mirror of
https://github.com/Z3Prover/z3
synced 2025-06-23 06:13:40 +00:00
- remove reduce_invertible. It is subsumed by reduce_uncstr(2) - introduce a simplifier for reduce_unconstrained. It uses reference counting to deal with inefficiency bug of legacy reduce_uncstr. It decomposes theory plugins into expr_inverter. reduce_invertible is a tactic used in most built-in scenarios. It is useful for removing subterms that can be eliminated using "cheap" quantifier elimination. Specifically variables that occur only once can be removed in many cases by computing an expression that represents the effect computing a value for the eliminated occurrence. The theory plugins for variable elimination are very partial and should be augmented by extensions, esp. for the case of bit-vectors where the invertibility conditions are thoroughly documented by Niemetz and Preiner.
302 lines
10 KiB
C++
302 lines
10 KiB
C++
/*++
|
|
Copyright (c) 2006 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
array_decl_plugin.h
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2008-01-09.
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#pragma once
|
|
|
|
#include "ast/ast.h"
|
|
|
|
|
|
inline sort* get_array_range(sort const * s) {
|
|
return to_sort(s->get_parameter(s->get_num_parameters() - 1).get_ast());
|
|
}
|
|
|
|
inline unsigned get_array_arity(sort const * s) {
|
|
return s->get_num_parameters() -1;
|
|
}
|
|
|
|
inline sort* get_array_domain(sort const * s, unsigned idx) {
|
|
return to_sort(s->get_parameter(idx).get_ast());
|
|
}
|
|
|
|
enum array_sort_kind {
|
|
ARRAY_SORT,
|
|
_SET_SORT
|
|
};
|
|
|
|
enum array_op_kind {
|
|
OP_STORE,
|
|
OP_SELECT,
|
|
OP_CONST_ARRAY,
|
|
OP_ARRAY_EXT,
|
|
OP_ARRAY_DEFAULT,
|
|
OP_ARRAY_MAP,
|
|
OP_SET_UNION,
|
|
OP_SET_INTERSECT,
|
|
OP_SET_DIFFERENCE,
|
|
OP_SET_COMPLEMENT,
|
|
OP_SET_SUBSET,
|
|
OP_SET_HAS_SIZE,
|
|
OP_SET_CARD,
|
|
OP_AS_ARRAY, // used for model construction
|
|
LAST_ARRAY_OP
|
|
};
|
|
|
|
class array_decl_plugin : public decl_plugin {
|
|
symbol m_store_sym;
|
|
symbol m_select_sym;
|
|
symbol m_const_sym;
|
|
symbol m_default_sym;
|
|
symbol m_map_sym;
|
|
symbol m_set_union_sym;
|
|
symbol m_set_intersect_sym;
|
|
symbol m_set_difference_sym;
|
|
symbol m_set_complement_sym;
|
|
symbol m_set_subset_sym;
|
|
symbol m_array_ext_sym;
|
|
symbol m_as_array_sym;
|
|
symbol m_set_has_size_sym;
|
|
symbol m_set_card_sym;
|
|
|
|
bool check_set_arguments(unsigned arity, sort * const * domain);
|
|
|
|
func_decl * mk_const(sort* ty, unsigned arity, sort * const * domain);
|
|
|
|
func_decl * mk_map(func_decl* f, unsigned arity, sort* const* domain);
|
|
|
|
func_decl * mk_default(unsigned arity, sort* const* domain);
|
|
|
|
func_decl * mk_select(unsigned arity, sort * const * domain);
|
|
|
|
func_decl * mk_store(unsigned arity, sort * const * domain);
|
|
|
|
func_decl * mk_array_ext(unsigned arity, sort * const * domain, unsigned i);
|
|
|
|
func_decl * mk_set_union(unsigned arity, sort * const * domain);
|
|
|
|
func_decl * mk_set_intersect(unsigned arity, sort * const * domain);
|
|
|
|
func_decl * mk_set_difference(unsigned arity, sort * const * domain);
|
|
|
|
func_decl * mk_set_complement(unsigned arity, sort * const * domain);
|
|
|
|
func_decl * mk_set_subset(unsigned arity, sort * const * domain);
|
|
|
|
func_decl * mk_as_array(func_decl * f);
|
|
|
|
func_decl* mk_set_has_size(unsigned arity, sort * const* domain);
|
|
|
|
func_decl* mk_set_card(unsigned arity, sort * const* domain);
|
|
|
|
bool is_array_sort(sort* s) const;
|
|
public:
|
|
array_decl_plugin();
|
|
|
|
decl_plugin * mk_fresh() override {
|
|
return alloc(array_decl_plugin);
|
|
}
|
|
|
|
//
|
|
// Contract for sort:
|
|
// parameters[0] - 1st dimension
|
|
// ...
|
|
// parameters[n-1] - nth dimension
|
|
// parameters[n] - range
|
|
//
|
|
sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) override;
|
|
|
|
//
|
|
// Contract for func_decl:
|
|
// parameters[0] - array sort
|
|
// Contract for others:
|
|
// no parameters
|
|
func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
|
|
unsigned arity, sort * const * domain, sort * range) override;
|
|
|
|
void get_op_names(svector<builtin_name> & op_names, symbol const & logic) override;
|
|
|
|
void get_sort_names(svector<builtin_name> & sort_names, symbol const & logic) override;
|
|
|
|
expr * get_some_value(sort * s) override;
|
|
|
|
bool is_fully_interp(sort * s) const override;
|
|
|
|
bool is_value(app * e) const override;
|
|
|
|
};
|
|
|
|
class array_recognizers {
|
|
protected:
|
|
family_id m_fid;
|
|
public:
|
|
array_recognizers(family_id fid):m_fid(fid) {}
|
|
family_id get_family_id() const { return m_fid; }
|
|
bool is_array(sort* s) const { return is_sort_of(s, m_fid, ARRAY_SORT);}
|
|
bool is_array(expr* n) const { return is_array(n->get_sort()); }
|
|
bool is_select(expr* n) const { return is_app_of(n, m_fid, OP_SELECT); }
|
|
bool is_store(expr* n) const { return is_app_of(n, m_fid, OP_STORE); }
|
|
bool is_const(expr* n) const { return is_app_of(n, m_fid, OP_CONST_ARRAY); }
|
|
bool is_ext(expr* n) const { return is_app_of(n, m_fid, OP_ARRAY_EXT); }
|
|
bool is_ext(func_decl const* f) const { return is_decl_of(f, m_fid, OP_ARRAY_EXT); }
|
|
bool is_map(expr* n) const { return is_app_of(n, m_fid, OP_ARRAY_MAP); }
|
|
bool is_union(expr* n) const { return is_app_of(n, m_fid, OP_SET_UNION); }
|
|
bool is_intersect(expr* n) const { return is_app_of(n, m_fid, OP_SET_INTERSECT); }
|
|
bool is_difference(expr* n) const { return is_app_of(n, m_fid, OP_SET_DIFFERENCE); }
|
|
bool is_complement(expr* n) const { return is_app_of(n, m_fid, OP_SET_COMPLEMENT); }
|
|
bool is_as_array(expr * n) const { return is_app_of(n, m_fid, OP_AS_ARRAY); }
|
|
bool is_as_array(expr * n, func_decl*& f) const { return is_as_array(n) && (f = get_as_array_func_decl(n), true); }
|
|
bool is_set_has_size(expr* e) const { return is_app_of(e, m_fid, OP_SET_HAS_SIZE); }
|
|
bool is_set_card(expr* e) const { return is_app_of(e, m_fid, OP_SET_CARD); }
|
|
bool is_select(func_decl* f) const { return is_decl_of(f, m_fid, OP_SELECT); }
|
|
bool is_store(func_decl* f) const { return is_decl_of(f, m_fid, OP_STORE); }
|
|
bool is_const(func_decl* f) const { return is_decl_of(f, m_fid, OP_CONST_ARRAY); }
|
|
bool is_map(func_decl* f) const { return is_decl_of(f, m_fid, OP_ARRAY_MAP); }
|
|
bool is_union(func_decl* f) const { return is_decl_of(f, m_fid, OP_SET_UNION); }
|
|
bool is_intersect(func_decl* f) const { return is_decl_of(f, m_fid, OP_SET_INTERSECT); }
|
|
bool is_as_array(func_decl* f) const { return is_decl_of(f, m_fid, OP_AS_ARRAY); }
|
|
bool is_set_has_size(func_decl* f) const { return is_decl_of(f, m_fid, OP_SET_HAS_SIZE); }
|
|
bool is_set_card(func_decl* f) const { return is_decl_of(f, m_fid, OP_SET_CARD); }
|
|
bool is_default(func_decl* f) const { return is_decl_of(f, m_fid, OP_ARRAY_DEFAULT); }
|
|
bool is_default(expr* n) const { return is_app_of(n, m_fid, OP_ARRAY_DEFAULT); }
|
|
bool is_subset(expr const* n) const { return is_app_of(n, m_fid, OP_SET_SUBSET); }
|
|
bool is_as_array(func_decl* f, func_decl*& g) const { return is_decl_of(f, m_fid, OP_AS_ARRAY) && (g = get_as_array_func_decl(f), true); }
|
|
bool is_map(func_decl* f, func_decl*& g) const { return is_map(f) && (g = get_map_func_decl(f), true); }
|
|
func_decl * get_as_array_func_decl(expr * n) const;
|
|
func_decl * get_as_array_func_decl(func_decl* f) const;
|
|
func_decl * get_map_func_decl(func_decl* f) const;
|
|
func_decl * get_map_func_decl(expr* e) const { return get_map_func_decl(to_app(e)->get_decl()); }
|
|
|
|
bool is_const(expr* e, expr*& v) const;
|
|
|
|
bool is_store_ext(expr* e, expr_ref& a, expr_ref_vector& args, expr_ref& value);
|
|
|
|
MATCH_BINARY(is_subset);
|
|
};
|
|
|
|
class array_util : public array_recognizers {
|
|
ast_manager & m_manager;
|
|
public:
|
|
array_util(ast_manager& m);
|
|
ast_manager & get_manager() const { return m_manager; }
|
|
|
|
bool is_as_array_tree(expr * n);
|
|
|
|
app * mk_store(unsigned num_args, expr * const * args) const {
|
|
return m_manager.mk_app(m_fid, OP_STORE, 0, nullptr, num_args, args);
|
|
}
|
|
|
|
app * mk_store(expr_ref_vector const& args) const {
|
|
return mk_store(args.size(), args.data());
|
|
}
|
|
|
|
app * mk_store(ptr_vector<expr> const& args) const {
|
|
return mk_store(args.size(), args.data());
|
|
}
|
|
|
|
app* mk_store(ptr_buffer<expr> const& args) const {
|
|
return mk_store(args.size(), args.data());
|
|
}
|
|
|
|
app * mk_select(unsigned num_args, expr * const * args) const {
|
|
return m_manager.mk_app(m_fid, OP_SELECT, 0, nullptr, num_args, args);
|
|
}
|
|
|
|
app * mk_select(ptr_vector<expr> const& args) const {
|
|
return mk_select(args.size(), args.data());
|
|
}
|
|
|
|
app * mk_select(ptr_buffer<expr> const& args) const {
|
|
return mk_select(args.size(), args.data());
|
|
}
|
|
|
|
app * mk_select(expr_ref_vector const& args) const {
|
|
return mk_select(args.size(), args.data());
|
|
}
|
|
|
|
app * mk_map(func_decl * f, unsigned num_args, expr * const * args) {
|
|
parameter p(f);
|
|
return m_manager.mk_app(m_fid, OP_ARRAY_MAP, 1, &p, num_args, args);
|
|
}
|
|
|
|
expr * mk_map_assoc(func_decl * f, unsigned num_args, expr * const * args) {
|
|
expr* r = args[0];
|
|
for (unsigned i = 1; i < num_args; ++i) {
|
|
expr* es[2] = { r, args[i] };
|
|
r = mk_map(f, 2, es);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
app * mk_default(expr * a) {
|
|
return m_manager.mk_app(m_fid, OP_ARRAY_DEFAULT, 0, nullptr, 1, &a);
|
|
}
|
|
|
|
app * mk_const_array(sort * s, expr * v) {
|
|
parameter param(s);
|
|
return m_manager.mk_app(m_fid, OP_CONST_ARRAY, 1, ¶m, 1, &v);
|
|
}
|
|
app * mk_empty_set(sort * s) {
|
|
return mk_const_array(s, m_manager.mk_false());
|
|
}
|
|
app * mk_full_set(sort * s) {
|
|
return mk_const_array(s, m_manager.mk_true());
|
|
}
|
|
|
|
app * mk_setminus(expr* s1, expr* s2) {
|
|
return m_manager.mk_app(m_fid, OP_SET_DIFFERENCE, s1, s2);
|
|
}
|
|
|
|
app * mk_intersection(expr* s1, expr* s2) {
|
|
return m_manager.mk_app(m_fid, OP_SET_INTERSECT, s1, s2);
|
|
}
|
|
|
|
app * mk_union(expr* s1, expr* s2) {
|
|
return m_manager.mk_app(m_fid, OP_SET_UNION, s1, s2);
|
|
}
|
|
|
|
app* mk_has_size(expr* set, expr* n) {
|
|
return m_manager.mk_app(m_fid, OP_SET_HAS_SIZE, set, n);
|
|
}
|
|
|
|
app* mk_card(expr* set) {
|
|
return m_manager.mk_app(m_fid, OP_SET_CARD, set);
|
|
}
|
|
|
|
func_decl * mk_array_ext(sort* domain, unsigned i);
|
|
|
|
sort * mk_array_sort(sort* dom, sort* range) { return mk_array_sort(1, &dom, range); }
|
|
sort * mk_array_sort(sort* a, sort* b, sort* range) { sort* dom[2] = { a, b }; return mk_array_sort(2, dom, range); }
|
|
sort * mk_array_sort(sort* a, sort* b, sort* c, sort* range) { sort* dom[3] = { a, b, c}; return mk_array_sort(3, dom, range); }
|
|
|
|
sort * mk_array_sort(unsigned arity, sort* const* domain, sort* range);
|
|
|
|
app * mk_as_array(func_decl * f) {
|
|
parameter param(f);
|
|
return m_manager.mk_app(m_fid, OP_AS_ARRAY, 1, ¶m, 0, nullptr, nullptr);
|
|
}
|
|
|
|
sort* get_array_range_rec(sort* s) {
|
|
while (is_array(s)) {
|
|
s = get_array_range(s);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|