
new_a->m_occs = new (result->get_region()) var_pos_occ(vp.first, vp.second, new_a->m_occs);
}
else {
def_atom* new_a = new (result->get_region()) def_atom(a->to_def().m_var, a->to_def().m_def);
m_bool_var2atom.setx(i, new_a, nullptr);
}
}
return result;
}
void solver::pop_reinit() {}
bool solver::validate() { return true; }
void solver::init_use_list(sat::ext_use_list& ul) {}
bool solver::is_blocked(literal l, sat::ext_constraint_idx) { return false; }
bool solver::check_model(sat::model const& m) const { return true; }
unsigned solver::max_var(unsigned w) const { return w; }
void solver::add_value(euf::enode* n, model& mdl, expr_ref_vector& values) {
SASSERT(bv.is_bv(n->get_expr()));
theory_var v = n->get_th_var(get_id());
rational val;
unsigned i = 0;
for (auto l : m_bits[v]) {
switch (s().value(l)) {
case l_true:
val += power2(i);
break;
default:
break;
}
++i;
}
values[n->get_root_id()] = bv.mk_numeral(val, m_bits[v].size());
}
trail_stack<euf::solver>& solver::get_trail_stack() {
return ctx.get_trail_stack();
}
void solver::merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) {
TRACE("bv", tout << "merging: v" << v1 << " #" << var2enode(v1)->get_expr_id() << " v" << v2 << " #" << var2enode(v2)->get_expr_id() << "\n";);
if (!merge_zero_one_bits(r1, r2)) {
TRACE("bv", tout << "conflict detected\n";);
return; // conflict was detected
}
SASSERT(m_bits[v1].size() == m_bits[v2].size());
unsigned sz = m_bits[v1].size();
for (unsigned idx = 0; !s().inconsistent() && idx < sz; idx++) {
literal bit1 = m_bits[v1][idx];
literal bit2 = m_bits[v2][idx];
CTRACE("bv", bit1 == ~bit2, tout << pp(v1) << pp(v2) << "idx: " << idx << "\n";);
SASSERT(bit1 != ~bit2);
lbool val1 = s().value(bit1);
lbool val2 = s().value(bit2);
TRACE("bv", tout << "merge v" << v1 << " " << bit1 << ":= " << val1 << " " << bit2 << ":= " << val2 << "\n";);
if (val1 == val2)
continue;
CTRACE("bv", (val1 != l_undef && val2 != l_undef), tout << "inconsistent "; tout << pp(v1) << pp(v2) << "idx: " << idx << "\n";);
if (val1 == l_false)
assign_bit(~bit2, v1, v2, idx, ~bit1, true);
else if (val1 == l_true)
assign_bit(bit2, v1, v2, idx, bit1, true);
else if (val2 == l_false)
assign_bit(~bit1, v2, v1, idx, ~bit2, true);
else if (val2 == l_true)
assign_bit(bit1, v2, v1, idx, bit2, true);
}
}
sat::justification solver::mk_bv2bit_justification(theory_var v1, theory_var v2, sat::literal c, sat::literal a) {
void* mem = get_region().allocate(bv_justification::get_obj_size());
sat::constraint_base::initialize(mem, this);
auto* constraint = new (sat::constraint_base::ptr2mem(mem)) bv_justification(v1, v2, c, a);
return sat::justification::mk_ext_justification(s().scope_lvl(), constraint->to_index());
}
sat::ext_justification_idx solver::mk_bit2bv_justification(theory_var v1, theory_var v2) {
void* mem = get_region().allocate(bv_justification::get_obj_size());
sat::constraint_base::initialize(mem, this);
auto* constraint = new (sat::constraint_base::ptr2mem(mem)) bv_justification(v1, v2);
return constraint->to_index();
}
void solver::assign_bit(literal consequent, theory_var v1, theory_var v2, unsigned idx, literal antecedent, bool propagate_eqc) {
m_stats.m_num_bit2core++;
SASSERT(ctx.s().value(antecedent) == l_true);
SASSERT(m_bits[v2][idx].var() == consequent.var());
SASSERT(consequent.var() != antecedent.var());
s().assign(consequent, mk_bv2bit_justification(v1, v2, consequent, antecedent));
if (s().value(consequent) == l_false) {
m_stats.m_num_conflicts++;
SASSERT(s().inconsistent());
}
else {
if (get_config().m_bv_eq_axioms && false) {
// TODO - enable when pop_reinit is available
expr_ref eq(m.mk_eq(var2expr(v1), var2expr(v2)), m);
flet<bool> _is_redundant(m_is_redundant, true);
literal eq_lit = ctx.internalize(eq, false, false, m_is_redundant);
add_clause(~antecedent, ~eq_lit, consequent);
add_clause(antecedent, ~eq_lit, ~consequent);
}
if (m_wpos[v2] == idx)
find_wpos(v2);
bool_var cv = consequent.var();
atom* a = get_bv2a(cv);
if (a && a->is_bit())
for (auto curr : a->to_bit())
if (propagate_eqc || find(curr.first) != find(v2) || curr.second != idx)
m_prop_queue.push_back(curr);
}
}
void solver::unmerge_eh(theory_var v1, theory_var v2) {
// v1 was the root of the equivalence class
// I must remove the zero_one_bits that are from v2.
zero_one_bits& bits = m_zero_one_bits[v1];
if (bits.empty())
return;
for (unsigned j = bits.size(); j-- > 0; ) {
zero_one_bit& bit = bits[j];
if (find(bit.m_owner) == v1) {
bits.shrink(j + 1);
return;
}
}
bits.shrink(0);
}
bool solver::merge_zero_one_bits(theory_var r1, theory_var r2) {
zero_one_bits& bits2 = m_zero_one_bits[r2];
if (bits2.empty())
return true;
zero_one_bits& bits1 = m_zero_one_bits[r1];
unsigned bv_size = get_bv_size(r1);
SASSERT(bv_size == get_bv_size(r2));
m_merge_aux[0].reserve(bv_size + 1, euf::null_theory_var);
m_merge_aux[1].reserve(bv_size + 1, euf::null_theory_var);
struct scoped_reset {
solver& s;
zero_one_bits& bits1;
scoped_reset(solver& s, zero_one_bits& bits1) :s(s), bits1(bits1) {}
~scoped_reset() {
for (auto& zo : bits1)
s.m_merge_aux[zo.m_is_true][zo.m_idx] = euf::null_theory_var;
}
};
scoped_reset _sr(*this, bits1);
DEBUG_CODE(for (unsigned i = 0; i < bv_size; i++) SASSERT(m_merge_aux[0][i] == euf::null_theory_var || m_merge_aux[1][i] == euf::null_theory_var););
// save info about bits1
for (auto& zo : bits1)
m_merge_aux[zo.m_is_true][zo.m_idx] = zo.m_owner;
// check if bits2 is consistent with bits1, and copy new bits to bits1
for (auto& zo : bits2) {
theory_var v2 = zo.m_owner;
theory_var v1 = m_merge_aux[!zo.m_is_true][zo.m_idx];
if (v1 != euf::null_theory_var) {
// conflict was detected ... v1 and v2 have complementary bits
SASSERT(m_bits[v1][zo.m_idx] == ~(m_bits[v2][zo.m_idx]));
SASSERT(m_bits[v1].size() == m_bits[v2].size());
mk_new_diseq_axiom(v1, v2, zo.m_idx);
return false;
}
// copy missing variable to bits1
if (m_merge_aux[zo.m_is_true][zo.m_idx] == euf::null_theory_var)
bits1.push_back(zo);
}
// reset m_merge_aux vector
DEBUG_CODE(for (unsigned i = 0; i < bv_size; i++) { SASSERT(m_merge_aux[0][i] == euf::null_theory_var || m_merge_aux[1][i] == euf::null_theory_var); });
return true;
}
rational const& solver::power2(unsigned i) const {
while (m_power2.size() <= i)
m_power2.push_back(m_bb.power(m_power2.size()));
return m_power2[i];
}
/**
\brief Check whether m_zero_one_bits is an accurate summary of the bits in the
equivalence class rooted by v.
\remark The method does nothing if v is not the root of the equivalence class.
*/
bool solver::check_zero_one_bits(theory_var v) {
if (s().inconsistent())
return true; // property is only valid if the context is not in a conflict.
if (!is_root(v) || !is_bv(v))
return true;
bool_vector bits[2];
unsigned num_bits = 0;
unsigned bv_sz = get_bv_size(v);
bits[0].resize(bv_sz, false);
bits[1].resize(bv_sz, false);
theory_var curr = v;
do {
literal_vector const& lits = m_bits[curr];
for (unsigned i = 0; i < lits.size(); i++) {
literal l = lits[i];
if (s().value(l) != l_undef) {
unsigned is_true = s().value(l) == l_true;
if (bits[!is_true][i]) {
// expect a conflict later on.
return true;
}
if (!bits[is_true][i]) {
bits[is_true][i] = true;
num_bits++;
}
}
}
curr = m_find.next(curr);
} while (curr != v);
zero_one_bits const& _bits = m_zero_one_bits[v];
SASSERT(_bits.size() == num_bits);
bool_vector already_found;
already_found.resize(bv_sz, false);
for (auto& zo : _bits) {
SASSERT(find(zo.m_owner) == v);
SASSERT(bits[zo.m_is_true][zo.m_idx]);
SASSERT(!already_found[zo.m_idx]);
already_found[zo.m_idx] = true;
}
return true;
}
}