mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
4852 lines
168 KiB
C++
4852 lines
168 KiB
C++
/*++
|
|
Copyright (c) 2011 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
sat_solver.cpp
|
|
|
|
Abstract:
|
|
|
|
SAT solver main class.
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2011-05-21.
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
|
|
|
|
#include <cmath>
|
|
#ifndef SINGLE_THREAD
|
|
#include <thread>
|
|
#endif
|
|
#include "util/luby.h"
|
|
#include "util/trace.h"
|
|
#include "util/max_cliques.h"
|
|
#include "util/gparams.h"
|
|
#include "sat/sat_solver.h"
|
|
#include "sat/sat_integrity_checker.h"
|
|
#include "sat/sat_lookahead.h"
|
|
#include "sat/sat_ddfw.h"
|
|
#include "sat/sat_prob.h"
|
|
#include "sat/sat_anf_simplifier.h"
|
|
#include "sat/sat_cut_simplifier.h"
|
|
#if defined(_MSC_VER) && !defined(_M_ARM) && !defined(_M_ARM64)
|
|
# include <xmmintrin.h>
|
|
#endif
|
|
|
|
#define ENABLE_TERNARY true
|
|
|
|
namespace sat {
|
|
|
|
|
|
solver::solver(params_ref const & p, reslimit& l):
|
|
solver_core(l),
|
|
m_checkpoint_enabled(true),
|
|
m_config(p),
|
|
m_par(nullptr),
|
|
m_drat(*this),
|
|
m_cls_allocator_idx(false),
|
|
m_cleaner(*this),
|
|
m_simplifier(*this, p),
|
|
m_scc(*this, p),
|
|
m_asymm_branch(*this, p),
|
|
m_probing(*this, p),
|
|
m_mus(*this),
|
|
m_binspr(*this),
|
|
m_inconsistent(false),
|
|
m_searching(false),
|
|
m_conflict(justification(0)),
|
|
m_num_frozen(0),
|
|
m_activity_inc(128),
|
|
m_case_split_queue(m_activity),
|
|
m_qhead(0),
|
|
m_scope_lvl(0),
|
|
m_search_lvl(0),
|
|
m_fast_glue_avg(),
|
|
m_slow_glue_avg(),
|
|
m_fast_glue_backup(),
|
|
m_slow_glue_backup(),
|
|
m_trail_avg(),
|
|
m_params(p),
|
|
m_par_id(0),
|
|
m_par_syncing_clauses(false) {
|
|
init_reason_unknown();
|
|
updt_params(p);
|
|
m_best_phase_size = 0;
|
|
m_conflicts_since_gc = 0;
|
|
m_conflicts_since_init = 0;
|
|
m_next_simplify = 0;
|
|
m_num_checkpoints = 0;
|
|
m_simplifications = 0;
|
|
m_touch_index = 0;
|
|
m_ext = nullptr;
|
|
m_cuber = nullptr;
|
|
m_local_search = nullptr;
|
|
m_mc.set_solver(this);
|
|
mk_var(false, false);
|
|
}
|
|
|
|
solver::~solver() {
|
|
m_ext = nullptr;
|
|
SASSERT(m_config.m_num_threads > 1 || check_invariant());
|
|
CTRACE("sat", !m_clauses.empty(), tout << "Delete clauses\n";);
|
|
del_clauses(m_clauses);
|
|
CTRACE("sat", !m_learned.empty(), tout << "Delete learned\n";);
|
|
del_clauses(m_learned);
|
|
dealloc(m_cuber);
|
|
m_cuber = nullptr;
|
|
}
|
|
|
|
void solver::del_clauses(clause_vector& clauses) {
|
|
for (clause * cp : clauses)
|
|
dealloc_clause(cp);
|
|
clauses.reset();
|
|
++m_stats.m_non_learned_generation;
|
|
}
|
|
|
|
void solver::set_extension(extension* ext) {
|
|
m_ext = ext;
|
|
if (ext) {
|
|
ext->set_solver(this);
|
|
for (unsigned i = num_user_scopes(); i-- > 0;)
|
|
ext->user_push();
|
|
for (unsigned i = num_scopes(); i-- > 0;)
|
|
ext->push();
|
|
}
|
|
}
|
|
|
|
void solver::copy(solver const & src, bool copy_learned) {
|
|
pop_to_base_level();
|
|
del_clauses(m_clauses);
|
|
del_clauses(m_learned);
|
|
m_watches.reset();
|
|
m_assignment.reset();
|
|
m_justification.reset();
|
|
m_decision.reset();
|
|
m_eliminated.reset();
|
|
m_external.reset();
|
|
m_var_scope.reset();
|
|
m_activity.reset();
|
|
m_mark.reset();
|
|
m_lit_mark.reset();
|
|
m_best_phase.reset();
|
|
m_phase.reset();
|
|
m_prev_phase.reset();
|
|
m_assigned_since_gc.reset();
|
|
m_last_conflict.reset();
|
|
m_last_propagation.reset();
|
|
m_participated.reset();
|
|
m_canceled.reset();
|
|
m_reasoned.reset();
|
|
m_case_split_queue.reset();
|
|
m_simplifier.reset_todos();
|
|
m_qhead = 0;
|
|
m_trail.reset();
|
|
m_scopes.reset();
|
|
mk_var(false, false);
|
|
|
|
if (src.inconsistent()) {
|
|
set_conflict();
|
|
return;
|
|
}
|
|
|
|
// create new vars
|
|
for (bool_var v = num_vars(); v < src.num_vars(); v++) {
|
|
bool ext = src.m_external[v];
|
|
bool dvar = src.m_decision[v];
|
|
VERIFY(v == mk_var(ext, dvar));
|
|
if (src.was_eliminated(v)) {
|
|
set_eliminated(v, true);
|
|
}
|
|
m_phase[v] = src.m_phase[v];
|
|
m_best_phase[v] = src.m_best_phase[v];
|
|
m_prev_phase[v] = src.m_prev_phase[v];
|
|
|
|
// inherit activity:
|
|
m_activity[v] = src.m_activity[v];
|
|
m_case_split_queue.activity_changed_eh(v, false);
|
|
}
|
|
|
|
//
|
|
// register the extension before performing assignments.
|
|
// the assignments may call back into the extension.
|
|
//
|
|
if (src.get_extension()) {
|
|
m_ext = src.get_extension()->copy(this);
|
|
}
|
|
|
|
unsigned trail_sz = src.init_trail_size();
|
|
for (unsigned i = 0; i < trail_sz; ++i) {
|
|
assign_unit(src.m_trail[i]);
|
|
}
|
|
|
|
// copy binary clauses
|
|
{
|
|
unsigned sz = src.m_watches.size();
|
|
for (unsigned l_idx = 0; l_idx < sz; ++l_idx) {
|
|
literal l = ~to_literal(l_idx);
|
|
if (src.was_eliminated(l.var())) continue;
|
|
watch_list const & wlist = src.m_watches[l_idx];
|
|
for (auto & wi : wlist) {
|
|
if (!wi.is_binary_clause())
|
|
continue;
|
|
literal l2 = wi.get_literal();
|
|
if (l.index() > l2.index() ||
|
|
src.was_eliminated(l2.var()))
|
|
continue;
|
|
|
|
watched w1(l2, wi.is_learned());
|
|
watched w2(l, wi.is_learned());
|
|
m_watches[(~l).index()].push_back(w1);
|
|
m_watches[(~l2).index()].push_back(w2);
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
literal_vector buffer;
|
|
// copy clauses
|
|
for (clause* c : src.m_clauses) {
|
|
buffer.reset();
|
|
for (literal l : *c) buffer.push_back(l);
|
|
mk_clause_core(buffer);
|
|
}
|
|
|
|
// copy high quality lemmas
|
|
unsigned num_learned = 0;
|
|
for (clause* c : src.m_learned) {
|
|
if (c->glue() <= 2 || (c->size() <= 40 && c->glue() <= 8) || copy_learned) {
|
|
buffer.reset();
|
|
for (literal l : *c) buffer.push_back(l);
|
|
clause* c1 = mk_clause_core(buffer.size(), buffer.data(), sat::status::redundant());
|
|
if (c1) {
|
|
++num_learned;
|
|
c1->set_glue(c->glue());
|
|
c1->set_psm(c->psm());
|
|
}
|
|
}
|
|
}
|
|
IF_VERBOSE(2, verbose_stream() << "(sat.copy :learned " << num_learned << ")\n";);
|
|
}
|
|
m_best_phase_size = src.m_best_phase_size;
|
|
if (m_best_phase_size > 0) {
|
|
for (bool_var v = 0; v < num_vars(); ++v) {
|
|
m_best_phase[v] = src.m_best_phase[v];
|
|
}
|
|
}
|
|
|
|
m_user_scope_literals.reset();
|
|
m_user_scope_literals.append(src.m_user_scope_literals);
|
|
|
|
m_mc = src.m_mc;
|
|
m_stats.m_units = init_trail_size();
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Variable & Clause creation
|
|
//
|
|
// -----------------------
|
|
|
|
void solver::reset_var(bool_var v, bool ext, bool dvar) {
|
|
m_watches[2*v].reset();
|
|
m_watches[2*v+1].reset();
|
|
m_assignment[2*v] = l_undef;
|
|
m_assignment[2*v+1] = l_undef;
|
|
m_justification[v] = justification(UINT_MAX);
|
|
m_decision[v] = dvar;
|
|
m_eliminated[v] = false;
|
|
m_external[v] = ext;
|
|
m_var_scope[v] = scope_lvl();
|
|
m_touched[v] = 0;
|
|
m_activity[v] = 0;
|
|
m_mark[v] = false;
|
|
m_lit_mark[2*v] = false;
|
|
m_lit_mark[2*v+1] = false;
|
|
m_phase[v] = false;
|
|
m_best_phase[v] = false;
|
|
m_prev_phase[v] = false;
|
|
m_assigned_since_gc[v] = false;
|
|
m_last_conflict[v] = 0;
|
|
m_last_propagation[v] = 0;
|
|
m_participated[v] = 0;
|
|
m_canceled[v] = 0;
|
|
m_reasoned[v] = 0;
|
|
m_case_split_queue.mk_var_eh(v);
|
|
m_simplifier.insert_elim_todo(v);
|
|
}
|
|
|
|
bool_var solver::mk_var(bool ext, bool dvar) {
|
|
m_model_is_current = false;
|
|
m_stats.m_mk_var++;
|
|
bool_var v = m_justification.size();
|
|
if (!m_free_vars.empty()) {
|
|
v = m_free_vars.back();
|
|
m_free_vars.pop_back();
|
|
m_active_vars.push_back(v);
|
|
reset_var(v, ext, dvar);
|
|
SASSERT(v < m_justification.size());
|
|
return v;
|
|
}
|
|
m_active_vars.push_back(v);
|
|
m_watches.push_back(watch_list());
|
|
m_watches.push_back(watch_list());
|
|
m_assignment.push_back(l_undef);
|
|
m_assignment.push_back(l_undef);
|
|
m_justification.push_back(justification(UINT_MAX));
|
|
m_decision.push_back(dvar);
|
|
m_eliminated.push_back(false);
|
|
m_external.push_back(ext);
|
|
m_var_scope.push_back(scope_lvl());
|
|
m_touched.push_back(0);
|
|
m_activity.push_back(0);
|
|
m_mark.push_back(false);
|
|
m_lit_mark.push_back(false);
|
|
m_lit_mark.push_back(false);
|
|
m_phase.push_back(false);
|
|
m_best_phase.push_back(false);
|
|
m_prev_phase.push_back(false);
|
|
m_assigned_since_gc.push_back(false);
|
|
m_last_conflict.push_back(0);
|
|
m_last_propagation.push_back(0);
|
|
m_participated.push_back(0);
|
|
m_canceled.push_back(0);
|
|
m_reasoned.push_back(0);
|
|
m_case_split_queue.mk_var_eh(v);
|
|
m_simplifier.insert_elim_todo(v);
|
|
SASSERT(!was_eliminated(v));
|
|
return v;
|
|
}
|
|
|
|
void solver::set_non_external(bool_var v) {
|
|
m_external[v] = false;
|
|
}
|
|
|
|
void solver::set_external(bool_var v) {
|
|
m_external[v] = true;
|
|
}
|
|
|
|
void solver::set_eliminated(bool_var v, bool f) {
|
|
if (m_eliminated[v] == f)
|
|
return;
|
|
if (!f)
|
|
reset_var(v, m_external[v], m_decision[v]);
|
|
else if (f && m_ext)
|
|
m_ext->set_eliminated(v);
|
|
m_eliminated[v] = f;
|
|
}
|
|
|
|
|
|
clause* solver::mk_clause(unsigned num_lits, literal * lits, sat::status st) {
|
|
m_model_is_current = false;
|
|
|
|
|
|
DEBUG_CODE({
|
|
for (unsigned i = 0; i < num_lits; i++) {
|
|
CTRACE("sat", was_eliminated(lits[i]), tout << lits[i] << " was eliminated\n";);
|
|
SASSERT(!was_eliminated(lits[i]));
|
|
}
|
|
});
|
|
|
|
if (m_user_scope_literals.empty()) {
|
|
return mk_clause_core(num_lits, lits, st);
|
|
}
|
|
else {
|
|
m_aux_literals.reset();
|
|
m_aux_literals.append(num_lits, lits);
|
|
m_aux_literals.append(m_user_scope_literals);
|
|
return mk_clause_core(m_aux_literals.size(), m_aux_literals.data(), st);
|
|
}
|
|
}
|
|
|
|
clause* solver::mk_clause(literal l1, literal l2, sat::status st) {
|
|
literal ls[2] = { l1, l2 };
|
|
return mk_clause(2, ls, st);
|
|
}
|
|
|
|
clause* solver::mk_clause(literal l1, literal l2, literal l3, sat::status st) {
|
|
literal ls[3] = { l1, l2, l3 };
|
|
return mk_clause(3, ls, st);
|
|
}
|
|
|
|
void solver::del_clause(clause& c) {
|
|
if (!c.is_learned()) {
|
|
m_stats.m_non_learned_generation++;
|
|
}
|
|
if (c.frozen()) {
|
|
--m_num_frozen;
|
|
}
|
|
if (!c.was_removed() && m_config.m_drat && !m_drat.is_cleaned(c)) {
|
|
m_drat.del(c);
|
|
}
|
|
dealloc_clause(&c);
|
|
if (m_searching)
|
|
m_stats.m_del_clause++;
|
|
}
|
|
|
|
void solver::drat_explain_conflict() {
|
|
if (m_config.m_drat && m_ext) {
|
|
extension::scoped_drating _sd(*m_ext);
|
|
bool unique_max;
|
|
m_conflict_lvl = get_max_lvl(m_not_l, m_conflict, unique_max);
|
|
resolve_conflict_for_unsat_core();
|
|
}
|
|
}
|
|
|
|
void solver::drat_log_unit(literal lit, justification j) {
|
|
if (!m_ext)
|
|
return;
|
|
extension::scoped_drating _sd(*m_ext.get());
|
|
if (j.get_kind() == justification::EXT_JUSTIFICATION)
|
|
fill_ext_antecedents(lit, j, false);
|
|
m_drat.add(lit, m_searching);
|
|
}
|
|
|
|
void solver::drat_log_clause(unsigned num_lits, literal const* lits, sat::status st) {
|
|
m_drat.add(num_lits, lits, st);
|
|
}
|
|
|
|
clause * solver::mk_clause_core(unsigned num_lits, literal * lits, sat::status st) {
|
|
bool redundant = st.is_redundant();
|
|
TRACE("sat", tout << "mk_clause: " << mk_lits_pp(num_lits, lits) << (redundant?" learned":" aux") << "\n";);
|
|
bool logged = false;
|
|
if (!redundant || !st.is_sat()) {
|
|
unsigned old_sz = num_lits;
|
|
bool keep = simplify_clause(num_lits, lits);
|
|
TRACE("sat_mk_clause", tout << "mk_clause (after simp), keep: " << keep << "\n" << mk_lits_pp(num_lits, lits) << "\n";);
|
|
if (!keep) {
|
|
return nullptr; // clause is equivalent to true.
|
|
}
|
|
// if an input clause is simplified, then log the simplified version as learned
|
|
if (m_config.m_drat && old_sz > num_lits) {
|
|
drat_log_clause(num_lits, lits, st);
|
|
logged = true;
|
|
}
|
|
|
|
++m_stats.m_non_learned_generation;
|
|
if (!m_searching) {
|
|
m_mc.add_clause(num_lits, lits);
|
|
}
|
|
}
|
|
|
|
|
|
switch (num_lits) {
|
|
case 0:
|
|
set_conflict();
|
|
return nullptr;
|
|
case 1:
|
|
if (!logged && m_config.m_drat && (!st.is_sat() || st.is_input()))
|
|
drat_log_clause(num_lits, lits, st);
|
|
assign_unit(lits[0]);
|
|
return nullptr;
|
|
case 2:
|
|
mk_bin_clause(lits[0], lits[1], st);
|
|
if (redundant && m_par)
|
|
m_par->share_clause(*this, lits[0], lits[1]);
|
|
return nullptr;
|
|
case 3:
|
|
if (ENABLE_TERNARY)
|
|
return mk_ter_clause(lits, st);
|
|
Z3_fallthrough;
|
|
default:
|
|
return mk_nary_clause(num_lits, lits, st);
|
|
}
|
|
}
|
|
|
|
void solver::mk_bin_clause(literal l1, literal l2, sat::status st) {
|
|
bool redundant = st.is_redundant();
|
|
m_touched[l1.var()] = m_touch_index;
|
|
m_touched[l2.var()] = m_touch_index;
|
|
|
|
if (redundant && find_binary_watch(get_wlist(~l1), ~l2) && value(l1) == l_undef) {
|
|
assign_unit(l1);
|
|
return;
|
|
}
|
|
if (redundant && find_binary_watch(get_wlist(~l2), ~l1) && value(l2) == l_undef) {
|
|
assign_unit(l2);
|
|
return;
|
|
}
|
|
watched* w0 = redundant ? find_binary_watch(get_wlist(~l1), l2) : nullptr;
|
|
if (w0) {
|
|
TRACE("sat", tout << "found binary " << l1 << " " << l2 << "\n";);
|
|
if (w0->is_learned() && !redundant) {
|
|
w0->set_learned(false);
|
|
w0 = find_binary_watch(get_wlist(~l2), l1);
|
|
VERIFY(w0);
|
|
w0->set_learned(false);
|
|
}
|
|
if (propagate_bin_clause(l1, l2) && !at_base_lvl() && !redundant)
|
|
push_reinit_stack(l1, l2);
|
|
else if (has_variables_to_reinit(l1, l2))
|
|
push_reinit_stack(l1, l2);
|
|
return;
|
|
}
|
|
if (m_config.m_drat)
|
|
m_drat.add(l1, l2, st);
|
|
if (propagate_bin_clause(l1, l2)) {
|
|
if (at_base_lvl())
|
|
return;
|
|
push_reinit_stack(l1, l2);
|
|
}
|
|
else if (has_variables_to_reinit(l1, l2))
|
|
push_reinit_stack(l1, l2);
|
|
m_stats.m_mk_bin_clause++;
|
|
get_wlist(~l1).push_back(watched(l2, redundant));
|
|
get_wlist(~l2).push_back(watched(l1, redundant));
|
|
}
|
|
|
|
bool solver::has_variables_to_reinit(clause const& c) const {
|
|
for (auto lit : c)
|
|
if (m_var_scope[lit.var()] > 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool solver::has_variables_to_reinit(literal l1, literal l2) const {
|
|
if (at_base_lvl())
|
|
return false;
|
|
if (m_var_scope[l1.var()] > 0)
|
|
return true;
|
|
if (m_var_scope[l2.var()] > 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool solver::propagate_bin_clause(literal l1, literal l2) {
|
|
if (value(l2) == l_false) {
|
|
m_stats.m_bin_propagate++;
|
|
assign(l1, justification(lvl(l2), l2));
|
|
return true;
|
|
}
|
|
if (value(l1) == l_false) {
|
|
m_stats.m_bin_propagate++;
|
|
assign(l2, justification(lvl(l1), l1));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void solver::push_reinit_stack(clause & c) {
|
|
SASSERT(!at_base_lvl());
|
|
TRACE("sat_reinit", tout << "adding to reinit stack: " << c << "\n";);
|
|
m_clauses_to_reinit.push_back(clause_wrapper(c));
|
|
c.set_reinit_stack(true);
|
|
}
|
|
|
|
void solver::push_reinit_stack(literal l1, literal l2) {
|
|
TRACE("sat_reinit", tout << "adding to reinit stack: " << l1 << " " << l2 << "\n";);
|
|
m_clauses_to_reinit.push_back(clause_wrapper(l1, l2));
|
|
}
|
|
|
|
clause * solver::mk_ter_clause(literal * lits, sat::status st) {
|
|
VERIFY(ENABLE_TERNARY);
|
|
m_stats.m_mk_ter_clause++;
|
|
clause * r = alloc_clause(3, lits, st.is_redundant());
|
|
bool reinit = attach_ter_clause(*r, st);
|
|
if (reinit || has_variables_to_reinit(*r)) push_reinit_stack(*r);
|
|
if (st.is_redundant())
|
|
m_learned.push_back(r);
|
|
else
|
|
m_clauses.push_back(r);
|
|
for (literal l : *r) {
|
|
m_touched[l.var()] = m_touch_index;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
bool solver::attach_ter_clause(clause & c, sat::status st) {
|
|
VERIFY(ENABLE_TERNARY);
|
|
bool reinit = false;
|
|
if (m_config.m_drat) m_drat.add(c, st);
|
|
TRACE("sat_verbose", tout << c << "\n";);
|
|
SASSERT(!c.was_removed());
|
|
m_watches[(~c[0]).index()].push_back(watched(c[1], c[2]));
|
|
m_watches[(~c[1]).index()].push_back(watched(c[0], c[2]));
|
|
m_watches[(~c[2]).index()].push_back(watched(c[0], c[1]));
|
|
if (!at_base_lvl())
|
|
reinit = propagate_ter_clause(c);
|
|
return reinit;
|
|
}
|
|
|
|
bool solver::propagate_ter_clause(clause& c) {
|
|
bool reinit = false;
|
|
if (value(c[1]) == l_false && value(c[2]) == l_false) {
|
|
m_stats.m_ter_propagate++;
|
|
assign(c[0], justification(std::max(lvl(c[1]), lvl(c[2])), c[1], c[2]));
|
|
reinit = !c.is_learned();
|
|
}
|
|
else if (value(c[0]) == l_false && value(c[2]) == l_false) {
|
|
m_stats.m_ter_propagate++;
|
|
assign(c[1], justification(std::max(lvl(c[0]), lvl(c[2])), c[0], c[2]));
|
|
reinit = !c.is_learned();
|
|
}
|
|
else if (value(c[0]) == l_false && value(c[1]) == l_false) {
|
|
m_stats.m_ter_propagate++;
|
|
assign(c[2], justification(std::max(lvl(c[0]), lvl(c[1])), c[0], c[1]));
|
|
reinit = !c.is_learned();
|
|
}
|
|
return reinit;
|
|
}
|
|
|
|
clause * solver::mk_nary_clause(unsigned num_lits, literal * lits, sat::status st) {
|
|
m_stats.m_mk_clause++;
|
|
clause * r = alloc_clause(num_lits, lits, st.is_redundant());
|
|
SASSERT(!st.is_redundant() || r->is_learned());
|
|
bool reinit = attach_nary_clause(*r, st.is_sat() && st.is_redundant());
|
|
if (reinit || has_variables_to_reinit(*r)) push_reinit_stack(*r);
|
|
if (st.is_redundant()) {
|
|
m_learned.push_back(r);
|
|
}
|
|
else {
|
|
m_clauses.push_back(r);
|
|
}
|
|
if (m_config.m_drat)
|
|
m_drat.add(*r, st);
|
|
for (literal l : *r) {
|
|
m_touched[l.var()] = m_touch_index;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
bool solver::attach_nary_clause(clause & c, bool is_asserting) {
|
|
bool reinit = false;
|
|
clause_offset cls_off = cls_allocator().get_offset(&c);
|
|
if (!at_base_lvl()) {
|
|
if (is_asserting) {
|
|
unsigned w2_idx = select_learned_watch_lit(c);
|
|
std::swap(c[1], c[w2_idx]);
|
|
}
|
|
else {
|
|
unsigned w1_idx = select_watch_lit(c, 0);
|
|
std::swap(c[0], c[w1_idx]);
|
|
unsigned w2_idx = select_watch_lit(c, 1);
|
|
std::swap(c[1], c[w2_idx]);
|
|
}
|
|
|
|
if (value(c[0]) == l_false) {
|
|
m_stats.m_propagate++;
|
|
unsigned level = lvl(c[0]);
|
|
for (unsigned i = c.size(); i-- > 2; ) {
|
|
level = std::max(level, lvl(c[i]));
|
|
}
|
|
assign(c[1], justification(level, cls_off));
|
|
reinit |= !c.is_learned();
|
|
}
|
|
else if (value(c[1]) == l_false) {
|
|
m_stats.m_propagate++;
|
|
unsigned level = lvl(c[1]);
|
|
for (unsigned i = c.size(); i-- > 2; ) {
|
|
level = std::max(level, lvl(c[i]));
|
|
}
|
|
assign(c[0], justification(level, cls_off));
|
|
reinit |= !c.is_learned();
|
|
}
|
|
}
|
|
unsigned some_idx = c.size() >> 1;
|
|
literal block_lit = c[some_idx];
|
|
VERIFY(!c.frozen());
|
|
DEBUG_CODE(for (auto const& w : m_watches[(~c[0]).index()]) SASSERT(!w.is_clause() || w.get_clause_offset() != cls_off););
|
|
DEBUG_CODE(for (auto const& w : m_watches[(~c[1]).index()]) SASSERT(!w.is_clause() || w.get_clause_offset() != cls_off););
|
|
SASSERT(c[0] != c[1]);
|
|
m_watches[(~c[0]).index()].push_back(watched(block_lit, cls_off));
|
|
m_watches[(~c[1]).index()].push_back(watched(block_lit, cls_off));
|
|
return reinit;
|
|
}
|
|
|
|
void solver::attach_clause(clause & c, bool & reinit) {
|
|
SASSERT(c.size() > 2);
|
|
reinit = false;
|
|
if (ENABLE_TERNARY && c.size() == 3)
|
|
reinit = attach_ter_clause(c, c.is_learned() ? sat::status::redundant() : sat::status::asserted());
|
|
else
|
|
reinit = attach_nary_clause(c, c.is_learned() && !c.on_reinit_stack());
|
|
}
|
|
|
|
void solver::set_learned(clause& c, bool redundant) {
|
|
if (c.is_learned() != redundant)
|
|
c.set_learned(redundant);
|
|
}
|
|
|
|
void solver::set_learned1(literal l1, literal l2, bool redundant) {
|
|
for (watched& w : get_wlist(~l1)) {
|
|
if (w.is_binary_clause() && l2 == w.get_literal() && !w.is_learned()) {
|
|
w.set_learned(redundant);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void solver::shrink(clause& c, unsigned old_sz, unsigned new_sz) {
|
|
SASSERT(new_sz > 2);
|
|
SASSERT(old_sz >= new_sz);
|
|
if (old_sz != new_sz) {
|
|
c.shrink(new_sz);
|
|
for (literal l : c) {
|
|
m_touched[l.var()] = m_touch_index;
|
|
}
|
|
if (m_config.m_drat) {
|
|
m_drat.add(c, status::redundant());
|
|
c.restore(old_sz);
|
|
m_drat.del(c);
|
|
c.shrink(new_sz);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool solver::memory_pressure() {
|
|
return 3*cls_allocator().get_allocation_size()/2 + memory::get_allocation_size() > memory::get_max_memory_size();
|
|
}
|
|
|
|
struct solver::cmp_activity {
|
|
solver& s;
|
|
cmp_activity(solver& s):s(s) {}
|
|
bool operator()(bool_var v1, bool_var v2) const {
|
|
return s.m_activity[v1] > s.m_activity[v2];
|
|
}
|
|
};
|
|
|
|
bool solver::should_defrag() {
|
|
if (m_defrag_threshold > 0) --m_defrag_threshold;
|
|
return m_defrag_threshold == 0 && m_config.m_gc_defrag;
|
|
}
|
|
|
|
void solver::defrag_clauses() {
|
|
m_defrag_threshold = 2;
|
|
if (memory_pressure()) return;
|
|
pop(scope_lvl());
|
|
IF_VERBOSE(2, verbose_stream() << "(sat-defrag)\n");
|
|
clause_allocator& alloc = m_cls_allocator[!m_cls_allocator_idx];
|
|
ptr_vector<clause> new_clauses, new_learned;
|
|
for (clause* c : m_clauses) c->unmark_used();
|
|
for (clause* c : m_learned) c->unmark_used();
|
|
|
|
svector<bool_var> vars;
|
|
for (unsigned i = 0; i < num_vars(); ++i) vars.push_back(i);
|
|
std::stable_sort(vars.begin(), vars.end(), cmp_activity(*this));
|
|
literal_vector lits;
|
|
for (bool_var v : vars) lits.push_back(literal(v, false)), lits.push_back(literal(v, true));
|
|
// walk clauses, reallocate them in an order that defragments memory and creates locality.
|
|
for (literal lit : lits) {
|
|
watch_list& wlist = m_watches[lit.index()];
|
|
for (watched& w : wlist) {
|
|
if (w.is_clause()) {
|
|
clause& c1 = get_clause(w);
|
|
clause_offset offset;
|
|
if (c1.was_used()) {
|
|
offset = c1.get_new_offset();
|
|
}
|
|
else {
|
|
clause* c2 = alloc.copy_clause(c1);
|
|
c1.mark_used();
|
|
if (c1.is_learned()) {
|
|
new_learned.push_back(c2);
|
|
}
|
|
else {
|
|
new_clauses.push_back(c2);
|
|
}
|
|
offset = get_offset(*c2);
|
|
c1.set_new_offset(offset);
|
|
}
|
|
w = watched(w.get_blocked_literal(), offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
// reallocate ternary clauses.
|
|
for (clause* c : m_clauses) {
|
|
if (!c->was_used()) {
|
|
SASSERT(c->size() == 3);
|
|
new_clauses.push_back(alloc.copy_clause(*c));
|
|
}
|
|
dealloc_clause(c);
|
|
}
|
|
|
|
for (clause* c : m_learned) {
|
|
if (!c->was_used()) {
|
|
SASSERT(c->size() == 3);
|
|
new_learned.push_back(alloc.copy_clause(*c));
|
|
}
|
|
dealloc_clause(c);
|
|
}
|
|
m_clauses.swap(new_clauses);
|
|
m_learned.swap(new_learned);
|
|
|
|
cls_allocator().finalize();
|
|
m_cls_allocator_idx = !m_cls_allocator_idx;
|
|
|
|
reinit_assumptions();
|
|
}
|
|
|
|
|
|
void solver::set_learned(literal l1, literal l2, bool redundant) {
|
|
set_learned1(l1, l2, redundant);
|
|
set_learned1(l2, l1, redundant);
|
|
}
|
|
|
|
/**
|
|
\brief Select a watch literal starting the search at the given position.
|
|
This method is only used for clauses created during the search.
|
|
|
|
I use the following rules to select a watch literal.
|
|
|
|
1- select a literal l in idx >= starting_at such that value(l) = l_true,
|
|
and for all l' in idx' >= starting_at . value(l') = l_true implies lvl(l) <= lvl(l')
|
|
|
|
The purpose of this rule is to make the clause inactive for as long as possible. A clause
|
|
is inactive when it contains a literal assigned to true.
|
|
|
|
2- if there isn't a literal assigned to true, then select an unassigned literal l in idx >= starting_at
|
|
|
|
3- if there isn't a literal l in idx >= starting_at such that value(l) = l_true or
|
|
value(l) = l_undef (that is, all literals at positions >= starting_at are assigned
|
|
to false), then peek the literal l such that for all l' starting at starting_at
|
|
lvl(l) >= lvl(l')
|
|
|
|
Without rule 3, boolean propagation is incomplete, that is, it may miss possible propagations.
|
|
|
|
\remark The method select_lemma_watch_lit is used to select the watch literal for regular learned clauses.
|
|
*/
|
|
unsigned solver::select_watch_lit(clause const & cls, unsigned starting_at) const {
|
|
SASSERT(cls.size() >= 2);
|
|
unsigned min_true_idx = UINT_MAX;
|
|
unsigned max_false_idx = UINT_MAX;
|
|
unsigned unknown_idx = UINT_MAX;
|
|
unsigned n = cls.size();
|
|
for (unsigned i = starting_at; i < n; i++) {
|
|
literal l = cls[i];
|
|
switch(value(l)) {
|
|
case l_false:
|
|
if (max_false_idx == UINT_MAX || lvl(l) > lvl(cls[max_false_idx]))
|
|
max_false_idx = i;
|
|
break;
|
|
case l_undef:
|
|
unknown_idx = i;
|
|
break;
|
|
case l_true:
|
|
if (min_true_idx == UINT_MAX || lvl(l) < lvl(cls[min_true_idx]))
|
|
min_true_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
if (min_true_idx != UINT_MAX)
|
|
return min_true_idx;
|
|
if (unknown_idx != UINT_MAX)
|
|
return unknown_idx;
|
|
SASSERT(max_false_idx != UINT_MAX);
|
|
return max_false_idx;
|
|
}
|
|
|
|
/**
|
|
\brief The learned clauses (lemmas) produced by the SAT solver
|
|
have the property that the first literal will be implied by it
|
|
after backtracking. All other literals are assigned to (or
|
|
implied to be) false when the learned clause is created. The
|
|
first watch literal will always be the first literal. The
|
|
second watch literal is computed by this method. It should be
|
|
the literal with the highest decision level.
|
|
|
|
// TODO: do we really need this? strength the conflict resolution
|
|
*/
|
|
unsigned solver::select_learned_watch_lit(clause const & cls) const {
|
|
SASSERT(cls.size() >= 2);
|
|
unsigned max_false_idx = UINT_MAX;
|
|
unsigned num_lits = cls.size();
|
|
for (unsigned i = 1; i < num_lits; i++) {
|
|
literal l = cls[i];
|
|
CTRACE("sat", value(l) != l_false, tout << l << ":=" << value(l););
|
|
SASSERT(value(l) == l_false);
|
|
if (max_false_idx == UINT_MAX || lvl(l) > lvl(cls[max_false_idx]))
|
|
max_false_idx = i;
|
|
}
|
|
return max_false_idx;
|
|
}
|
|
|
|
template<bool lvl0>
|
|
bool solver::simplify_clause_core(unsigned & num_lits, literal * lits) const {
|
|
std::sort(lits, lits+num_lits);
|
|
literal prev = null_literal;
|
|
unsigned i = 0;
|
|
unsigned j = 0;
|
|
for (; i < num_lits; i++) {
|
|
literal curr = lits[i];
|
|
lbool val = value(curr);
|
|
if (!lvl0 && lvl(curr) > 0)
|
|
val = l_undef;
|
|
switch (val) {
|
|
case l_false:
|
|
break; // ignore literal
|
|
case l_undef:
|
|
if (curr == ~prev)
|
|
return false; // clause is equivalent to true
|
|
if (curr != prev) {
|
|
prev = curr;
|
|
if (i != j)
|
|
std::swap(lits[j], lits[i]);
|
|
j++;
|
|
}
|
|
break;
|
|
case l_true:
|
|
return false; // clause is equivalent to true
|
|
}
|
|
}
|
|
num_lits = j;
|
|
return true;
|
|
}
|
|
|
|
bool solver::simplify_clause(unsigned & num_lits, literal * lits) const {
|
|
if (at_base_lvl())
|
|
return simplify_clause_core<true>(num_lits, lits);
|
|
else
|
|
return simplify_clause_core<false>(num_lits, lits);
|
|
}
|
|
|
|
void solver::detach_bin_clause(literal l1, literal l2, bool redundant) {
|
|
get_wlist(~l1).erase(watched(l2, redundant));
|
|
get_wlist(~l2).erase(watched(l1, redundant));
|
|
if (m_config.m_drat) m_drat.del(l1, l2);
|
|
}
|
|
|
|
void solver::detach_clause(clause & c) {
|
|
if (ENABLE_TERNARY && c.size() == 3)
|
|
detach_ter_clause(c);
|
|
else
|
|
detach_nary_clause(c);
|
|
}
|
|
|
|
void solver::detach_nary_clause(clause & c) {
|
|
clause_offset cls_off = get_offset(c);
|
|
erase_clause_watch(get_wlist(~c[0]), cls_off);
|
|
erase_clause_watch(get_wlist(~c[1]), cls_off);
|
|
}
|
|
|
|
void solver::detach_ter_clause(clause & c) {
|
|
erase_ternary_watch(get_wlist(~c[0]), c[1], c[2]);
|
|
erase_ternary_watch(get_wlist(~c[1]), c[0], c[2]);
|
|
erase_ternary_watch(get_wlist(~c[2]), c[0], c[1]);
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Basic
|
|
//
|
|
// -----------------------
|
|
|
|
void solver::set_conflict(justification c, literal not_l) {
|
|
if (m_inconsistent)
|
|
return;
|
|
m_inconsistent = true;
|
|
m_conflict = c;
|
|
m_not_l = not_l;
|
|
}
|
|
|
|
void solver::assign_core(literal l, justification j) {
|
|
SASSERT(value(l) == l_undef);
|
|
TRACE("sat_assign_core", tout << l << " " << j << "\n";);
|
|
if (j.level() == 0) {
|
|
if (m_config.m_drat)
|
|
drat_log_unit(l, j);
|
|
if (!m_config.m_drup_trim)
|
|
j = justification(0); // erase justification for level 0
|
|
}
|
|
else {
|
|
VERIFY(!at_base_lvl());
|
|
}
|
|
m_assignment[l.index()] = l_true;
|
|
m_assignment[(~l).index()] = l_false;
|
|
bool_var v = l.var();
|
|
m_justification[v] = j;
|
|
m_phase[v] = !l.sign();
|
|
m_assigned_since_gc[v] = true;
|
|
m_trail.push_back(l);
|
|
|
|
switch (m_config.m_branching_heuristic) {
|
|
case BH_VSIDS:
|
|
break;
|
|
case BH_CHB:
|
|
m_last_propagation[v] = m_stats.m_conflict;
|
|
break;
|
|
}
|
|
|
|
if (m_config.m_anti_exploration) {
|
|
uint64_t age = m_stats.m_conflict - m_canceled[v];
|
|
if (age > 0) {
|
|
double decay = pow(0.95, static_cast<double>(age));
|
|
set_activity(v, static_cast<unsigned>(m_activity[v] * decay));
|
|
// NB. MapleSAT does not update canceled.
|
|
m_canceled[v] = m_stats.m_conflict;
|
|
}
|
|
}
|
|
|
|
if (m_config.m_propagate_prefetch) {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
__builtin_prefetch((const char*)((m_watches[l.index()].data())));
|
|
#else
|
|
#if !defined(_M_ARM) && !defined(_M_ARM64)
|
|
_mm_prefetch((const char*)((m_watches[l.index()].data())), _MM_HINT_T1);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
SASSERT(!l.sign() || !m_phase[v]);
|
|
SASSERT(l.sign() || m_phase[v]);
|
|
SASSERT(!l.sign() || value(v) == l_false);
|
|
SASSERT(l.sign() || value(v) == l_true);
|
|
SASSERT(value(l) == l_true);
|
|
SASSERT(value(~l) == l_false);
|
|
}
|
|
|
|
lbool solver::status(clause const & c) const {
|
|
bool found_undef = false;
|
|
for (literal lit : c) {
|
|
switch (value(lit)) {
|
|
case l_true:
|
|
return l_true;
|
|
case l_undef:
|
|
found_undef = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return found_undef ? l_undef : l_false;
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Propagation
|
|
//
|
|
// -----------------------
|
|
|
|
bool solver::propagate_core(bool update) {
|
|
while (m_qhead < m_trail.size() && !m_inconsistent) {
|
|
do {
|
|
checkpoint();
|
|
m_cleaner.dec();
|
|
literal l = m_trail[m_qhead];
|
|
m_qhead++;
|
|
if (!propagate_literal(l, update))
|
|
return false;
|
|
} while (m_qhead < m_trail.size());
|
|
|
|
if (m_ext && (!is_probing() || at_base_lvl()))
|
|
m_ext->unit_propagate();
|
|
}
|
|
if (m_inconsistent)
|
|
return false;
|
|
|
|
SASSERT(m_qhead == m_trail.size());
|
|
SASSERT(!m_inconsistent);
|
|
return true;
|
|
}
|
|
|
|
bool solver::propagate(bool update) {
|
|
unsigned qhead = m_qhead;
|
|
bool r = propagate_core(update);
|
|
if (m_config.m_branching_heuristic == BH_CHB) {
|
|
update_chb_activity(r, qhead);
|
|
}
|
|
CASSERT("sat_propagate", check_invariant());
|
|
CASSERT("sat_missed_prop", check_missed_propagation());
|
|
return r;
|
|
}
|
|
|
|
bool solver::propagate_literal(literal l, bool update) {
|
|
literal l1, l2;
|
|
lbool val1, val2;
|
|
bool keep;
|
|
unsigned curr_level = lvl(l);
|
|
TRACE("sat_propagate", tout << "propagating: " << l << "@" << curr_level << " " << m_justification[l.var()] << "\n"; );
|
|
|
|
literal not_l = ~l;
|
|
SASSERT(value(l) == l_true);
|
|
SASSERT(value(not_l) == l_false);
|
|
watch_list& wlist = m_watches[l.index()];
|
|
m_asymm_branch.dec(wlist.size());
|
|
m_probing.dec(wlist.size());
|
|
watch_list::iterator it = wlist.begin();
|
|
watch_list::iterator it2 = it;
|
|
watch_list::iterator end = wlist.end();
|
|
#define CONFLICT_CLEANUP() { \
|
|
for (; it != end; ++it, ++it2) \
|
|
*it2 = *it; \
|
|
wlist.set_end(it2); \
|
|
}
|
|
for (; it != end; ++it) {
|
|
switch (it->get_kind()) {
|
|
case watched::BINARY:
|
|
l1 = it->get_literal();
|
|
switch (value(l1)) {
|
|
case l_false:
|
|
CONFLICT_CLEANUP();
|
|
set_conflict(justification(curr_level, not_l), ~l1);
|
|
return false;
|
|
case l_undef:
|
|
m_stats.m_bin_propagate++;
|
|
assign_core(l1, justification(curr_level, not_l));
|
|
break;
|
|
case l_true:
|
|
break; // skip
|
|
}
|
|
*it2 = *it;
|
|
it2++;
|
|
break;
|
|
case watched::TERNARY:
|
|
l1 = it->get_literal1();
|
|
l2 = it->get_literal2();
|
|
val1 = value(l1);
|
|
val2 = value(l2);
|
|
if (val1 == l_false && val2 == l_undef) {
|
|
m_stats.m_ter_propagate++;
|
|
assign_core(l2, justification(std::max(curr_level, lvl(l1)), l1, not_l));
|
|
}
|
|
else if (val1 == l_undef && val2 == l_false) {
|
|
m_stats.m_ter_propagate++;
|
|
assign_core(l1, justification(std::max(curr_level, lvl(l2)), l2, not_l));
|
|
}
|
|
else if (val1 == l_false && val2 == l_false) {
|
|
CONFLICT_CLEANUP();
|
|
set_conflict(justification(std::max(curr_level, lvl(l1)), l1, not_l), ~l2);
|
|
return false;
|
|
}
|
|
*it2 = *it;
|
|
it2++;
|
|
break;
|
|
case watched::CLAUSE: {
|
|
if (value(it->get_blocked_literal()) == l_true) {
|
|
TRACE("propagate_clause_bug", tout << "blocked literal " << it->get_blocked_literal() << "\n";
|
|
tout << get_clause(it) << "\n";);
|
|
*it2 = *it;
|
|
it2++;
|
|
break;
|
|
}
|
|
clause_offset cls_off = it->get_clause_offset();
|
|
clause& c = get_clause(cls_off);
|
|
TRACE("propagate_clause_bug", tout << "processing... " << c << "\nwas_removed: " << c.was_removed() << "\n";);
|
|
if (c[0] == not_l)
|
|
std::swap(c[0], c[1]);
|
|
CTRACE("propagate_bug", c[1] != not_l, tout << "l: " << l << " " << c << "\n";);
|
|
if (c.was_removed() || c.size() == 1 || c[1] != not_l) {
|
|
// Remark: this method may be invoked when the watch lists are not in a consistent state,
|
|
// and may contain dead/removed clauses, or clauses with removed literals.
|
|
// See: method propagate_unit at sat_simplifier.cpp
|
|
// So, we must check whether the clause was marked for deletion, or
|
|
// c[1] != not_l
|
|
*it2 = *it;
|
|
it2++;
|
|
break;
|
|
}
|
|
if (value(c[0]) == l_true) {
|
|
it2->set_clause(c[0], cls_off);
|
|
it2++;
|
|
break;
|
|
}
|
|
VERIFY(c[1] == not_l);
|
|
literal* l_it = c.begin() + 2;
|
|
literal* l_end = c.end();
|
|
unsigned assign_level = curr_level;
|
|
unsigned max_index = 1;
|
|
for (; l_it != l_end; ++l_it) {
|
|
if (value(*l_it) != l_false) {
|
|
c[1] = *l_it;
|
|
*l_it = not_l;
|
|
DEBUG_CODE(for (auto const& w : m_watches[(~c[1]).index()]) VERIFY(!w.is_clause() || w.get_clause_offset() != cls_off););
|
|
m_watches[(~c[1]).index()].push_back(watched(c[0], cls_off));
|
|
goto end_clause_case;
|
|
}
|
|
}
|
|
SASSERT(value(c[0]) == l_false || value(c[0]) == l_undef);
|
|
if (assign_level != scope_lvl()) {
|
|
for (unsigned i = 2; i < c.size(); ++i) {
|
|
unsigned level = lvl(c[i]);
|
|
if (level > assign_level) {
|
|
assign_level = level;
|
|
max_index = i;
|
|
}
|
|
}
|
|
IF_VERBOSE(20, verbose_stream() << "lower assignment level " << assign_level << " scope: " << scope_lvl() << "\n");
|
|
}
|
|
|
|
if (value(c[0]) == l_false) {
|
|
assign_level = std::max(assign_level, lvl(c[0]));
|
|
c.mark_used();
|
|
CONFLICT_CLEANUP();
|
|
set_conflict(justification(assign_level, cls_off));
|
|
return false;
|
|
}
|
|
else {
|
|
if (max_index != 1) {
|
|
IF_VERBOSE(20, verbose_stream() << "swap watch for: " << c[1] << " " << c[max_index] << "\n");
|
|
std::swap(c[1], c[max_index]);
|
|
m_watches[(~c[1]).index()].push_back(watched(c[0], cls_off));
|
|
}
|
|
else {
|
|
*it2 = *it;
|
|
it2++;
|
|
}
|
|
m_stats.m_propagate++;
|
|
c.mark_used();
|
|
assign_core(c[0], justification(assign_level, cls_off));
|
|
if (update && c.is_learned() && c.glue() > 2) {
|
|
unsigned glue;
|
|
if (num_diff_levels_below(c.size(), c.begin(), c.glue() - 1, glue)) {
|
|
c.set_glue(glue);
|
|
}
|
|
}
|
|
}
|
|
end_clause_case:
|
|
break;
|
|
}
|
|
case watched::EXT_CONSTRAINT:
|
|
SASSERT(m_ext);
|
|
keep = m_ext->propagated(l, it->get_ext_constraint_idx());
|
|
if (m_inconsistent) {
|
|
if (!keep) {
|
|
++it;
|
|
}
|
|
CONFLICT_CLEANUP();
|
|
return false;
|
|
}
|
|
if (keep) {
|
|
*it2 = *it;
|
|
it2++;
|
|
}
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
wlist.set_end(it2);
|
|
if (m_ext && m_external[l.var()] && (!is_probing() || at_base_lvl()))
|
|
m_ext->asserted(l);
|
|
|
|
return true;
|
|
}
|
|
|
|
void solver::display_lookahead_scores(std::ostream& out) {
|
|
lookahead lh(*this);
|
|
lh.display_lookahead_scores(out);
|
|
}
|
|
|
|
lbool solver::cube(bool_var_vector& vars, literal_vector& lits, unsigned backtrack_level) {
|
|
bool is_first = !m_cuber;
|
|
if (is_first) {
|
|
m_cuber = alloc(lookahead, *this);
|
|
}
|
|
lbool result = m_cuber->cube(vars, lits, backtrack_level);
|
|
m_cuber->update_cube_statistics(m_aux_stats);
|
|
switch (result) {
|
|
case l_false:
|
|
dealloc(m_cuber);
|
|
m_cuber = nullptr;
|
|
if (is_first) {
|
|
pop_to_base_level();
|
|
set_conflict();
|
|
}
|
|
break;
|
|
case l_true: {
|
|
lits.reset();
|
|
pop_to_base_level();
|
|
model const& mdl = m_cuber->get_model();
|
|
for (bool_var v = 0; v < mdl.size(); ++v) {
|
|
if (value(v) != l_undef) {
|
|
continue;
|
|
}
|
|
literal l(v, false);
|
|
if (mdl[v] != l_true) l.neg();
|
|
if (inconsistent())
|
|
return l_undef;
|
|
push();
|
|
assign_core(l, justification(scope_lvl()));
|
|
propagate(false);
|
|
}
|
|
mk_model();
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
// -----------------------
|
|
//
|
|
// Search
|
|
//
|
|
// -----------------------
|
|
lbool solver::check(unsigned num_lits, literal const* lits) {
|
|
init_reason_unknown();
|
|
pop_to_base_level();
|
|
m_stats.m_units = init_trail_size();
|
|
IF_VERBOSE(2, verbose_stream() << "(sat.solver)\n";);
|
|
SASSERT(at_base_lvl());
|
|
|
|
if (m_config.m_ddfw_search) {
|
|
m_cleaner(true);
|
|
return do_ddfw_search(num_lits, lits);
|
|
}
|
|
if (m_config.m_prob_search) {
|
|
m_cleaner(true);
|
|
return do_prob_search(num_lits, lits);
|
|
}
|
|
if (m_config.m_local_search) {
|
|
m_cleaner(true);
|
|
return do_local_search(num_lits, lits);
|
|
}
|
|
if ((m_config.m_num_threads > 1 || m_config.m_local_search_threads > 0 ||
|
|
m_config.m_ddfw_threads > 0) && !m_par && !m_ext) {
|
|
SASSERT(scope_lvl() == 0);
|
|
return check_par(num_lits, lits);
|
|
}
|
|
flet<bool> _searching(m_searching, true);
|
|
m_clone = nullptr;
|
|
if (m_mc.empty() && gparams::get_ref().get_bool("model_validate", false)) {
|
|
|
|
m_clone = alloc(solver, m_no_drat_params, m_rlimit);
|
|
m_clone->copy(*this);
|
|
m_clone->set_extension(nullptr);
|
|
}
|
|
try {
|
|
init_search();
|
|
if (check_inconsistent()) return l_false;
|
|
propagate(false);
|
|
if (check_inconsistent()) return l_false;
|
|
init_assumptions(num_lits, lits);
|
|
propagate(false);
|
|
if (check_inconsistent()) return l_false;
|
|
if (m_config.m_force_cleanup) do_cleanup(true);
|
|
TRACE("sat", display(tout););
|
|
|
|
if (m_config.m_gc_burst) {
|
|
// force gc
|
|
m_conflicts_since_gc = m_gc_threshold + 1;
|
|
do_gc();
|
|
}
|
|
|
|
if (m_config.m_enable_pre_simplify) {
|
|
do_simplify();
|
|
if (check_inconsistent()) return l_false;
|
|
}
|
|
|
|
if (m_config.m_max_conflicts == 0) {
|
|
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "(sat \"abort: max-conflicts = 0\")\n";);
|
|
TRACE("sat", display(tout); m_mc.display(tout););
|
|
return l_undef;
|
|
}
|
|
|
|
log_stats();
|
|
if (m_config.m_max_conflicts > 0 && m_config.m_burst_search > 0) {
|
|
m_restart_threshold = m_config.m_burst_search;
|
|
lbool r = bounded_search();
|
|
log_stats();
|
|
if (r != l_undef)
|
|
return r;
|
|
|
|
pop_reinit(scope_lvl());
|
|
m_conflicts_since_restart = 0;
|
|
m_restart_threshold = m_config.m_restart_initial;
|
|
}
|
|
|
|
lbool is_sat = search();
|
|
log_stats();
|
|
return is_sat;
|
|
}
|
|
catch (const abort_solver &) {
|
|
m_reason_unknown = "sat.giveup";
|
|
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "(sat \"abort giveup\")\n";);
|
|
return l_undef;
|
|
}
|
|
}
|
|
|
|
bool solver::should_cancel() {
|
|
if (limit_reached() || memory_exceeded()) {
|
|
return true;
|
|
}
|
|
if (m_config.m_restart_max <= m_restarts) {
|
|
m_reason_unknown = "sat.max.restarts";
|
|
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "(sat \"abort: max-restarts\")\n";);
|
|
return true;
|
|
}
|
|
if (m_config.m_inprocess_max <= m_simplifications) {
|
|
m_reason_unknown = "sat.max.inprocess";
|
|
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "(sat \"abort: max-inprocess\")\n";);
|
|
return true;
|
|
}
|
|
if (reached_max_conflicts()) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
enum par_exception_kind {
|
|
DEFAULT_EX,
|
|
ERROR_EX
|
|
};
|
|
|
|
lbool solver::invoke_local_search(unsigned num_lits, literal const* lits) {
|
|
literal_vector _lits(num_lits, lits);
|
|
for (literal lit : m_user_scope_literals) _lits.push_back(~lit);
|
|
struct scoped_ls {
|
|
solver& s;
|
|
scoped_ls(solver& s): s(s) {}
|
|
~scoped_ls() {
|
|
dealloc(s.m_local_search);
|
|
s.m_local_search = nullptr;
|
|
}
|
|
};
|
|
scoped_ls _ls(*this);
|
|
if (inconsistent())
|
|
return l_false;
|
|
scoped_limits scoped_rl(rlimit());
|
|
SASSERT(m_local_search);
|
|
m_local_search->add(*this);
|
|
m_local_search->updt_params(m_params);
|
|
scoped_rl.push_child(&(m_local_search->rlimit()));
|
|
lbool r = m_local_search->check(_lits.size(), _lits.data(), nullptr);
|
|
if (r == l_true) {
|
|
m_model = m_local_search->get_model();
|
|
m_model_is_current = true;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
lbool solver::do_local_search(unsigned num_lits, literal const* lits) {
|
|
SASSERT(!m_local_search);
|
|
m_local_search = alloc(local_search);
|
|
return invoke_local_search(num_lits, lits);
|
|
}
|
|
|
|
lbool solver::do_ddfw_search(unsigned num_lits, literal const* lits) {
|
|
if (m_ext) return l_undef;
|
|
SASSERT(!m_local_search);
|
|
m_local_search = alloc(ddfw);
|
|
return invoke_local_search(num_lits, lits);
|
|
}
|
|
|
|
lbool solver::do_prob_search(unsigned num_lits, literal const* lits) {
|
|
if (m_ext) return l_undef;
|
|
if (num_lits > 0 || !m_user_scope_literals.empty()) return l_undef;
|
|
SASSERT(!m_local_search);
|
|
m_local_search = alloc(prob);
|
|
return invoke_local_search(num_lits, lits);
|
|
}
|
|
|
|
#ifdef SINGLE_THREAD
|
|
lbool solver::check_par(unsigned num_lits, literal const* lits) {
|
|
return l_undef;
|
|
}
|
|
#else
|
|
lbool solver::check_par(unsigned num_lits, literal const* lits) {
|
|
if (!rlimit().inc()) {
|
|
return l_undef;
|
|
}
|
|
if (m_ext)
|
|
return l_undef;
|
|
|
|
scoped_ptr_vector<i_local_search> ls;
|
|
scoped_ptr_vector<solver> uw;
|
|
int num_extra_solvers = m_config.m_num_threads - 1;
|
|
int num_local_search = static_cast<int>(m_config.m_local_search_threads);
|
|
int num_ddfw = m_ext ? 0 : static_cast<int>(m_config.m_ddfw_threads);
|
|
int num_threads = num_extra_solvers + 1 + num_local_search + num_ddfw;
|
|
for (int i = 0; i < num_local_search; ++i) {
|
|
local_search* l = alloc(local_search);
|
|
l->updt_params(m_params);
|
|
l->add(*this);
|
|
l->set_seed(m_config.m_random_seed + i);
|
|
ls.push_back(l);
|
|
}
|
|
|
|
vector<reslimit> lims(num_ddfw);
|
|
// set up ddfw search
|
|
for (int i = 0; i < num_ddfw; ++i) {
|
|
ddfw* d = alloc(ddfw);
|
|
d->updt_params(m_params);
|
|
d->set_seed(m_config.m_random_seed + i);
|
|
d->add(*this);
|
|
ls.push_back(d);
|
|
}
|
|
int local_search_offset = num_extra_solvers;
|
|
int main_solver_offset = num_extra_solvers + num_local_search + num_ddfw;
|
|
|
|
#define IS_AUX_SOLVER(i) (0 <= i && i < num_extra_solvers)
|
|
#define IS_LOCAL_SEARCH(i) (local_search_offset <= i && i < main_solver_offset)
|
|
#define IS_MAIN_SOLVER(i) (i == main_solver_offset)
|
|
|
|
sat::parallel par(*this);
|
|
par.reserve(num_threads, 1 << 12);
|
|
par.init_solvers(*this, num_extra_solvers);
|
|
for (unsigned i = 0; i < ls.size(); ++i) {
|
|
par.push_child(ls[i]->rlimit());
|
|
}
|
|
for (reslimit& rl : lims) {
|
|
par.push_child(rl);
|
|
}
|
|
for (unsigned i = 0; i < uw.size(); ++i) {
|
|
uw[i]->set_par(&par, 0);
|
|
}
|
|
int finished_id = -1;
|
|
std::string ex_msg;
|
|
par_exception_kind ex_kind = DEFAULT_EX;
|
|
unsigned error_code = 0;
|
|
lbool result = l_undef;
|
|
bool canceled = false;
|
|
std::mutex mux;
|
|
|
|
auto worker_thread = [&](int i) {
|
|
try {
|
|
lbool r = l_undef;
|
|
if (IS_AUX_SOLVER(i)) {
|
|
r = par.get_solver(i).check(num_lits, lits);
|
|
}
|
|
else if (IS_LOCAL_SEARCH(i)) {
|
|
r = ls[i-local_search_offset]->check(num_lits, lits, &par);
|
|
}
|
|
else {
|
|
r = check(num_lits, lits);
|
|
}
|
|
bool first = false;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mux);
|
|
if (finished_id == -1) {
|
|
finished_id = i;
|
|
first = true;
|
|
result = r;
|
|
}
|
|
}
|
|
if (first) {
|
|
for (unsigned j = 0; j < ls.size(); ++j) {
|
|
ls[j]->rlimit().cancel();
|
|
}
|
|
for (auto& rl : lims) {
|
|
rl.cancel();
|
|
}
|
|
for (int j = 0; j < num_extra_solvers; ++j) {
|
|
if (i != j) {
|
|
par.cancel_solver(j);
|
|
}
|
|
}
|
|
if (!IS_MAIN_SOLVER(i)) {
|
|
canceled = !rlimit().inc();
|
|
if (!canceled) {
|
|
rlimit().cancel();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
catch (z3_error & err) {
|
|
error_code = err.error_code();
|
|
ex_kind = ERROR_EX;
|
|
}
|
|
catch (z3_exception & ex) {
|
|
ex_msg = ex.msg();
|
|
ex_kind = DEFAULT_EX;
|
|
}
|
|
};
|
|
|
|
if (!rlimit().inc()) {
|
|
set_par(nullptr, 0);
|
|
return l_undef;
|
|
}
|
|
|
|
vector<std::thread> threads(num_threads);
|
|
for (int i = 0; i < num_threads; ++i) {
|
|
threads[i] = std::thread([&, i]() { worker_thread(i); });
|
|
}
|
|
for (auto & th : threads) {
|
|
th.join();
|
|
}
|
|
|
|
if (IS_AUX_SOLVER(finished_id)) {
|
|
m_stats = par.get_solver(finished_id).m_stats;
|
|
}
|
|
if (result == l_true && IS_AUX_SOLVER(finished_id)) {
|
|
set_model(par.get_solver(finished_id).get_model(), true);
|
|
}
|
|
else if (result == l_false && IS_AUX_SOLVER(finished_id)) {
|
|
m_core.reset();
|
|
m_core.append(par.get_solver(finished_id).get_core());
|
|
}
|
|
if (result == l_true && IS_LOCAL_SEARCH(finished_id)) {
|
|
set_model(ls[finished_id - local_search_offset]->get_model(), true);
|
|
}
|
|
if (!canceled) {
|
|
rlimit().reset_cancel();
|
|
}
|
|
set_par(nullptr, 0);
|
|
ls.reset();
|
|
uw.reset();
|
|
if (finished_id == -1) {
|
|
switch (ex_kind) {
|
|
case ERROR_EX: throw z3_error(error_code);
|
|
default: throw default_exception(std::move(ex_msg));
|
|
}
|
|
}
|
|
return result;
|
|
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
\brief import lemmas/units from parallel sat solvers.
|
|
*/
|
|
void solver::exchange_par() {
|
|
if (m_par && at_base_lvl() && m_config.m_num_threads > 1) m_par->get_clauses(*this);
|
|
if (m_par && at_base_lvl() && m_config.m_num_threads > 1) {
|
|
// SASSERT(scope_lvl() == search_lvl());
|
|
// TBD: import also dependencies of assumptions.
|
|
unsigned sz = init_trail_size();
|
|
unsigned num_in = 0, num_out = 0;
|
|
literal_vector in, out;
|
|
for (unsigned i = m_par_limit_out; i < sz; ++i) {
|
|
literal lit = m_trail[i];
|
|
if (lit.var() < m_par_num_vars) {
|
|
++num_out;
|
|
out.push_back(lit);
|
|
}
|
|
}
|
|
m_par_limit_out = sz;
|
|
m_par->exchange(*this, out, m_par_limit_in, in);
|
|
for (unsigned i = 0; !inconsistent() && i < in.size(); ++i) {
|
|
literal lit = in[i];
|
|
SASSERT(lit.var() < m_par_num_vars);
|
|
if (lvl(lit.var()) != 0 || value(lit) != l_true) {
|
|
++num_in;
|
|
assign_unit(lit);
|
|
}
|
|
}
|
|
if (num_in > 0 || num_out > 0) {
|
|
IF_VERBOSE(2, verbose_stream() << "(sat-sync out: " << num_out << " in: " << num_in << ")\n";);
|
|
}
|
|
}
|
|
}
|
|
|
|
void solver::set_par(parallel* p, unsigned id) {
|
|
m_par = p;
|
|
m_par_num_vars = num_vars();
|
|
m_par_limit_in = 0;
|
|
m_par_limit_out = 0;
|
|
m_par_id = id;
|
|
m_par_syncing_clauses = false;
|
|
}
|
|
|
|
bool_var solver::next_var() {
|
|
bool_var next;
|
|
|
|
if (m_rand() < static_cast<int>(m_config.m_random_freq * random_gen::max_value())) {
|
|
if (num_vars() == 0)
|
|
return null_bool_var;
|
|
next = m_rand() % num_vars();
|
|
TRACE("random_split", tout << "next: " << next << " value(next): " << value(next) << "\n";);
|
|
if (value(next) == l_undef && !was_eliminated(next))
|
|
return next;
|
|
}
|
|
|
|
while (!m_case_split_queue.empty()) {
|
|
if (m_config.m_anti_exploration) {
|
|
next = m_case_split_queue.min_var();
|
|
auto age = m_stats.m_conflict - m_canceled[next];
|
|
while (age > 0) {
|
|
set_activity(next, static_cast<unsigned>(m_activity[next] * pow(0.95, static_cast<double>(age))));
|
|
m_canceled[next] = m_stats.m_conflict;
|
|
next = m_case_split_queue.min_var();
|
|
age = m_stats.m_conflict - m_canceled[next];
|
|
}
|
|
}
|
|
next = m_case_split_queue.next_var();
|
|
if (value(next) == l_undef && !was_eliminated(next))
|
|
return next;
|
|
}
|
|
|
|
return null_bool_var;
|
|
}
|
|
|
|
bool solver::guess(bool_var next) {
|
|
lbool lphase = m_ext ? m_ext->get_phase(next) : l_undef;
|
|
|
|
if (lphase != l_undef)
|
|
return lphase == l_true;
|
|
switch (m_config.m_phase) {
|
|
case PS_ALWAYS_TRUE:
|
|
return true;
|
|
case PS_ALWAYS_FALSE:
|
|
return false;
|
|
case PS_BASIC_CACHING:
|
|
return m_phase[next];
|
|
case PS_FROZEN:
|
|
return m_best_phase[next];
|
|
case PS_SAT_CACHING:
|
|
if (m_search_state == s_unsat)
|
|
return m_phase[next];
|
|
return m_best_phase[next];
|
|
case PS_RANDOM:
|
|
return (m_rand() % 2) == 0;
|
|
default:
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool solver::decide() {
|
|
bool_var next;
|
|
lbool phase = l_undef;
|
|
bool is_pos;
|
|
bool used_queue = false;
|
|
if (!m_ext || !m_ext->get_case_split(next, phase)) {
|
|
used_queue = true;
|
|
next = next_var();
|
|
if (next == null_bool_var)
|
|
return false;
|
|
}
|
|
push();
|
|
m_stats.m_decision++;
|
|
|
|
if (phase == l_undef)
|
|
phase = guess(next) ? l_true: l_false;
|
|
|
|
literal next_lit(next, false);
|
|
|
|
if (m_ext && m_ext->decide(next, phase)) {
|
|
if (used_queue)
|
|
m_case_split_queue.unassign_var_eh(next);
|
|
next_lit = literal(next, false);
|
|
}
|
|
|
|
if (phase == l_undef)
|
|
is_pos = guess(next);
|
|
else
|
|
is_pos = phase == l_true;
|
|
|
|
if (!is_pos)
|
|
next_lit.neg();
|
|
|
|
TRACE("sat_decide", tout << scope_lvl() << ": next-case-split: " << next_lit << "\n";);
|
|
assign_scoped(next_lit);
|
|
return true;
|
|
}
|
|
|
|
lbool solver::bounded_search() {
|
|
flet<bool> _disable_simplify(m_simplify_enabled, false);
|
|
flet<bool> _restart_enabled(m_restart_enabled, false);
|
|
return search();
|
|
}
|
|
|
|
lbool solver::basic_search() {
|
|
lbool is_sat = l_undef;
|
|
while (is_sat == l_undef && !should_cancel()) {
|
|
if (inconsistent()) is_sat = resolve_conflict_core();
|
|
else if (should_propagate()) propagate(true);
|
|
else if (do_cleanup(false)) continue;
|
|
else if (should_gc()) do_gc();
|
|
else if (should_rephase()) do_rephase();
|
|
else if (should_restart()) { if (!m_restart_enabled) return l_undef; do_restart(!m_config.m_restart_fast); }
|
|
else if (should_simplify()) do_simplify();
|
|
else if (!decide()) is_sat = final_check();
|
|
}
|
|
return is_sat;
|
|
}
|
|
|
|
lbool solver::search() {
|
|
if (!m_ext || !m_ext->tracking_assumptions())
|
|
return basic_search();
|
|
while (true) {
|
|
pop_to_base_level();
|
|
reinit_assumptions();
|
|
lbool r = basic_search();
|
|
if (r != l_false)
|
|
return r;
|
|
if (!m_ext->should_research(m_core))
|
|
return r;
|
|
}
|
|
}
|
|
|
|
bool solver::should_propagate() const {
|
|
return !inconsistent() && m_qhead < m_trail.size();
|
|
}
|
|
|
|
lbool solver::final_check() {
|
|
if (m_ext) {
|
|
switch (m_ext->check()) {
|
|
case check_result::CR_DONE:
|
|
mk_model();
|
|
return l_true;
|
|
case check_result::CR_CONTINUE:
|
|
break;
|
|
case check_result::CR_GIVEUP:
|
|
throw abort_solver();
|
|
}
|
|
return l_undef;
|
|
}
|
|
else {
|
|
mk_model();
|
|
return l_true;
|
|
}
|
|
}
|
|
|
|
|
|
bool solver::check_inconsistent() {
|
|
if (inconsistent()) {
|
|
if (tracking_assumptions() && at_search_lvl())
|
|
resolve_conflict();
|
|
else if (m_config.m_drat && at_base_lvl())
|
|
resolve_conflict();
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
void solver::init_assumptions(unsigned num_lits, literal const* lits) {
|
|
if (num_lits == 0 && m_user_scope_literals.empty()) {
|
|
return;
|
|
}
|
|
|
|
SASSERT(at_base_lvl());
|
|
reset_assumptions();
|
|
push();
|
|
|
|
propagate(false);
|
|
if (inconsistent()) {
|
|
return;
|
|
}
|
|
|
|
TRACE("sat",
|
|
tout << literal_vector(num_lits, lits) << "\n";
|
|
if (!m_user_scope_literals.empty()) {
|
|
tout << "user literals: " << m_user_scope_literals << "\n";
|
|
}
|
|
m_mc.display(tout);
|
|
);
|
|
|
|
for (unsigned i = 0; !inconsistent() && i < m_user_scope_literals.size(); ++i) {
|
|
literal nlit = ~m_user_scope_literals[i];
|
|
assign_scoped(nlit);
|
|
}
|
|
|
|
for (unsigned i = 0; !inconsistent() && i < num_lits; ++i) {
|
|
literal lit = lits[i];
|
|
set_external(lit.var());
|
|
SASSERT(is_external(lit.var()));
|
|
add_assumption(lit);
|
|
assign_scoped(lit);
|
|
}
|
|
|
|
m_search_lvl = scope_lvl();
|
|
SASSERT(m_search_lvl == 1);
|
|
}
|
|
|
|
void solver::update_min_core() {
|
|
if (!m_min_core_valid || m_core.size() < m_min_core.size()) {
|
|
m_min_core.reset();
|
|
m_min_core.append(m_core);
|
|
m_min_core_valid = true;
|
|
}
|
|
}
|
|
|
|
void solver::reset_assumptions() {
|
|
m_assumptions.reset();
|
|
m_assumption_set.reset();
|
|
m_ext_assumption_set.reset();
|
|
}
|
|
|
|
void solver::add_assumption(literal lit) {
|
|
m_assumption_set.insert(lit);
|
|
m_assumptions.push_back(lit);
|
|
set_external(lit.var());
|
|
}
|
|
|
|
void solver::reassert_min_core() {
|
|
SASSERT(m_min_core_valid);
|
|
pop_to_base_level();
|
|
push();
|
|
reset_assumptions();
|
|
TRACE("sat", tout << "reassert: " << m_min_core << "\n";);
|
|
for (literal lit : m_min_core) {
|
|
SASSERT(is_external(lit.var()));
|
|
add_assumption(lit);
|
|
assign_scoped(lit);
|
|
}
|
|
propagate(false);
|
|
SASSERT(inconsistent());
|
|
}
|
|
|
|
void solver::reinit_assumptions() {
|
|
if (tracking_assumptions() && at_base_lvl() && !inconsistent()) {
|
|
TRACE("sat", tout << "assumptions: " << m_assumptions << " user scopes: " << m_user_scope_literals << "\n";);
|
|
if (!propagate(false)) return;
|
|
push();
|
|
for (literal lit : m_user_scope_literals) {
|
|
if (inconsistent()) break;
|
|
assign_scoped(~lit);
|
|
}
|
|
for (literal lit : m_assumptions) {
|
|
if (inconsistent()) break;
|
|
assign_scoped(lit);
|
|
}
|
|
init_ext_assumptions();
|
|
|
|
if (!inconsistent())
|
|
propagate(false);
|
|
TRACE("sat",
|
|
tout << "consistent: " << !inconsistent() << "\n";
|
|
for (literal a : m_assumptions) {
|
|
index_set s;
|
|
if (m_antecedents.find(a.var(), s)) {
|
|
tout << a << ": "; display_index_set(tout, s) << "\n";
|
|
}
|
|
}
|
|
for (literal lit : m_user_scope_literals) {
|
|
tout << "user " << lit << "\n";
|
|
}
|
|
);
|
|
}
|
|
}
|
|
|
|
void solver::init_ext_assumptions() {
|
|
if (m_ext && m_ext->tracking_assumptions()) {
|
|
m_ext_assumption_set.reset();
|
|
if (!inconsistent())
|
|
m_ext->add_assumptions(m_ext_assumption_set);
|
|
}
|
|
}
|
|
|
|
bool solver::tracking_assumptions() const {
|
|
return !m_assumptions.empty() || !m_user_scope_literals.empty() || (m_ext && m_ext->tracking_assumptions());
|
|
}
|
|
|
|
bool solver::is_assumption(literal l) const {
|
|
return tracking_assumptions() && (m_assumption_set.contains(l) || m_ext_assumption_set.contains(l));
|
|
}
|
|
|
|
void solver::set_activity(bool_var v, unsigned new_act) {
|
|
unsigned old_act = m_activity[v];
|
|
m_activity[v] = new_act;
|
|
if (!was_eliminated(v) && value(v) == l_undef && new_act != old_act) {
|
|
m_case_split_queue.activity_changed_eh(v, new_act > old_act);
|
|
}
|
|
}
|
|
|
|
bool solver::is_assumption(bool_var v) const {
|
|
return is_assumption(literal(v, false)) || is_assumption(literal(v, true));
|
|
}
|
|
|
|
void solver::init_search() {
|
|
m_model_is_current = false;
|
|
m_phase_counter = 0;
|
|
m_search_state = s_unsat;
|
|
m_search_unsat_conflicts = m_config.m_search_unsat_conflicts;
|
|
m_search_sat_conflicts = m_config.m_search_sat_conflicts;
|
|
m_search_next_toggle = m_search_unsat_conflicts;
|
|
m_best_phase_size = 0;
|
|
m_rephase_lim = 0;
|
|
m_rephase_inc = 0;
|
|
m_reorder_lim = m_config.m_reorder_base;
|
|
m_reorder_inc = 0;
|
|
m_conflicts_since_restart = 0;
|
|
m_force_conflict_analysis = false;
|
|
m_restart_threshold = m_config.m_restart_initial;
|
|
m_luby_idx = 1;
|
|
m_gc_threshold = m_config.m_gc_initial;
|
|
m_defrag_threshold = 2;
|
|
m_restarts = 0;
|
|
m_last_position_log = 0;
|
|
m_restart_logs = 0;
|
|
m_simplifications = 0;
|
|
m_conflicts_since_init = 0;
|
|
m_next_simplify = m_config.m_simplify_delay;
|
|
m_min_d_tk = 1.0;
|
|
m_search_lvl = 0;
|
|
if (m_learned.size() <= 2*m_clauses.size())
|
|
m_conflicts_since_gc = 0;
|
|
m_restart_next_out = 0;
|
|
m_asymm_branch.init_search();
|
|
m_stopwatch.reset();
|
|
m_stopwatch.start();
|
|
m_core.reset();
|
|
m_min_core_valid = false;
|
|
m_min_core.reset();
|
|
m_simplifier.init_search();
|
|
m_mc.init_search(*this);
|
|
if (m_ext)
|
|
m_ext->init_search();
|
|
TRACE("sat", display(tout););
|
|
}
|
|
|
|
bool solver::should_simplify() const {
|
|
return m_conflicts_since_init >= m_next_simplify && m_simplify_enabled;
|
|
}
|
|
/**
|
|
\brief Apply all simplifications.
|
|
*/
|
|
void solver::do_simplify() {
|
|
if (!should_simplify()) {
|
|
return;
|
|
}
|
|
log_stats();
|
|
m_simplifications++;
|
|
|
|
TRACE("sat", tout << "simplify\n";);
|
|
|
|
pop(scope_lvl());
|
|
struct report {
|
|
solver& s;
|
|
stopwatch m_watch;
|
|
report(solver& s):s(s) {
|
|
m_watch.start();
|
|
s.log_stats();
|
|
IF_VERBOSE(2, verbose_stream() << "(sat.simplify :simplifications " << s.m_simplifications << ")\n";);
|
|
}
|
|
~report() {
|
|
m_watch.stop();
|
|
s.log_stats();
|
|
}
|
|
};
|
|
report _rprt(*this);
|
|
SASSERT(at_base_lvl());
|
|
|
|
m_cleaner(m_config.m_force_cleanup);
|
|
CASSERT("sat_simplify_bug", check_invariant());
|
|
|
|
m_scc();
|
|
CASSERT("sat_simplify_bug", check_invariant());
|
|
|
|
if (m_ext) {
|
|
m_ext->pre_simplify();
|
|
}
|
|
|
|
m_simplifier(false);
|
|
|
|
CASSERT("sat_simplify_bug", check_invariant());
|
|
CASSERT("sat_missed_prop", check_missed_propagation());
|
|
if (!m_learned.empty()) {
|
|
m_simplifier(true);
|
|
CASSERT("sat_missed_prop", check_missed_propagation());
|
|
CASSERT("sat_simplify_bug", check_invariant());
|
|
}
|
|
sort_watch_lits();
|
|
CASSERT("sat_simplify_bug", check_invariant());
|
|
|
|
CASSERT("sat_missed_prop", check_missed_propagation());
|
|
CASSERT("sat_simplify_bug", check_invariant());
|
|
if (m_ext) {
|
|
m_ext->clauses_modifed();
|
|
m_ext->simplify();
|
|
}
|
|
|
|
m_probing();
|
|
CASSERT("sat_missed_prop", check_missed_propagation());
|
|
CASSERT("sat_simplify_bug", check_invariant());
|
|
m_asymm_branch(false);
|
|
|
|
if (m_config.m_lookahead_simplify && !m_ext) {
|
|
lookahead lh(*this);
|
|
lh.simplify(true);
|
|
lh.collect_statistics(m_aux_stats);
|
|
}
|
|
|
|
reinit_assumptions();
|
|
if (inconsistent()) return;
|
|
|
|
if (m_next_simplify == 0) {
|
|
m_next_simplify = m_config.m_next_simplify1;
|
|
}
|
|
else {
|
|
m_next_simplify = static_cast<unsigned>(m_conflicts_since_init * m_config.m_simplify_mult2);
|
|
if (m_next_simplify > m_conflicts_since_init + m_config.m_simplify_max)
|
|
m_next_simplify = m_conflicts_since_init + m_config.m_simplify_max;
|
|
}
|
|
|
|
if (m_par) {
|
|
m_par->from_solver(*this);
|
|
if (m_par->to_solver(*this)) {
|
|
m_activity_inc = 128;
|
|
}
|
|
}
|
|
|
|
if (m_config.m_binspr && !inconsistent()) {
|
|
m_binspr();
|
|
}
|
|
|
|
if (m_config.m_anf_simplify && m_simplifications > m_config.m_anf_delay && !inconsistent()) {
|
|
anf_simplifier anf(*this);
|
|
anf_simplifier::config cfg;
|
|
cfg.m_enable_exlin = m_config.m_anf_exlin;
|
|
anf();
|
|
anf.collect_statistics(m_aux_stats);
|
|
// TBD: throttle anf_delay based on yield
|
|
}
|
|
|
|
if (m_cut_simplifier && m_simplifications > m_config.m_cut_delay && !inconsistent()) {
|
|
(*m_cut_simplifier)();
|
|
}
|
|
|
|
if (m_config.m_inprocess_out.is_non_empty_string()) {
|
|
std::ofstream fout(m_config.m_inprocess_out.str());
|
|
if (fout) {
|
|
display_dimacs(fout);
|
|
}
|
|
throw solver_exception("output generated");
|
|
}
|
|
}
|
|
|
|
bool solver::set_root(literal l, literal r) {
|
|
return !m_ext || m_ext->set_root(l, r);
|
|
}
|
|
|
|
void solver::flush_roots() {
|
|
if (m_ext) m_ext->flush_roots();
|
|
}
|
|
|
|
void solver::sort_watch_lits() {
|
|
for (watch_list & wlist : m_watches) {
|
|
std::stable_sort(wlist.begin(), wlist.end(), watched_lt());
|
|
}
|
|
}
|
|
|
|
void solver::set_model(model const& mdl, bool is_current) {
|
|
m_model.reset();
|
|
m_model.append(mdl);
|
|
m_model_is_current = is_current;
|
|
}
|
|
|
|
void solver::mk_model() {
|
|
m_model.reset();
|
|
m_model_is_current = true;
|
|
unsigned num = num_vars();
|
|
m_model.resize(num, l_undef);
|
|
for (bool_var v = 0; v < num; v++) {
|
|
if (!was_eliminated(v)) {
|
|
m_model[v] = value(v);
|
|
m_phase[v] = value(v) == l_true;
|
|
m_best_phase[v] = value(v) == l_true;
|
|
}
|
|
}
|
|
TRACE("sat_mc_bug", m_mc.display(tout););
|
|
|
|
#if 0
|
|
IF_VERBOSE(2, for (bool_var v = 0; v < num; v++) verbose_stream() << v << ": " << m_model[v] << "\n";);
|
|
for (auto p : big::s_del_bin) {
|
|
if (value(p.first) != l_true && value(p.second) != l_true) {
|
|
IF_VERBOSE(2, verbose_stream() << "binary violation: " << p.first << " " << p.second << "\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (m_clone) {
|
|
IF_VERBOSE(10, verbose_stream() << "\"checking model\"\n";);
|
|
if (!check_clauses(m_model)) {
|
|
throw solver_exception("check model failed");
|
|
}
|
|
}
|
|
|
|
if (m_config.m_drat) {
|
|
m_drat.check_model(m_model);
|
|
}
|
|
|
|
m_mc(m_model);
|
|
|
|
if (m_clone && !check_clauses(m_model)) {
|
|
IF_VERBOSE(1, verbose_stream() << "failure checking clauses on transformed model\n";);
|
|
IF_VERBOSE(10, m_mc.display(verbose_stream()));
|
|
IF_VERBOSE(1, for (bool_var v = 0; v < num; v++) verbose_stream() << v << ": " << m_model[v] << "\n";);
|
|
|
|
throw solver_exception("check model failed");
|
|
}
|
|
|
|
TRACE("sat", for (bool_var v = 0; v < num; v++) tout << v << ": " << m_model[v] << "\n";);
|
|
|
|
if (m_clone) {
|
|
IF_VERBOSE(1, verbose_stream() << "\"checking model (on original set of clauses)\"\n";);
|
|
if (!m_clone->check_model(m_model)) {
|
|
IF_VERBOSE(1, m_mc.display(verbose_stream()));
|
|
IF_VERBOSE(1, display_units(verbose_stream()));
|
|
throw solver_exception("check model failed (for cloned solver)");
|
|
}
|
|
}
|
|
}
|
|
|
|
bool solver::check_clauses(model const& m) const {
|
|
bool ok = true;
|
|
for (clause const* cp : m_clauses) {
|
|
clause const & c = *cp;
|
|
if (!c.satisfied_by(m)) {
|
|
IF_VERBOSE(1, verbose_stream() << "failed clause " << c.id() << ": " << c << "\n";);
|
|
TRACE("sat", tout << "failed: " << c << "\n";
|
|
tout << "assumptions: " << m_assumptions << "\n";
|
|
tout << "trail: " << m_trail << "\n";
|
|
tout << "model: " << m << "\n";
|
|
m_mc.display(tout);
|
|
);
|
|
for (literal l : c) {
|
|
if (was_eliminated(l.var())) IF_VERBOSE(1, verbose_stream() << "eliminated: " << l << "\n";);
|
|
}
|
|
ok = false;
|
|
}
|
|
}
|
|
unsigned l_idx = 0;
|
|
for (watch_list const& wlist : m_watches) {
|
|
literal l = ~to_literal(l_idx);
|
|
if (value_at(l, m) != l_true) {
|
|
for (watched const& w : wlist) {
|
|
if (!w.is_binary_non_learned_clause())
|
|
continue;
|
|
literal l2 = w.get_literal();
|
|
if (l.index() > l2.index())
|
|
continue;
|
|
if (value_at(l2, m) != l_true) {
|
|
IF_VERBOSE(1, verbose_stream() << "failed binary: " << l << " := " << value_at(l, m) << " " << l2 << " := " << value_at(l2, m) << "\n");
|
|
IF_VERBOSE(1, verbose_stream() << "elim l1: " << was_eliminated(l.var()) << " elim l2: " << was_eliminated(l2) << "\n");
|
|
TRACE("sat", m_mc.display(tout << "failed binary: " << l << " " << l2 << "\n"););
|
|
ok = false;
|
|
}
|
|
}
|
|
}
|
|
++l_idx;
|
|
}
|
|
for (literal l : m_assumptions) {
|
|
if (value_at(l, m) != l_true) {
|
|
VERIFY(is_external(l.var()));
|
|
IF_VERBOSE(1, verbose_stream() << "assumption: " << l << " does not model check " << value_at(l, m) << "\n";);
|
|
TRACE("sat",
|
|
tout << l << " does not model check\n";
|
|
tout << "trail: " << m_trail << "\n";
|
|
tout << "model: " << m << "\n";
|
|
m_mc.display(tout);
|
|
);
|
|
ok = false;
|
|
}
|
|
}
|
|
if (m_ext && !m_ext->check_model(m)) {
|
|
ok = false;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool solver::check_model(model const & m) const {
|
|
bool ok = check_clauses(m);
|
|
if (ok && !m_mc.check_model(m)) {
|
|
ok = false;
|
|
TRACE("sat", tout << "model: " << m << "\n"; m_mc.display(tout););
|
|
IF_VERBOSE(0, verbose_stream() << "model check failed\n");
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool solver::should_restart() const {
|
|
if (m_conflicts_since_restart <= m_restart_threshold) return false;
|
|
if (scope_lvl() < 2 + search_lvl()) return false;
|
|
if (m_case_split_queue.empty()) return false;
|
|
if (m_config.m_restart != RS_EMA) return true;
|
|
return
|
|
m_fast_glue_avg + search_lvl() <= scope_lvl() &&
|
|
m_config.m_restart_margin * m_slow_glue_avg <= m_fast_glue_avg;
|
|
}
|
|
|
|
void solver::log_stats() {
|
|
m_restart_logs++;
|
|
|
|
std::stringstream strm;
|
|
strm << "(sat.stats " << std::setw(6) << m_stats.m_conflict << " "
|
|
<< std::setw(6) << m_stats.m_decision << " "
|
|
<< std::setw(4) << m_stats.m_restart
|
|
<< mk_stat(*this)
|
|
<< " " << std::setw(6) << std::setprecision(2) << m_stopwatch.get_current_seconds() << ")\n";
|
|
std::string str(strm.str());
|
|
svector<size_t> nums;
|
|
for (size_t i = 0; i < str.size(); ++i) {
|
|
while (i < str.size() && str[i] != ' ') ++i;
|
|
while (i < str.size() && str[i] == ' ') ++i;
|
|
// position of first character after space
|
|
if (i < str.size()) {
|
|
nums.push_back(i);
|
|
}
|
|
}
|
|
bool same = m_last_positions.size() == nums.size();
|
|
size_t diff = 0;
|
|
for (unsigned i = 0; i < nums.size() && same; ++i) {
|
|
if (m_last_positions[i] > nums[i]) diff += m_last_positions[i] - nums[i];
|
|
if (m_last_positions[i] < nums[i]) diff += nums[i] - m_last_positions[i];
|
|
}
|
|
if (m_last_positions.empty() ||
|
|
m_restart_logs >= 20 + m_last_position_log ||
|
|
(m_restart_logs >= 6 + m_last_position_log && (!same || diff > 3))) {
|
|
m_last_position_log = m_restart_logs;
|
|
// conflicts restarts learned gc time
|
|
// decisions clauses units memory
|
|
int adjust[9] = { -3, -3, -3, -1, -3, -2, -1, -2, -1 };
|
|
char const* tag[9] = { ":conflicts ", ":decisions ", ":restarts ", ":clauses/bin ", ":learned/bin ", ":units ", ":gc ", ":memory ", ":time" };
|
|
std::stringstream l1, l2;
|
|
l1 << "(sat.stats ";
|
|
l2 << "(sat.stats ";
|
|
size_t p1 = 11, p2 = 11;
|
|
SASSERT(nums.size() == 9);
|
|
for (unsigned i = 0; i < 9 && i < nums.size(); ++i) {
|
|
size_t p = nums[i];
|
|
if (i & 0x1) {
|
|
// odd positions
|
|
for (; p2 < p + adjust[i]; ++p2) l2 << " ";
|
|
p2 += strlen(tag[i]);
|
|
l2 << tag[i];
|
|
}
|
|
else {
|
|
// even positions
|
|
for (; p1 < p + adjust[i]; ++p1) l1 << " ";
|
|
p1 += strlen(tag[i]);
|
|
l1 << tag[i];
|
|
}
|
|
}
|
|
for (; p1 + 2 < str.size(); ++p1) l1 << " ";
|
|
for (; p2 + 2 < str.size(); ++p2) l2 << " ";
|
|
l1 << ")\n";
|
|
l2 << ")\n";
|
|
IF_VERBOSE(1, verbose_stream() << l1.str() << l2.str());
|
|
m_last_positions.reset();
|
|
m_last_positions.append(nums);
|
|
}
|
|
IF_VERBOSE(1, verbose_stream() << str);
|
|
}
|
|
|
|
void solver::do_restart(bool to_base) {
|
|
m_stats.m_restart++;
|
|
m_restarts++;
|
|
if (m_conflicts_since_init >= m_restart_next_out && get_verbosity_level() >= 1) {
|
|
if (0 == m_restart_next_out) {
|
|
m_restart_next_out = 1;
|
|
}
|
|
else {
|
|
m_restart_next_out = std::min(m_conflicts_since_init + 50000, (3*m_restart_next_out)/2 + 1);
|
|
}
|
|
log_stats();
|
|
}
|
|
TRACE("sat", tout << "restart " << restart_level(to_base) << "\n";);
|
|
IF_VERBOSE(30, display_status(verbose_stream()););
|
|
TRACE("sat", tout << "restart " << restart_level(to_base) << "\n";);
|
|
pop_reinit(restart_level(to_base));
|
|
set_next_restart();
|
|
}
|
|
|
|
unsigned solver::restart_level(bool to_base) {
|
|
SASSERT(!m_case_split_queue.empty());
|
|
if (to_base || scope_lvl() == search_lvl())
|
|
return scope_lvl() - search_lvl();
|
|
else {
|
|
bool_var next = m_case_split_queue.min_var();
|
|
|
|
// Implementations of Marijn's idea of reusing the
|
|
// trail when the next decision literal has lower precedence.
|
|
// pop trail from top
|
|
#if 0
|
|
unsigned n = 0;
|
|
do {
|
|
bool_var prev = scope_literal(scope_lvl() - n - 1).var();
|
|
if (m_case_split_queue.more_active(prev, next)) break;
|
|
++n;
|
|
}
|
|
while (n < scope_lvl() - search_lvl());
|
|
return n;
|
|
#endif
|
|
// pop trail from bottom
|
|
unsigned n = search_lvl();
|
|
for (; n < scope_lvl() && m_case_split_queue.more_active(scope_literal(n).var(), next); ++n) {
|
|
}
|
|
return n - search_lvl();
|
|
}
|
|
}
|
|
|
|
void solver::update_activity(bool_var v, double p) {
|
|
unsigned new_act = (unsigned) (num_vars() * m_config.m_activity_scale * p);
|
|
set_activity(v, new_act);
|
|
}
|
|
|
|
void solver::set_next_restart() {
|
|
m_conflicts_since_restart = 0;
|
|
switch (m_config.m_restart) {
|
|
case RS_GEOMETRIC:
|
|
m_restart_threshold = static_cast<unsigned>(m_restart_threshold * m_config.m_restart_factor);
|
|
break;
|
|
case RS_LUBY:
|
|
m_luby_idx++;
|
|
m_restart_threshold = m_config.m_restart_initial * get_luby(m_luby_idx);
|
|
break;
|
|
case RS_EMA:
|
|
m_restart_threshold = m_config.m_restart_initial;
|
|
break;
|
|
case RS_STATIC:
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
CASSERT("sat_restart", check_invariant());
|
|
}
|
|
|
|
|
|
// -----------------------
|
|
//
|
|
// Conflict resolution
|
|
//
|
|
// -----------------------
|
|
|
|
bool solver::resolve_conflict() {
|
|
while (true) {
|
|
lbool r = resolve_conflict_core();
|
|
CASSERT("sat_check_marks", check_marks());
|
|
// after pop, clauses are reinitialized, this may trigger another conflict.
|
|
if (r == l_false)
|
|
return false;
|
|
if (!inconsistent())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
lbool solver::resolve_conflict_core() {
|
|
m_conflicts_since_init++;
|
|
m_conflicts_since_restart++;
|
|
m_conflicts_since_gc++;
|
|
m_stats.m_conflict++;
|
|
if (m_step_size > m_config.m_step_size_min) {
|
|
m_step_size -= m_config.m_step_size_dec;
|
|
}
|
|
|
|
bool unique_max;
|
|
m_conflict_lvl = get_max_lvl(m_not_l, m_conflict, unique_max);
|
|
justification js = m_conflict;
|
|
|
|
if (m_conflict_lvl <= 1 && (!m_assumptions.empty() || !m_user_scope_literals.empty())) {
|
|
TRACE("sat", tout << "unsat core\n";);
|
|
resolve_conflict_for_unsat_core();
|
|
return l_false;
|
|
}
|
|
|
|
if (m_conflict_lvl == 0) {
|
|
drat_explain_conflict();
|
|
if (m_config.m_drat)
|
|
drat_log_clause(0, nullptr, sat::status::redundant());
|
|
TRACE("sat", tout << "conflict level is 0\n";);
|
|
return l_false;
|
|
}
|
|
|
|
// force_conflict_analysis is used instead of relying on normal propagation to assign m_not_l
|
|
// at the backtracking level. This is the case where the external theories miss propagations
|
|
// that only get triggered after decisions.
|
|
|
|
if (allow_backtracking() && unique_max && !m_force_conflict_analysis) {
|
|
TRACE("sat", tout << "unique max " << js << " " << m_not_l << "\n";);
|
|
pop_reinit(m_scope_lvl - m_conflict_lvl + 1);
|
|
m_force_conflict_analysis = true;
|
|
++m_stats.m_backtracks;
|
|
return l_undef;
|
|
}
|
|
m_force_conflict_analysis = false;
|
|
|
|
updt_phase_of_vars();
|
|
|
|
if (m_ext) {
|
|
switch (m_ext->resolve_conflict()) {
|
|
case l_true:
|
|
learn_lemma_and_backjump();
|
|
return l_undef;
|
|
case l_undef:
|
|
break;
|
|
case l_false:
|
|
// backjumping was taken care of internally.
|
|
return l_undef;
|
|
}
|
|
}
|
|
|
|
m_lemma.reset();
|
|
|
|
unsigned idx = skip_literals_above_conflict_level();
|
|
|
|
// save space for first uip
|
|
m_lemma.push_back(null_literal);
|
|
|
|
TRACE("sat_conflict_detail",
|
|
tout << "resolve: " << m_not_l << " "
|
|
<< " js: " << js
|
|
<< " idx: " << idx
|
|
<< " trail: " << m_trail.size()
|
|
<< " @" << m_conflict_lvl << "\n";);
|
|
|
|
unsigned num_marks = 0;
|
|
literal consequent = null_literal;
|
|
if (m_not_l != null_literal) {
|
|
TRACE("sat_conflict_detail", tout << "not_l: " << m_not_l << "\n";);
|
|
process_antecedent(m_not_l, num_marks);
|
|
consequent = ~m_not_l;
|
|
}
|
|
|
|
do {
|
|
TRACE("sat_conflict_detail", tout << "processing consequent: " << consequent << " @" << (consequent==null_literal?m_conflict_lvl:lvl(consequent)) << "\n";
|
|
tout << "num_marks: " << num_marks << "\n";
|
|
display_justification(tout, js) << "\n";);
|
|
|
|
switch (js.get_kind()) {
|
|
case justification::NONE:
|
|
break;
|
|
case justification::BINARY:
|
|
process_antecedent(~(js.get_literal()), num_marks);
|
|
break;
|
|
case justification::TERNARY:
|
|
process_antecedent(~(js.get_literal1()), num_marks);
|
|
process_antecedent(~(js.get_literal2()), num_marks);
|
|
break;
|
|
case justification::CLAUSE: {
|
|
clause & c = get_clause(js);
|
|
unsigned i = 0;
|
|
if (consequent != null_literal) {
|
|
SASSERT(c[0] == consequent || c[1] == consequent);
|
|
if (c[0] == consequent) {
|
|
i = 1;
|
|
}
|
|
else {
|
|
process_antecedent(~c[0], num_marks);
|
|
i = 2;
|
|
}
|
|
}
|
|
unsigned sz = c.size();
|
|
for (; i < sz; i++)
|
|
process_antecedent(~c[i], num_marks);
|
|
break;
|
|
}
|
|
case justification::EXT_JUSTIFICATION: {
|
|
fill_ext_antecedents(consequent, js, false);
|
|
TRACE("sat", tout << "ext antecedents: " << m_ext_antecedents << "\n";);
|
|
for (literal l : m_ext_antecedents)
|
|
process_antecedent(l, num_marks);
|
|
|
|
#if 0
|
|
if (m_ext_antecedents.size() <= 1) {
|
|
for (literal& l : m_ext_antecedents)
|
|
l.neg();
|
|
m_ext_antecedents.push_back(consequent);
|
|
mk_clause(m_ext_antecedents.size(), m_ext_antecedents.c_ptr(), sat::status::redundant());
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
bool_var c_var;
|
|
while (true) {
|
|
consequent = m_trail[idx];
|
|
c_var = consequent.var();
|
|
if (is_marked(c_var)) {
|
|
if (lvl(c_var) == m_conflict_lvl) {
|
|
break;
|
|
}
|
|
SASSERT(lvl(c_var) < m_conflict_lvl);
|
|
}
|
|
CTRACE("sat", idx == 0,
|
|
for (literal lit : m_trail)
|
|
if (is_marked(lit.var()))
|
|
tout << "missed " << lit << "@" << lvl(lit) << "\n";);
|
|
CTRACE("sat", idx == 0, display(tout););
|
|
if (idx == 0)
|
|
IF_VERBOSE(0, verbose_stream() << "num-conflicts: " << m_stats.m_conflict << "\n");
|
|
VERIFY(idx > 0);
|
|
idx--;
|
|
}
|
|
SASSERT(lvl(consequent) == m_conflict_lvl);
|
|
js = m_justification[c_var];
|
|
idx--;
|
|
num_marks--;
|
|
reset_mark(c_var);
|
|
|
|
TRACE("sat", display_justification(tout << consequent << " ", js) << "\n";);
|
|
}
|
|
while (num_marks > 0);
|
|
|
|
m_lemma[0] = ~consequent;
|
|
learn_lemma_and_backjump();
|
|
|
|
return l_undef;
|
|
}
|
|
|
|
void solver::learn_lemma_and_backjump() {
|
|
TRACE("sat_lemma", tout << "new lemma size: " << m_lemma.size() << "\n" << m_lemma << "\n";);
|
|
|
|
if (m_lemma.empty()) {
|
|
pop_reinit(m_scope_lvl);
|
|
mk_clause_core(0, nullptr, sat::status::redundant());
|
|
return;
|
|
}
|
|
|
|
if (m_config.m_minimize_lemmas) {
|
|
minimize_lemma();
|
|
reset_lemma_var_marks();
|
|
if (m_config.m_dyn_sub_res)
|
|
dyn_sub_res();
|
|
TRACE("sat_lemma", tout << "new lemma (after minimization) size: " << m_lemma.size() << "\n" << m_lemma << "\n";);
|
|
}
|
|
else {
|
|
reset_lemma_var_marks();
|
|
}
|
|
|
|
unsigned backtrack_lvl = lvl(m_lemma[0]);
|
|
unsigned backjump_lvl = 0;
|
|
for (unsigned i = m_lemma.size(); i-- > 1;) {
|
|
unsigned level = lvl(m_lemma[i]);
|
|
backjump_lvl = std::max(level, backjump_lvl);
|
|
}
|
|
// with scope tracking and chronological backtracking,
|
|
// consequent may not be at highest decision level.
|
|
if (backtrack_lvl < backjump_lvl) {
|
|
backtrack_lvl = backjump_lvl;
|
|
for (unsigned i = m_lemma.size(); i-- > 1;) {
|
|
if (lvl(m_lemma[i]) == backjump_lvl) {
|
|
TRACE("sat", tout << "swap " << m_lemma[0] << "@" << lvl(m_lemma[0]) << m_lemma[1] << "@" << backjump_lvl << "\n";);
|
|
std::swap(m_lemma[i], m_lemma[0]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned glue = num_diff_levels(m_lemma.size(), m_lemma.data());
|
|
m_fast_glue_avg.update(glue);
|
|
m_slow_glue_avg.update(glue);
|
|
|
|
// compute whether to use backtracking or backjumping
|
|
unsigned num_scopes = m_scope_lvl - backjump_lvl;
|
|
|
|
if (use_backjumping(num_scopes)) {
|
|
++m_stats.m_backjumps;
|
|
pop_reinit(num_scopes);
|
|
}
|
|
else {
|
|
TRACE("sat", tout << "backtrack " << (m_scope_lvl - backtrack_lvl + 1) << " scopes\n";);
|
|
++m_stats.m_backtracks;
|
|
pop_reinit(m_scope_lvl - backtrack_lvl + 1);
|
|
}
|
|
clause * lemma = mk_clause_core(m_lemma.size(), m_lemma.data(), sat::status::redundant());
|
|
if (lemma) {
|
|
lemma->set_glue(glue);
|
|
}
|
|
if (m_par && lemma) {
|
|
m_par->share_clause(*this, *lemma);
|
|
}
|
|
m_lemma.reset();
|
|
TRACE("sat_conflict_detail", tout << "consistent " << (!m_inconsistent) << " scopes: " << scope_lvl() << " backtrack: " << backtrack_lvl << " backjump: " << backjump_lvl << "\n";);
|
|
decay_activity();
|
|
updt_phase_counters();
|
|
}
|
|
|
|
bool solver::use_backjumping(unsigned num_scopes) const {
|
|
return
|
|
num_scopes > 0 &&
|
|
(num_scopes <= m_config.m_backtrack_scopes || !allow_backtracking());
|
|
}
|
|
|
|
bool solver::allow_backtracking() const {
|
|
return m_conflicts_since_init > m_config.m_backtrack_init_conflicts;
|
|
}
|
|
|
|
void solver::process_antecedent_for_unsat_core(literal antecedent) {
|
|
bool_var var = antecedent.var();
|
|
SASSERT(var < num_vars());
|
|
TRACE("sat", tout << antecedent << " " << (is_marked(var)?"+":"-") << "\n";);
|
|
if (!is_marked(var)) {
|
|
mark(var);
|
|
m_unmark.push_back(var);
|
|
if (is_assumption(antecedent)) {
|
|
m_core.push_back(antecedent);
|
|
}
|
|
}
|
|
}
|
|
|
|
void solver::process_consequent_for_unsat_core(literal consequent, justification const& js) {
|
|
TRACE("sat", tout << "processing consequent: ";
|
|
if (consequent == null_literal) tout << "null\n";
|
|
else tout << consequent << "\n";
|
|
display_justification(tout << "js kind: ", js) << "\n";);
|
|
switch (js.get_kind()) {
|
|
case justification::NONE:
|
|
break;
|
|
case justification::BINARY:
|
|
SASSERT(consequent != null_literal);
|
|
process_antecedent_for_unsat_core(~(js.get_literal()));
|
|
break;
|
|
case justification::TERNARY:
|
|
SASSERT(consequent != null_literal);
|
|
process_antecedent_for_unsat_core(~(js.get_literal1()));
|
|
process_antecedent_for_unsat_core(~(js.get_literal2()));
|
|
break;
|
|
case justification::CLAUSE: {
|
|
clause & c = get_clause(js);
|
|
unsigned i = 0;
|
|
if (consequent != null_literal) {
|
|
SASSERT(c[0] == consequent || c[1] == consequent);
|
|
if (c[0] == consequent) {
|
|
i = 1;
|
|
}
|
|
else {
|
|
process_antecedent_for_unsat_core(~c[0]);
|
|
i = 2;
|
|
}
|
|
}
|
|
unsigned sz = c.size();
|
|
for (; i < sz; i++)
|
|
process_antecedent_for_unsat_core(~c[i]);
|
|
break;
|
|
}
|
|
case justification::EXT_JUSTIFICATION: {
|
|
fill_ext_antecedents(consequent, js, false);
|
|
for (literal l : m_ext_antecedents) {
|
|
process_antecedent_for_unsat_core(l);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void solver::resolve_conflict_for_unsat_core() {
|
|
TRACE("sat_verbose", display(tout);
|
|
unsigned level = 0;
|
|
for (literal l : m_trail) {
|
|
if (level != lvl(l)) {
|
|
level = lvl(l);
|
|
tout << level << ": ";
|
|
}
|
|
tout << l;
|
|
if (m_mark[l.var()]) {
|
|
tout << "*";
|
|
}
|
|
tout << " ";
|
|
}
|
|
tout << "\n";
|
|
tout << "conflict level: " << m_conflict_lvl << "\n";
|
|
);
|
|
|
|
m_core.reset();
|
|
if (!m_config.m_drat && m_conflict_lvl == 0) {
|
|
return;
|
|
}
|
|
SASSERT(m_unmark.empty());
|
|
DEBUG_CODE({
|
|
for (literal lit : m_trail) {
|
|
SASSERT(!is_marked(lit.var()));
|
|
}});
|
|
|
|
unsigned old_size = m_unmark.size();
|
|
int idx = skip_literals_above_conflict_level();
|
|
|
|
literal consequent = m_not_l;
|
|
if (m_not_l != null_literal) {
|
|
justification js = m_justification[m_not_l.var()];
|
|
TRACE("sat", tout << "not_l: " << m_not_l << "\n";
|
|
display_justification(tout, js) << "\n";);
|
|
|
|
process_antecedent_for_unsat_core(m_not_l);
|
|
if (is_assumption(~m_not_l)) {
|
|
m_core.push_back(~m_not_l);
|
|
}
|
|
else {
|
|
process_consequent_for_unsat_core(m_not_l, js);
|
|
}
|
|
consequent = ~m_not_l;
|
|
}
|
|
|
|
justification js = m_conflict;
|
|
|
|
int init_sz = init_trail_size();
|
|
while (true) {
|
|
process_consequent_for_unsat_core(consequent, js);
|
|
while (idx >= init_sz) {
|
|
consequent = m_trail[idx];
|
|
if (is_marked(consequent.var()) && lvl(consequent) == m_conflict_lvl)
|
|
break;
|
|
idx--;
|
|
}
|
|
if (idx < init_sz) {
|
|
break;
|
|
}
|
|
SASSERT(lvl(consequent) == m_conflict_lvl);
|
|
js = m_justification[consequent.var()];
|
|
idx--;
|
|
}
|
|
reset_unmark(old_size);
|
|
if (m_core.size() > 1) {
|
|
unsigned j = 0;
|
|
for (unsigned i = 0; i < m_core.size(); ++i) {
|
|
if (lvl(m_core[i]) > 0) m_core[j++] = m_core[i];
|
|
}
|
|
m_core.shrink(j);
|
|
}
|
|
|
|
if (m_config.m_core_minimize) {
|
|
if (m_min_core_valid && m_min_core.size() < m_core.size()) {
|
|
IF_VERBOSE(2, verbose_stream() << "(sat.updating core " << m_min_core.size() << " " << m_core.size() << ")\n";);
|
|
m_core.reset();
|
|
m_core.append(m_min_core);
|
|
}
|
|
// TBD:
|
|
// apply optional clause minimization by detecting subsumed literals.
|
|
// initial experiment suggests it has no effect.
|
|
m_mus(); // ignore return value on cancelation.
|
|
set_model(m_mus.get_model(), !m_mus.get_model().empty());
|
|
IF_VERBOSE(2, verbose_stream() << "(sat.core: " << m_core << ")\n";);
|
|
}
|
|
}
|
|
|
|
|
|
unsigned solver::get_max_lvl(literal not_l, justification js, bool& unique_max) {
|
|
unique_max = true;
|
|
unsigned level = 0;
|
|
|
|
if (not_l != null_literal) {
|
|
level = lvl(not_l);
|
|
}
|
|
|
|
switch (js.get_kind()) {
|
|
case justification::NONE:
|
|
level = std::max(level, js.level());
|
|
return level;
|
|
case justification::BINARY:
|
|
level = update_max_level(js.get_literal(), level, unique_max);
|
|
return level;
|
|
case justification::TERNARY:
|
|
level = update_max_level(js.get_literal1(), level, unique_max);
|
|
level = update_max_level(js.get_literal2(), level, unique_max);
|
|
return level;
|
|
case justification::CLAUSE:
|
|
for (literal l : get_clause(js))
|
|
level = update_max_level(l, level, unique_max);
|
|
return level;
|
|
case justification::EXT_JUSTIFICATION:
|
|
if (not_l != null_literal)
|
|
not_l.neg();
|
|
fill_ext_antecedents(not_l, js, true);
|
|
for (literal l : m_ext_antecedents)
|
|
level = update_max_level(l, level, unique_max);
|
|
return level;
|
|
default:
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Skip literals from levels above m_conflict_lvl.
|
|
It returns an index idx such that lvl(m_trail[idx]) <= m_conflict_lvl, and
|
|
for all idx' > idx, lvl(m_trail[idx']) > m_conflict_lvl
|
|
*/
|
|
unsigned solver::skip_literals_above_conflict_level() {
|
|
unsigned idx = m_trail.size();
|
|
if (idx == 0) {
|
|
return idx;
|
|
}
|
|
idx--;
|
|
// skip literals from levels above the conflict level
|
|
while (lvl(m_trail[idx]) > m_conflict_lvl) {
|
|
SASSERT(idx > 0);
|
|
idx--;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
void solver::process_antecedent(literal antecedent, unsigned & num_marks) {
|
|
bool_var var = antecedent.var();
|
|
unsigned var_lvl = lvl(var);
|
|
SASSERT(var < num_vars());
|
|
TRACE("sat_verbose", tout << "process " << var << "@" << var_lvl << " marked " << is_marked(var) << " conflict " << m_conflict_lvl << "\n";);
|
|
if (!is_marked(var) && var_lvl > 0) {
|
|
mark(var);
|
|
switch (m_config.m_branching_heuristic) {
|
|
case BH_VSIDS:
|
|
inc_activity(var);
|
|
break;
|
|
case BH_CHB:
|
|
m_last_conflict[var] = m_stats.m_conflict;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (var_lvl == m_conflict_lvl)
|
|
num_marks++;
|
|
else
|
|
m_lemma.push_back(~antecedent);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
\brief js is an external justification. Collect its antecedents and store at m_ext_antecedents.
|
|
*/
|
|
void solver::fill_ext_antecedents(literal consequent, justification js, bool probing) {
|
|
SASSERT(js.is_ext_justification());
|
|
SASSERT(m_ext);
|
|
auto idx = js.get_ext_justification_idx();
|
|
m_ext_antecedents.reset();
|
|
m_ext->get_antecedents(consequent, idx, m_ext_antecedents, probing);
|
|
}
|
|
|
|
bool solver::is_two_phase() const {
|
|
return m_config.m_phase == PS_SAT_CACHING;
|
|
}
|
|
|
|
bool solver::is_sat_phase() const {
|
|
return is_two_phase() && m_search_state == s_sat;
|
|
}
|
|
|
|
void solver::updt_phase_of_vars() {
|
|
if (m_config.m_phase == PS_FROZEN)
|
|
return;
|
|
unsigned from_lvl = m_conflict_lvl;
|
|
unsigned head = from_lvl == 0 ? 0 : m_scopes[from_lvl - 1].m_trail_lim;
|
|
unsigned sz = m_trail.size();
|
|
for (unsigned i = head; i < sz; i++) {
|
|
bool_var v = m_trail[i].var();
|
|
TRACE("forget_phase", tout << "forgetting phase of v" << v << "\n";);
|
|
m_phase[v] = m_rand() % 2 == 0;
|
|
}
|
|
if (is_sat_phase() && head >= m_best_phase_size) {
|
|
m_best_phase_size = head;
|
|
IF_VERBOSE(12, verbose_stream() << "sticky trail: " << head << "\n");
|
|
for (unsigned i = 0; i < head; ++i) {
|
|
bool_var v = m_trail[i].var();
|
|
m_best_phase[v] = m_phase[v];
|
|
}
|
|
}
|
|
}
|
|
|
|
bool solver::should_toggle_search_state() {
|
|
if (m_search_state == s_unsat) {
|
|
m_trail_avg.update(m_trail.size());
|
|
}
|
|
return
|
|
(m_phase_counter >= m_search_next_toggle) &&
|
|
(m_search_state == s_sat || m_trail.size() > 0.50*m_trail_avg);
|
|
}
|
|
|
|
void solver::do_toggle_search_state() {
|
|
|
|
if (is_two_phase()) {
|
|
m_best_phase_size = 0;
|
|
std::swap(m_fast_glue_backup, m_fast_glue_avg);
|
|
std::swap(m_slow_glue_backup, m_slow_glue_avg);
|
|
if (m_search_state == s_sat) {
|
|
m_search_unsat_conflicts += m_config.m_search_unsat_conflicts;
|
|
}
|
|
else {
|
|
m_search_sat_conflicts += m_config.m_search_sat_conflicts;
|
|
}
|
|
}
|
|
|
|
if (m_search_state == s_unsat) {
|
|
m_search_state = s_sat;
|
|
m_search_next_toggle = m_search_sat_conflicts;
|
|
}
|
|
else {
|
|
m_search_state = s_unsat;
|
|
m_search_next_toggle = m_search_unsat_conflicts;
|
|
}
|
|
|
|
m_phase_counter = 0;
|
|
}
|
|
|
|
bool solver::should_rephase() {
|
|
return m_conflicts_since_init > m_rephase_lim;
|
|
}
|
|
|
|
void solver::do_rephase() {
|
|
switch (m_config.m_phase) {
|
|
case PS_ALWAYS_TRUE:
|
|
for (auto& p : m_phase) p = true;
|
|
break;
|
|
case PS_ALWAYS_FALSE:
|
|
for (auto& p : m_phase) p = false;
|
|
break;
|
|
case PS_FROZEN:
|
|
break;
|
|
case PS_BASIC_CACHING:
|
|
switch (m_rephase_lim % 4) {
|
|
case 0:
|
|
for (auto& p : m_phase) p = (m_rand() % 2) == 0;
|
|
break;
|
|
case 1:
|
|
for (auto& p : m_phase) p = false;
|
|
break;
|
|
case 2:
|
|
for (auto& p : m_phase) p = !p;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case PS_SAT_CACHING:
|
|
if (m_search_state == s_sat)
|
|
for (unsigned i = 0; i < m_phase.size(); ++i)
|
|
m_phase[i] = m_best_phase[i];
|
|
break;
|
|
case PS_RANDOM:
|
|
for (auto& p : m_phase) p = (m_rand() % 2) == 0;
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
m_rephase_inc += m_config.m_rephase_base;
|
|
m_rephase_lim += m_rephase_inc;
|
|
}
|
|
|
|
bool solver::should_reorder() {
|
|
return m_conflicts_since_init > m_reorder_lim;
|
|
}
|
|
|
|
void solver::do_reorder() {
|
|
IF_VERBOSE(1, verbose_stream() << "(reorder)\n");
|
|
m_activity_inc = 128;
|
|
svector<bool_var> vars;
|
|
for (bool_var v = num_vars(); v-- > 0; ) {
|
|
if (!was_eliminated(v) && value(v) == l_undef) {
|
|
vars.push_back(v);
|
|
}
|
|
}
|
|
#if 1
|
|
//
|
|
// exp(logits[i]) / sum(exp(logits))
|
|
// =
|
|
// exp(log(exp(logits[i]) / sum(exp(logits))))
|
|
// =
|
|
// exp(log(exp(logits[i])) - log(sum(exp(logits))))
|
|
// =
|
|
// exp(logits[i] - lse)
|
|
svector<double> logits(vars.size(), 0.0);
|
|
double itau = m_config.m_reorder_itau;
|
|
double lse = 0;
|
|
double mid = (double)(m_rand.max_value()/2);
|
|
double max = 0;
|
|
for (double& f : logits) {
|
|
f = itau * (m_rand() - mid)/mid;
|
|
if (f > max) max = f;
|
|
}
|
|
for (double f : logits) {
|
|
lse += log(f - max);
|
|
}
|
|
lse = max + exp(lse);
|
|
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
update_activity(vars[i], exp(logits[i] - lse));
|
|
}
|
|
#else
|
|
shuffle(vars.size(), vars.c_ptr(), m_rand);
|
|
for (bool_var v : vars) {
|
|
update_activity(v, m_rand(10)/10.0);
|
|
}
|
|
#endif
|
|
m_reorder_inc += m_config.m_reorder_base;
|
|
m_reorder_lim += m_reorder_inc;
|
|
}
|
|
|
|
void solver::updt_phase_counters() {
|
|
m_phase_counter++;
|
|
if (should_toggle_search_state()) {
|
|
do_toggle_search_state();
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Return the number of different levels in lits.
|
|
All literals in lits must be assigned.
|
|
*/
|
|
unsigned solver::num_diff_levels(unsigned num, literal const * lits) {
|
|
m_diff_levels.reserve(scope_lvl() + 1, false);
|
|
unsigned r = 0;
|
|
for (unsigned i = 0; i < num; i++) {
|
|
SASSERT(value(lits[i]) != l_undef);
|
|
unsigned lit_lvl = lvl(lits[i]);
|
|
if (!m_diff_levels[lit_lvl]) {
|
|
m_diff_levels[lit_lvl] = true;
|
|
r++;
|
|
}
|
|
}
|
|
// reset m_diff_levels.
|
|
for (unsigned i = 0; i < num; i++)
|
|
m_diff_levels[lvl(lits[i])] = false;
|
|
return r;
|
|
}
|
|
|
|
bool solver::num_diff_levels_below(unsigned num, literal const* lits, unsigned max_glue, unsigned& glue) {
|
|
m_diff_levels.reserve(scope_lvl() + 1, false);
|
|
glue = 0;
|
|
unsigned i = 0;
|
|
for (; i < num && glue < max_glue; i++) {
|
|
SASSERT(value(lits[i]) != l_undef);
|
|
unsigned lit_lvl = lvl(lits[i]);
|
|
if (!m_diff_levels[lit_lvl]) {
|
|
m_diff_levels[lit_lvl] = true;
|
|
glue++;
|
|
}
|
|
}
|
|
// reset m_diff_levels.
|
|
for (; i-- > 0; )
|
|
m_diff_levels[lvl(lits[i])] = false;
|
|
return glue < max_glue;
|
|
}
|
|
|
|
bool solver::num_diff_false_levels_below(unsigned num, literal const* lits, unsigned max_glue, unsigned& glue) {
|
|
m_diff_levels.reserve(scope_lvl() + 1, false);
|
|
glue = 0;
|
|
unsigned i = 0;
|
|
for (; i < num && glue < max_glue; i++) {
|
|
if (value(lits[i]) == l_false) {
|
|
unsigned lit_lvl = lvl(lits[i]);
|
|
if (!m_diff_levels[lit_lvl]) {
|
|
m_diff_levels[lit_lvl] = true;
|
|
glue++;
|
|
}
|
|
}
|
|
}
|
|
// reset m_diff_levels.
|
|
for (; i-- > 0;) {
|
|
literal lit = lits[i];
|
|
if (value(lit) == l_false) {
|
|
VERIFY(lvl(lit) < m_diff_levels.size());
|
|
m_diff_levels[lvl(lit)] = false;
|
|
}
|
|
}
|
|
return glue < max_glue;
|
|
}
|
|
|
|
|
|
/**
|
|
\brief Process an antecedent for lemma minimization.
|
|
*/
|
|
bool solver::process_antecedent_for_minimization(literal antecedent) {
|
|
bool_var var = antecedent.var();
|
|
unsigned var_lvl = lvl(var);
|
|
if (!is_marked(var) && var_lvl > 0) {
|
|
if (m_lvl_set.may_contain(var_lvl)) {
|
|
mark(var);
|
|
m_unmark.push_back(var);
|
|
m_lemma_min_stack.push_back(antecedent);
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
\brief Return true if lit is implied by other marked literals
|
|
and/or literals assigned at the base level.
|
|
The set lvl_set is used as an optimization.
|
|
The idea is to stop the recursive search with a failure
|
|
as soon as we find a literal assigned in a level that is not in lvl_set.
|
|
*/
|
|
bool solver::implied_by_marked(literal lit) {
|
|
m_lemma_min_stack.reset(); // avoid recursive function
|
|
m_lemma_min_stack.push_back(lit);
|
|
unsigned old_size = m_unmark.size();
|
|
|
|
while (!m_lemma_min_stack.empty()) {
|
|
lit = m_lemma_min_stack.back();
|
|
bool_var var = lit.var();
|
|
m_lemma_min_stack.pop_back();
|
|
justification const& js = m_justification[var];
|
|
switch(js.get_kind()) {
|
|
case justification::NONE:
|
|
// it is a decision variable from a previous scope level
|
|
if (lvl(var) > 0) {
|
|
reset_unmark(old_size);
|
|
return false;
|
|
}
|
|
break;
|
|
case justification::BINARY:
|
|
if (!process_antecedent_for_minimization(~(js.get_literal()))) {
|
|
reset_unmark(old_size);
|
|
return false;
|
|
}
|
|
break;
|
|
case justification::TERNARY:
|
|
if (!process_antecedent_for_minimization(~(js.get_literal1())) ||
|
|
!process_antecedent_for_minimization(~(js.get_literal2()))) {
|
|
reset_unmark(old_size);
|
|
return false;
|
|
}
|
|
break;
|
|
case justification::CLAUSE: {
|
|
clause & c = get_clause(js);
|
|
unsigned i = 0;
|
|
if (c[0].var() == var) {
|
|
i = 1;
|
|
}
|
|
else {
|
|
SASSERT(c[1].var() == var);
|
|
if (!process_antecedent_for_minimization(~c[0])) {
|
|
reset_unmark(old_size);
|
|
return false;
|
|
}
|
|
i = 2;
|
|
}
|
|
unsigned sz = c.size();
|
|
for (; i < sz; i++) {
|
|
if (!process_antecedent_for_minimization(~c[i])) {
|
|
reset_unmark(old_size);
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case justification::EXT_JUSTIFICATION: {
|
|
literal consequent(var, value(var) == l_false);
|
|
fill_ext_antecedents(consequent, js, false);
|
|
for (literal l : m_ext_antecedents) {
|
|
if (!process_antecedent_for_minimization(l)) {
|
|
reset_unmark(old_size);
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
TRACE("sat_conflict",
|
|
display_justification(tout << var << " ",js) << "\n";);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
\brief Restore the size of m_unmark to old_size, and
|
|
unmark variables at positions [old_size, m_unmark.size()).
|
|
*/
|
|
void solver::reset_unmark(unsigned old_size) {
|
|
unsigned curr_size = m_unmark.size();
|
|
for(unsigned i = old_size; i < curr_size; i++)
|
|
reset_mark(m_unmark[i]);
|
|
m_unmark.shrink(old_size);
|
|
}
|
|
|
|
/**
|
|
\brief Store the levels of the literals at m_lemma in the
|
|
approximated set m_lvl_set.
|
|
*/
|
|
void solver::updt_lemma_lvl_set() {
|
|
m_lvl_set.reset();
|
|
for (literal l : m_lemma)
|
|
m_lvl_set.insert(lvl(l));
|
|
}
|
|
|
|
/**
|
|
\brief Minimize lemma using binary resolution
|
|
*/
|
|
bool solver::minimize_lemma_binres() {
|
|
SASSERT(!m_lemma.empty());
|
|
SASSERT(m_unmark.empty());
|
|
unsigned sz = m_lemma.size();
|
|
unsigned num_reduced = 0;
|
|
for (unsigned i = 1; i < sz; ++i) {
|
|
mark_lit(m_lemma[i]);
|
|
}
|
|
watch_list const& wlist = get_wlist(m_lemma[0]);
|
|
for (watched const& w : wlist) {
|
|
if (w.is_binary_clause() && is_marked_lit(w.get_literal())) {
|
|
unmark_lit(~w.get_literal());
|
|
num_reduced++;
|
|
}
|
|
}
|
|
if (num_reduced > 0) {
|
|
unsigned j = 1;
|
|
for (unsigned i = 1; i < sz; ++i) {
|
|
if (is_marked_lit(m_lemma[i])) {
|
|
m_lemma[j++] = m_lemma[i];
|
|
unmark_lit(m_lemma[i]);
|
|
}
|
|
}
|
|
m_lemma.shrink(j);
|
|
}
|
|
|
|
return num_reduced > 0;
|
|
}
|
|
|
|
/**
|
|
\brief Minimize the number of literals in m_lemma. The main idea is to remove
|
|
literals that are implied by other literals in m_lemma and/or literals
|
|
assigned at level 0.
|
|
*/
|
|
bool solver::minimize_lemma() {
|
|
SASSERT(!m_lemma.empty());
|
|
SASSERT(m_unmark.empty());
|
|
updt_lemma_lvl_set();
|
|
|
|
unsigned sz = m_lemma.size();
|
|
unsigned i = 1; // the first literal is the FUIP
|
|
unsigned j = 1;
|
|
for (; i < sz; i++) {
|
|
literal l = m_lemma[i];
|
|
if (implied_by_marked(l)) {
|
|
m_unmark.push_back(l.var());
|
|
}
|
|
else {
|
|
m_lemma[j++] = m_lemma[i];
|
|
}
|
|
}
|
|
|
|
reset_unmark(0);
|
|
m_lemma.shrink(j);
|
|
m_stats.m_minimized_lits += sz - j;
|
|
return j < sz;
|
|
}
|
|
|
|
/**
|
|
\brief Reset the mark of the variables in the current lemma.
|
|
*/
|
|
void solver::reset_lemma_var_marks() {
|
|
if (m_config.m_branching_heuristic == BH_VSIDS) {
|
|
update_lrb_reasoned();
|
|
}
|
|
literal_vector::iterator it = m_lemma.begin();
|
|
literal_vector::iterator end = m_lemma.end();
|
|
SASSERT(!is_marked((*it).var()));
|
|
++it;
|
|
for(; it != end; ++it) {
|
|
bool_var var = (*it).var();
|
|
reset_mark(var);
|
|
}
|
|
}
|
|
|
|
void solver::update_lrb_reasoned() {
|
|
unsigned sz = m_lemma.size();
|
|
SASSERT(!is_marked(m_lemma[0].var()));
|
|
mark(m_lemma[0].var());
|
|
for (unsigned i = m_lemma.size(); i-- > 0; ) {
|
|
justification js = m_justification[m_lemma[i].var()];
|
|
switch (js.get_kind()) {
|
|
case justification::NONE:
|
|
break;
|
|
case justification::BINARY:
|
|
update_lrb_reasoned(js.get_literal());
|
|
break;
|
|
case justification::TERNARY:
|
|
update_lrb_reasoned(js.get_literal1());
|
|
update_lrb_reasoned(js.get_literal2());
|
|
break;
|
|
case justification::CLAUSE: {
|
|
clause & c = get_clause(js);
|
|
for (literal l : c) {
|
|
update_lrb_reasoned(l);
|
|
}
|
|
break;
|
|
}
|
|
case justification::EXT_JUSTIFICATION: {
|
|
fill_ext_antecedents(~m_lemma[i], js, true);
|
|
for (literal l : m_ext_antecedents) {
|
|
update_lrb_reasoned(l);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
reset_mark(m_lemma[0].var());
|
|
for (unsigned i = m_lemma.size(); i-- > sz; ) {
|
|
reset_mark(m_lemma[i].var());
|
|
}
|
|
m_lemma.shrink(sz);
|
|
}
|
|
|
|
void solver::update_lrb_reasoned(literal lit) {
|
|
bool_var v = lit.var();
|
|
if (!is_marked(v)) {
|
|
mark(v);
|
|
m_reasoned[v]++;
|
|
inc_activity(v);
|
|
m_lemma.push_back(lit);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Apply dynamic subsumption resolution to new lemma.
|
|
Only binary and ternary clauses are used.
|
|
*/
|
|
bool solver::dyn_sub_res() {
|
|
unsigned sz = m_lemma.size();
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
mark_lit(m_lemma[i]);
|
|
}
|
|
|
|
literal l0 = m_lemma[0];
|
|
// l0 is the FUIP, and we never remove the FUIP.
|
|
//
|
|
// In the following loop, we use unmark_lit(l) to remove a
|
|
// literal from m_lemma.
|
|
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
literal l = m_lemma[i];
|
|
if (!is_marked_lit(l))
|
|
continue; // literal was eliminated
|
|
// first use watch lists
|
|
watch_list const & wlist = get_wlist(~l);
|
|
for (watched const& w : wlist) {
|
|
// In this for-loop, the conditions l0 != ~l2 and l0 != ~l3
|
|
// are not really needed if the solver does not miss unit propagations.
|
|
// However, we add them anyway because we don't want to rely on this
|
|
// property of the propagator.
|
|
// For example, if this property is relaxed in the future, then the code
|
|
// without the conditions l0 != ~l2 and l0 != ~l3 may remove the FUIP
|
|
if (w.is_binary_clause()) {
|
|
literal l2 = w.get_literal();
|
|
if (is_marked_lit(~l2) && l0 != ~l2) {
|
|
// eliminate ~l2 from lemma because we have the clause l \/ l2
|
|
unmark_lit(~l2);
|
|
}
|
|
}
|
|
else if (w.is_ternary_clause()) {
|
|
literal l2 = w.get_literal1();
|
|
literal l3 = w.get_literal2();
|
|
if (is_marked_lit(l2) && is_marked_lit(~l3) && l0 != ~l3) {
|
|
// eliminate ~l3 from lemma because we have the clause l \/ l2 \/ l3
|
|
unmark_lit(~l3);
|
|
}
|
|
else if (is_marked_lit(~l2) && is_marked_lit(l3) && l0 != ~l2) {
|
|
// eliminate ~l2 from lemma because we have the clause l \/ l2 \/ l3
|
|
unmark_lit(~l2);
|
|
}
|
|
}
|
|
else {
|
|
// May miss some binary/ternary clauses, but that is ok.
|
|
// I sort the watch lists at every simplification round.
|
|
break;
|
|
}
|
|
}
|
|
// try to use cached implication if available
|
|
literal_vector * implied_lits = m_probing.cached_implied_lits(~l);
|
|
if (implied_lits) {
|
|
for (literal l2 : *implied_lits) {
|
|
// Here, we must check l0 != ~l2.
|
|
// l \/ l2 is an implied binary clause.
|
|
// However, it may have been deduced using a lemma that has been deleted.
|
|
// For example, consider the following sequence of events:
|
|
//
|
|
// 1. Initial clause database:
|
|
//
|
|
// l \/ ~p1
|
|
// p1 \/ ~p2
|
|
// p2 \/ ~p3
|
|
// p3 \/ ~p4
|
|
// q1 \/ q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
|
// q1 \/ ~q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
|
// ~q1 \/ q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
|
// ~q1 \/ ~q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
|
// ...
|
|
//
|
|
// 2. Now suppose we learned the lemma
|
|
//
|
|
// p1 \/ p2 \/ p3 \/ p4 \/ l2 (*)
|
|
//
|
|
// 3. Probing is executed and we notice hat (~l => l2) when we assign l to false.
|
|
// That is, l \/ l2 is an implied clause. Note that probing does not add
|
|
// this clause to the clause database (there are too many).
|
|
//
|
|
// 4. Lemma (*) is deleted (garbage collected).
|
|
//
|
|
// 5. l is decided to be false, p1, p2, p3 and p4 are propagated using BCP,
|
|
// but l2 is not since the lemma (*) was deleted.
|
|
//
|
|
// Probing module still "knows" that l \/ l2 is valid binary clause
|
|
//
|
|
// 6. A new lemma is created where ~l2 is the FUIP and the lemma also contains l.
|
|
// If we remove l0 != ~l2 may try to delete the FUIP.
|
|
if (is_marked_lit(~l2) && l0 != ~l2) {
|
|
// eliminate ~l2 from lemma because we have the clause l \/ l2
|
|
unmark_lit(~l2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// can't eliminat FUIP
|
|
SASSERT(is_marked_lit(m_lemma[0]));
|
|
|
|
unsigned j = 0;
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
literal l = m_lemma[i];
|
|
if (is_marked_lit(l)) {
|
|
unmark_lit(l);
|
|
m_lemma[j] = l;
|
|
j++;
|
|
}
|
|
}
|
|
|
|
m_stats.m_dyn_sub_res += sz - j;
|
|
|
|
SASSERT(j >= 1);
|
|
m_lemma.shrink(j);
|
|
return j < sz;
|
|
}
|
|
|
|
|
|
// -----------------------
|
|
//
|
|
// Backtracking
|
|
//
|
|
// -----------------------
|
|
void solver::push() {
|
|
SASSERT(!inconsistent());
|
|
TRACE("sat_verbose", tout << "q:" << m_qhead << " trail: " << m_trail.size() << "\n";);
|
|
SASSERT(m_qhead == m_trail.size());
|
|
m_scopes.push_back(scope());
|
|
scope & s = m_scopes.back();
|
|
m_scope_lvl++;
|
|
s.m_trail_lim = m_trail.size();
|
|
s.m_clauses_to_reinit_lim = m_clauses_to_reinit.size();
|
|
s.m_inconsistent = m_inconsistent;
|
|
if (m_ext) {
|
|
m_vars_lim.push(m_active_vars.size());
|
|
m_ext->push();
|
|
}
|
|
}
|
|
|
|
void solver::pop_reinit(unsigned num_scopes) {
|
|
pop(num_scopes);
|
|
exchange_par();
|
|
reinit_assumptions();
|
|
m_stats.m_units = init_trail_size();
|
|
}
|
|
|
|
void solver::pop_vars(unsigned num_scopes) {
|
|
//integrity_checker check(*this);
|
|
//check.check_reinit_stack();
|
|
m_vars_to_reinit.reset();
|
|
unsigned old_num_vars = m_vars_lim.pop(num_scopes);
|
|
if (old_num_vars == m_active_vars.size())
|
|
return;
|
|
unsigned sz = m_active_vars.size(), j = old_num_vars;
|
|
unsigned new_lvl = m_scopes.size() - num_scopes;
|
|
|
|
gc_reinit_stack(num_scopes);
|
|
|
|
// check.check_reinit_stack();
|
|
init_visited();
|
|
unsigned old_sz = m_scopes[new_lvl].m_clauses_to_reinit_lim;
|
|
for (unsigned i = m_clauses_to_reinit.size(); i-- > old_sz; ) {
|
|
clause_wrapper const& cw = m_clauses_to_reinit[i];
|
|
for (unsigned j = cw.size(); j-- > 0; )
|
|
mark_visited(cw[j].var());
|
|
}
|
|
for (literal lit : m_lemma)
|
|
mark_visited(lit.var());
|
|
|
|
auto is_active = [&](bool_var v) {
|
|
return value(v) != l_undef && lvl(v) <= new_lvl;
|
|
};
|
|
|
|
for (unsigned i = old_num_vars; i < sz; ++i) {
|
|
bool_var v = m_active_vars[i];
|
|
if (is_external(v) || is_visited(v) || is_active(v)) {
|
|
m_vars_to_reinit.push_back(v);
|
|
m_active_vars[j++] = v;
|
|
m_var_scope[v] = new_lvl;
|
|
}
|
|
else {
|
|
set_eliminated(v, true);
|
|
m_vars_to_free.push_back(v);
|
|
}
|
|
}
|
|
m_active_vars.shrink(j);
|
|
|
|
auto cleanup_watch = [&](literal lit) {
|
|
for (auto const& w : get_wlist(lit)) {
|
|
IF_VERBOSE(0, verbose_stream() << "cleanup: " << lit << " " << w.is_binary_clause() << "\n");
|
|
}
|
|
};
|
|
for (bool_var v : m_vars_to_free) {
|
|
cleanup_watch(literal(v, false));
|
|
cleanup_watch(literal(v, true));
|
|
|
|
}
|
|
TRACE("sat",
|
|
tout << "clauses to reinit: " << (m_clauses_to_reinit.size() - old_sz) << "\n";
|
|
tout << "new level: " << new_lvl << "\n";
|
|
tout << "vars to reinit: " << m_vars_to_reinit << "\n";
|
|
tout << "free vars: " << bool_var_vector(m_vars_to_free) << "\n";
|
|
for (unsigned i = m_clauses_to_reinit.size(); i-- > old_sz; )
|
|
tout << "reinit: " << m_clauses_to_reinit[i] << "\n";
|
|
display(tout););
|
|
}
|
|
|
|
void solver::shrink_vars(unsigned v) {
|
|
unsigned j = 0;
|
|
for (bool_var w : m_free_vars)
|
|
if (w < v)
|
|
m_free_vars[j++] = w;
|
|
m_free_vars.shrink(j);
|
|
|
|
for (bool_var w = m_justification.size(); w-- > v;) {
|
|
m_case_split_queue.del_var_eh(w);
|
|
m_probing.reset_cache(literal(w, true));
|
|
m_probing.reset_cache(literal(w, false));
|
|
}
|
|
m_watches.shrink(2*v);
|
|
m_assignment.shrink(2*v);
|
|
m_justification.shrink(v);
|
|
m_decision.shrink(v);
|
|
m_eliminated.shrink(v);
|
|
m_external.shrink(v);
|
|
m_var_scope.shrink(v);
|
|
m_touched.shrink(v);
|
|
m_activity.shrink(v);
|
|
m_mark.shrink(v);
|
|
m_lit_mark.shrink(2*v);
|
|
m_phase.shrink(v);
|
|
m_best_phase.shrink(v);
|
|
m_prev_phase.shrink(v);
|
|
m_assigned_since_gc.shrink(v);
|
|
m_simplifier.reset_todos();
|
|
}
|
|
|
|
void solver::pop(unsigned num_scopes) {
|
|
if (num_scopes == 0)
|
|
return;
|
|
if (m_ext) {
|
|
pop_vars(num_scopes);
|
|
m_ext->pop(num_scopes);
|
|
}
|
|
SASSERT(num_scopes <= scope_lvl());
|
|
unsigned new_lvl = scope_lvl() - num_scopes;
|
|
scope & s = m_scopes[new_lvl];
|
|
m_inconsistent = false; // TBD: use model seems to make this redundant: s.m_inconsistent;
|
|
unassign_vars(s.m_trail_lim, new_lvl);
|
|
for (bool_var v : m_vars_to_free)
|
|
m_case_split_queue.del_var_eh(v);
|
|
m_scope_lvl -= num_scopes;
|
|
reinit_clauses(s.m_clauses_to_reinit_lim);
|
|
m_scopes.shrink(new_lvl);
|
|
if (m_ext) {
|
|
m_ext->pop_reinit();
|
|
m_free_vars.append(m_vars_to_free);
|
|
m_vars_to_free.reset();
|
|
}
|
|
}
|
|
|
|
void solver::unassign_vars(unsigned old_sz, unsigned new_lvl) {
|
|
SASSERT(old_sz <= m_trail.size());
|
|
SASSERT(m_replay_assign.empty());
|
|
for (unsigned i = m_trail.size(); i-- > old_sz; ) {
|
|
literal l = m_trail[i];
|
|
bool_var v = l.var();
|
|
if (lvl(v) <= new_lvl) {
|
|
m_replay_assign.push_back(l);
|
|
continue;
|
|
}
|
|
m_assignment[l.index()] = l_undef;
|
|
m_assignment[(~l).index()] = l_undef;
|
|
SASSERT(value(v) == l_undef);
|
|
m_case_split_queue.unassign_var_eh(v);
|
|
if (m_config.m_anti_exploration) {
|
|
m_canceled[v] = m_stats.m_conflict;
|
|
}
|
|
}
|
|
m_trail.shrink(old_sz);
|
|
m_qhead = m_trail.size();
|
|
if (!m_replay_assign.empty()) IF_VERBOSE(20, verbose_stream() << "replay assign: " << m_replay_assign.size() << "\n");
|
|
CTRACE("sat", !m_replay_assign.empty(), tout << "replay-assign: " << m_replay_assign << "\n";);
|
|
for (unsigned i = m_replay_assign.size(); i-- > 0; ) {
|
|
literal lit = m_replay_assign[i];
|
|
m_trail.push_back(lit);
|
|
}
|
|
|
|
m_replay_assign.reset();
|
|
}
|
|
|
|
void solver::reinit_clauses(unsigned old_sz) {
|
|
unsigned sz = m_clauses_to_reinit.size();
|
|
SASSERT(old_sz <= sz);
|
|
unsigned j = old_sz;
|
|
for (unsigned i = old_sz; i < sz; i++) {
|
|
clause_wrapper cw = m_clauses_to_reinit[i];
|
|
bool reinit = false;
|
|
if (cw.is_binary()) {
|
|
if (propagate_bin_clause(cw[0], cw[1]) && !at_base_lvl())
|
|
m_clauses_to_reinit[j++] = cw;
|
|
else if (has_variables_to_reinit(cw[0], cw[1]) && !at_base_lvl())
|
|
m_clauses_to_reinit[j++] = cw;
|
|
}
|
|
else {
|
|
clause & c = *(cw.get_clause());
|
|
if (ENABLE_TERNARY && c.size() == 3) {
|
|
if (propagate_ter_clause(c) && !at_base_lvl())
|
|
m_clauses_to_reinit[j++] = cw;
|
|
else if (has_variables_to_reinit(c) && !at_base_lvl())
|
|
m_clauses_to_reinit[j++] = cw;
|
|
else
|
|
c.set_reinit_stack(false);
|
|
continue;
|
|
}
|
|
detach_clause(c);
|
|
attach_clause(c, reinit);
|
|
if (reinit && !at_base_lvl())
|
|
// clause propagated literal, must keep it in the reinit stack.
|
|
m_clauses_to_reinit[j++] = cw;
|
|
else if (has_variables_to_reinit(c) && !at_base_lvl())
|
|
m_clauses_to_reinit[j++] = cw;
|
|
else
|
|
c.set_reinit_stack(false);
|
|
}
|
|
}
|
|
m_clauses_to_reinit.shrink(j);
|
|
}
|
|
|
|
//
|
|
// All new clauses that are added to the solver
|
|
// are relative to the user-scope literals.
|
|
//
|
|
|
|
void solver::user_push() {
|
|
|
|
pop_to_base_level();
|
|
m_free_var_freeze.push_back(m_free_vars);
|
|
m_free_vars.reset(); // resetting free_vars forces new variables to be assigned above new_v
|
|
bool_var new_v = mk_var(true, false);
|
|
literal lit = literal(new_v, false);
|
|
m_user_scope_literals.push_back(lit);
|
|
m_cut_simplifier = nullptr; // for simplicity, wipe it out
|
|
if (m_ext)
|
|
m_ext->user_push();
|
|
TRACE("sat", tout << "user_push: " << lit << "\n";);
|
|
}
|
|
|
|
void solver::user_pop(unsigned num_scopes) {
|
|
unsigned old_sz = m_user_scope_literals.size() - num_scopes;
|
|
bool_var max_var = m_user_scope_literals[old_sz].var();
|
|
m_user_scope_literals.shrink(old_sz);
|
|
|
|
pop_to_base_level();
|
|
if (m_ext)
|
|
m_ext->user_pop(num_scopes);
|
|
|
|
gc_vars(max_var);
|
|
TRACE("sat", display(tout););
|
|
|
|
m_qhead = 0;
|
|
unsigned j = 0;
|
|
for (bool_var v : m_free_vars)
|
|
if (v < max_var)
|
|
m_free_vars[j++] = v;
|
|
m_free_vars.shrink(j);
|
|
m_free_vars.append(m_free_var_freeze[old_sz]);
|
|
m_free_var_freeze.shrink(old_sz);
|
|
scoped_suspend_rlimit _sp(m_rlimit);
|
|
propagate(false);
|
|
}
|
|
|
|
void solver::pop_to_base_level() {
|
|
reset_assumptions();
|
|
pop(scope_lvl());
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Misc
|
|
//
|
|
// -----------------------
|
|
|
|
void solver::updt_params(params_ref const & p) {
|
|
m_params.append(p);
|
|
m_config.updt_params(p);
|
|
m_simplifier.updt_params(p);
|
|
m_asymm_branch.updt_params(p);
|
|
m_probing.updt_params(p);
|
|
m_scc.updt_params(p);
|
|
m_rand.set_seed(m_config.m_random_seed);
|
|
m_step_size = m_config.m_step_size_init;
|
|
m_drat.updt_config();
|
|
m_fast_glue_avg.set_alpha(m_config.m_fast_glue_avg);
|
|
m_slow_glue_avg.set_alpha(m_config.m_slow_glue_avg);
|
|
m_fast_glue_backup.set_alpha(m_config.m_fast_glue_avg);
|
|
m_slow_glue_backup.set_alpha(m_config.m_slow_glue_avg);
|
|
m_trail_avg.set_alpha(m_config.m_slow_glue_avg);
|
|
|
|
if (m_config.m_cut_simplify && !m_cut_simplifier && m_user_scope_literals.empty()) {
|
|
m_cut_simplifier = alloc(cut_simplifier, *this);
|
|
}
|
|
}
|
|
|
|
void solver::collect_param_descrs(param_descrs & d) {
|
|
config::collect_param_descrs(d);
|
|
simplifier::collect_param_descrs(d);
|
|
asymm_branch::collect_param_descrs(d);
|
|
probing::collect_param_descrs(d);
|
|
scc::collect_param_descrs(d);
|
|
}
|
|
|
|
void solver::collect_statistics(statistics & st) const {
|
|
m_stats.collect_statistics(st);
|
|
m_cleaner.collect_statistics(st);
|
|
m_simplifier.collect_statistics(st);
|
|
m_scc.collect_statistics(st);
|
|
m_asymm_branch.collect_statistics(st);
|
|
m_probing.collect_statistics(st);
|
|
if (m_ext) m_ext->collect_statistics(st);
|
|
if (m_local_search) m_local_search->collect_statistics(st);
|
|
if (m_cut_simplifier) m_cut_simplifier->collect_statistics(st);
|
|
st.copy(m_aux_stats);
|
|
}
|
|
|
|
void solver::reset_statistics() {
|
|
m_stats.reset();
|
|
m_cleaner.reset_statistics();
|
|
m_simplifier.reset_statistics();
|
|
m_asymm_branch.reset_statistics();
|
|
m_probing.reset_statistics();
|
|
m_aux_stats.reset();
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Activity related stuff
|
|
//
|
|
// -----------------------
|
|
|
|
void solver::rescale_activity() {
|
|
SASSERT(m_config.m_branching_heuristic == BH_VSIDS);
|
|
for (unsigned& act : m_activity) {
|
|
act >>= 14;
|
|
}
|
|
m_activity_inc >>= 14;
|
|
}
|
|
|
|
void solver::update_chb_activity(bool is_sat, unsigned qhead) {
|
|
SASSERT(m_config.m_branching_heuristic == BH_CHB);
|
|
double multiplier = m_config.m_reward_offset * (is_sat ? m_config.m_reward_multiplier : 1.0);
|
|
for (unsigned i = qhead; i < m_trail.size(); ++i) {
|
|
auto v = m_trail[i].var();
|
|
auto d = m_stats.m_conflict - m_last_conflict[v] + 1;
|
|
if (d == 0) d = 1;
|
|
auto reward = multiplier / d;
|
|
auto activity = m_activity[v];
|
|
set_activity(v, static_cast<unsigned>(m_step_size * reward + ((1.0 - m_step_size) * activity)));
|
|
}
|
|
}
|
|
|
|
void solver::move_to_front(bool_var b) {
|
|
if (b >= num_vars())
|
|
return;
|
|
if (m_case_split_queue.empty())
|
|
return;
|
|
bool_var next = m_case_split_queue.min_var();
|
|
auto next_act = m_activity[next];
|
|
set_activity(b, next_act + 1);
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Iterators
|
|
//
|
|
// -----------------------
|
|
void solver::collect_bin_clauses(svector<bin_clause> & r, bool redundant, bool learned_only) const {
|
|
SASSERT(redundant || !learned_only);
|
|
unsigned sz = m_watches.size();
|
|
for (unsigned l_idx = 0; l_idx < sz; l_idx++) {
|
|
literal l = to_literal(l_idx);
|
|
l.neg();
|
|
for (watched const& w : m_watches[l_idx]) {
|
|
if (!w.is_binary_clause())
|
|
continue;
|
|
if (!redundant && w.is_learned())
|
|
continue;
|
|
else if (redundant && learned_only && !w.is_learned())
|
|
continue;
|
|
literal l2 = w.get_literal();
|
|
if (l.index() > l2.index())
|
|
continue;
|
|
TRACE("cleanup_bug", tout << "collected: " << l << " " << l2 << "\n";);
|
|
r.push_back(bin_clause(l, l2));
|
|
}
|
|
}
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Debugging
|
|
//
|
|
// -----------------------
|
|
bool solver::check_invariant() const {
|
|
if (!m_rlimit.inc()) return true;
|
|
integrity_checker checker(*this);
|
|
VERIFY(checker());
|
|
VERIFY(!m_ext || m_ext->validate());
|
|
return true;
|
|
}
|
|
|
|
bool solver::check_marks() const {
|
|
for (bool_var v = 0; v < num_vars(); v++) {
|
|
SASSERT(!is_marked(v));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::ostream& solver::display_model(std::ostream& out) const {
|
|
unsigned num = num_vars();
|
|
for (bool_var v = 0; v < num; v++) {
|
|
out << v << ": " << m_model[v] << "\n";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
void solver::display_binary(std::ostream & out) const {
|
|
unsigned sz = m_watches.size();
|
|
for (unsigned l_idx = 0; l_idx < sz; l_idx++) {
|
|
literal l = to_literal(l_idx);
|
|
l.neg();
|
|
for (watched const& w : m_watches[l_idx]) {
|
|
if (!w.is_binary_clause())
|
|
continue;
|
|
literal l2 = w.get_literal();
|
|
if (l.index() > l2.index())
|
|
continue;
|
|
out << "(" << l << " " << l2 << ")";
|
|
if (w.is_learned()) out << "*";
|
|
out << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void solver::display_units(std::ostream & out) const {
|
|
unsigned level = 0;
|
|
for (literal lit : m_trail) {
|
|
if (lvl(lit) > level) {
|
|
level = lvl(lit);
|
|
out << level << ": ";
|
|
}
|
|
else {
|
|
out << " ";
|
|
}
|
|
out << lit << " ";
|
|
if (lvl(lit) < level) {
|
|
out << "@" << lvl(lit) << " ";
|
|
}
|
|
display_justification(out, m_justification[lit.var()]) << "\n";
|
|
}
|
|
}
|
|
|
|
void solver::display(std::ostream & out) const {
|
|
out << "(sat\n";
|
|
display_units(out);
|
|
display_binary(out);
|
|
out << m_clauses << m_learned;
|
|
if (m_ext) {
|
|
m_ext->display(out);
|
|
}
|
|
out << ")\n";
|
|
}
|
|
|
|
std::ostream& solver::display_justification(std::ostream & out, justification const& js) const {
|
|
switch (js.get_kind()) {
|
|
case justification::NONE:
|
|
out << "none @" << js.level();
|
|
break;
|
|
case justification::BINARY:
|
|
out << "binary " << js.get_literal() << "@" << lvl(js.get_literal());
|
|
break;
|
|
case justification::TERNARY:
|
|
out << "ternary " << js.get_literal1() << "@" << lvl(js.get_literal1()) << " ";
|
|
out << js.get_literal2() << "@" << lvl(js.get_literal2());
|
|
break;
|
|
case justification::CLAUSE: {
|
|
out << "(";
|
|
bool first = true;
|
|
for (literal l : get_clause(js)) {
|
|
if (first) first = false; else out << " ";
|
|
out << l << "@" << lvl(l);
|
|
}
|
|
out << ")";
|
|
break;
|
|
}
|
|
case justification::EXT_JUSTIFICATION:
|
|
if (m_ext)
|
|
m_ext->display_justification(out << "ext ", js.get_ext_justification_idx());
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
unsigned solver::num_clauses() const {
|
|
unsigned num_cls = m_trail.size(); // units;
|
|
unsigned l_idx = 0;
|
|
for (auto const& wl : m_watches) {
|
|
literal l = ~to_literal(l_idx++);
|
|
for (auto const& w : wl) {
|
|
if (w.is_binary_clause() && l.index() < w.get_literal().index())
|
|
num_cls++;
|
|
}
|
|
}
|
|
return num_cls + m_clauses.size() + m_learned.size();
|
|
}
|
|
|
|
void solver::num_binary(unsigned& given, unsigned& redundant) const {
|
|
given = redundant = 0;
|
|
unsigned l_idx = 0;
|
|
for (auto const& wl : m_watches) {
|
|
literal l = ~to_literal(l_idx++);
|
|
for (auto const& w : wl) {
|
|
if (w.is_binary_clause() && l.index() < w.get_literal().index()) {
|
|
if (w.is_learned()) ++redundant; else ++given;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void solver::display_dimacs(std::ostream & out) const {
|
|
out << "p cnf " << num_vars() << " " << num_clauses() << "\n";
|
|
for (literal lit : m_trail) {
|
|
out << dimacs_lit(lit) << " 0\n";
|
|
}
|
|
unsigned l_idx = 0;
|
|
for (auto const& wlist : m_watches) {
|
|
literal l = ~to_literal(l_idx++);
|
|
for (auto const& w : wlist) {
|
|
if (w.is_binary_clause() && l.index() < w.get_literal().index())
|
|
out << dimacs_lit(l) << " " << dimacs_lit(w.get_literal()) << " 0\n";
|
|
}
|
|
}
|
|
clause_vector const * vs[2] = { &m_clauses, &m_learned };
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
clause_vector const & cs = *(vs[i]);
|
|
for (auto cp : cs) {
|
|
for (literal l : *cp) {
|
|
out << dimacs_lit(l) << " ";
|
|
}
|
|
out << "0\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void solver::display_wcnf(std::ostream & out, unsigned sz, literal const* lits, unsigned const* weights) const {
|
|
unsigned max_weight = 0;
|
|
for (unsigned i = 0; i < sz; ++i)
|
|
max_weight += weights[i];
|
|
++max_weight;
|
|
|
|
if (m_ext)
|
|
throw default_exception("wcnf is only supported for pure CNF problems");
|
|
|
|
out << "p wcnf " << num_vars() << " " << num_clauses() + sz << " " << max_weight << "\n";
|
|
out << "c soft " << sz << "\n";
|
|
|
|
for (literal lit : m_trail)
|
|
out << max_weight << " " << dimacs_lit(lit) << " 0\n";
|
|
unsigned l_idx = 0;
|
|
for (watch_list const& wlist : m_watches) {
|
|
literal l = ~to_literal(l_idx);
|
|
for (watched const& w : wlist) {
|
|
if (w.is_binary_clause() && l.index() < w.get_literal().index())
|
|
out << max_weight << " " << dimacs_lit(l) << " " << dimacs_lit(w.get_literal()) << " 0\n";
|
|
}
|
|
++l_idx;
|
|
}
|
|
clause_vector const * vs[2] = { &m_clauses, &m_learned };
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
clause_vector const & cs = *(vs[i]);
|
|
for (clause const* cp : cs) {
|
|
clause const & c = *cp;
|
|
out << max_weight << " ";
|
|
for (literal l : c)
|
|
out << dimacs_lit(l) << " ";
|
|
out << "0\n";
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
out << weights[i] << " " << lits[i] << " 0\n";
|
|
}
|
|
out.flush();
|
|
}
|
|
|
|
void solver::display_watches(std::ostream & out, literal lit) const {
|
|
display_watch_list(out << lit << ": ", get_wlist(lit)) << "\n";
|
|
}
|
|
|
|
void solver::display_watches(std::ostream & out) const {
|
|
unsigned l_idx = 0;
|
|
for (watch_list const& wlist : m_watches) {
|
|
literal l = to_literal(l_idx++);
|
|
if (!wlist.empty())
|
|
display_watch_list(out << l << ": ", wlist) << "\n";
|
|
}
|
|
}
|
|
|
|
std::ostream& solver::display_watch_list(std::ostream& out, watch_list const& wl) const {
|
|
return sat::display_watch_list(out, cls_allocator(), wl, m_ext.get());
|
|
}
|
|
|
|
void solver::display_assignment(std::ostream & out) const {
|
|
out << m_trail << "\n";
|
|
}
|
|
|
|
/**
|
|
\brief Return true, if c is a clause containing one unassigned literal.
|
|
*/
|
|
bool solver::is_unit(clause const & c) const {
|
|
bool found_undef = false;
|
|
for (literal l : c) {
|
|
switch (value(l)) {
|
|
case l_undef:
|
|
if (found_undef)
|
|
return false;
|
|
found_undef = true;
|
|
break;
|
|
case l_true:
|
|
return false;
|
|
case l_false:
|
|
break;
|
|
}
|
|
}
|
|
return found_undef;
|
|
}
|
|
|
|
/**
|
|
\brief Return true, if all literals in c are assigned to false.
|
|
*/
|
|
bool solver::is_empty(clause const & c) const {
|
|
for (literal lit : c)
|
|
if (value(lit) != l_false)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool solver::check_missed_propagation(clause_vector const & cs) const {
|
|
for (clause* cp : cs) {
|
|
clause const & c = *cp;
|
|
if (c.frozen())
|
|
continue;
|
|
if (is_empty(c) || is_unit(c)) {
|
|
TRACE("sat_missed_prop", tout << "missed_propagation: " << c << "\n";
|
|
for (literal l : c) tout << l << ": " << value(l) << "\n";);
|
|
UNREACHABLE();
|
|
}
|
|
SASSERT(!is_empty(c));
|
|
SASSERT(!is_unit(c));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool solver::check_missed_propagation() const {
|
|
if (inconsistent())
|
|
return true;
|
|
return check_missed_propagation(m_clauses) && check_missed_propagation(m_learned);
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Simplification
|
|
//
|
|
// -----------------------
|
|
bool solver::do_cleanup(bool force) {
|
|
if (m_conflicts_since_init == 0 && !force)
|
|
return false;
|
|
if (at_base_lvl() && !inconsistent() && m_cleaner(force)) {
|
|
if (m_ext)
|
|
m_ext->clauses_modifed();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void solver::simplify(bool redundant) {
|
|
if (!at_base_lvl() || inconsistent())
|
|
return;
|
|
m_simplifier(redundant);
|
|
m_simplifier.finalize();
|
|
if (m_ext)
|
|
m_ext->clauses_modifed();
|
|
}
|
|
|
|
unsigned solver::scc_bin() {
|
|
if (!at_base_lvl() || inconsistent())
|
|
return 0;
|
|
unsigned r = m_scc();
|
|
if (r > 0 && m_ext)
|
|
m_ext->clauses_modifed();
|
|
return r;
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Extraction of mutexes
|
|
//
|
|
// -----------------------
|
|
|
|
struct neg_literal {
|
|
unsigned negate(unsigned idx) {
|
|
return (~to_literal(idx)).index();
|
|
}
|
|
};
|
|
|
|
lbool solver::find_mutexes(literal_vector const& lits, vector<literal_vector> & mutexes) {
|
|
max_cliques<neg_literal> mc;
|
|
m_user_bin_clauses.reset();
|
|
// m_binary_clause_graph.reset();
|
|
collect_bin_clauses(m_user_bin_clauses, true, false);
|
|
hashtable<literal_pair, pair_hash<literal_hash, literal_hash>, default_eq<literal_pair> > seen_bc;
|
|
for (auto const& b : m_user_bin_clauses) {
|
|
literal l1 = b.first;
|
|
literal l2 = b.second;
|
|
literal_pair p(l1, l2);
|
|
if (!seen_bc.contains(p)) {
|
|
seen_bc.insert(p);
|
|
mc.add_edge(l1.index(), l2.index());
|
|
}
|
|
}
|
|
vector<unsigned_vector> _mutexes;
|
|
literal_vector _lits(lits);
|
|
if (m_ext) {
|
|
m_ext->find_mutexes(_lits, mutexes);
|
|
}
|
|
unsigned_vector ps;
|
|
for (literal lit : _lits)
|
|
ps.push_back(lit.index());
|
|
mc.cliques2(ps, _mutexes);
|
|
vector<vector<literal_vector>> sorted;
|
|
for (auto const& mux : _mutexes) {
|
|
literal_vector clique;
|
|
sorted.reserve(mux.size() + 1);
|
|
for (auto const& idx : mux)
|
|
clique.push_back(to_literal(idx));
|
|
sorted[mux.size()].push_back(clique);
|
|
}
|
|
for (unsigned i = sorted.size(); i-- > 0; )
|
|
mutexes.append(sorted[i]);
|
|
return l_true;
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Consequence generation.
|
|
//
|
|
// -----------------------
|
|
|
|
static void prune_unfixed(sat::literal_vector& lambda, sat::model const& m) {
|
|
for (unsigned i = 0; i < lambda.size(); ++i) {
|
|
if ((m[lambda[i].var()] == l_false) != lambda[i].sign()) {
|
|
lambda[i] = lambda.back();
|
|
lambda.pop_back();
|
|
--i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Algorithm 7: Corebased Algorithm with Chunking
|
|
|
|
static void back_remove(sat::literal_vector& lits, sat::literal l) {
|
|
for (unsigned i = lits.size(); i > 0; ) {
|
|
--i;
|
|
if (lits[i] == l) {
|
|
lits[i] = lits.back();
|
|
lits.pop_back();
|
|
return;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
static void brute_force_consequences(sat::solver& s, sat::literal_vector const& asms, sat::literal_vector const& gamma, vector<sat::literal_vector>& conseq) {
|
|
for (literal lit : gamma) {
|
|
sat::literal_vector asms1(asms);
|
|
asms1.push_back(~lit);
|
|
lbool r = s.check(asms1.size(), asms1.data());
|
|
if (r == l_false) {
|
|
conseq.push_back(s.get_core());
|
|
}
|
|
}
|
|
}
|
|
|
|
static lbool core_chunking(sat::solver& s, model const& m, sat::bool_var_vector const& vars, sat::literal_vector const& asms, vector<sat::literal_vector>& conseq, unsigned K) {
|
|
sat::literal_vector lambda;
|
|
for (bool_var v : vars) {
|
|
lambda.push_back(sat::literal(v, m[v] == l_false));
|
|
}
|
|
while (!lambda.empty()) {
|
|
IF_VERBOSE(1, verbose_stream() << "(sat-backbone-core " << lambda.size() << " " << conseq.size() << ")\n";);
|
|
unsigned k = std::min(K, lambda.size());
|
|
sat::literal_vector gamma, omegaN;
|
|
for (unsigned i = 0; i < k; ++i) {
|
|
sat::literal l = lambda[lambda.size() - i - 1];
|
|
gamma.push_back(l);
|
|
omegaN.push_back(~l);
|
|
}
|
|
while (true) {
|
|
sat::literal_vector asms1(asms);
|
|
asms1.append(omegaN);
|
|
lbool r = s.check(asms1.size(), asms1.data());
|
|
if (r == l_true) {
|
|
IF_VERBOSE(1, verbose_stream() << "(sat) " << omegaN << "\n";);
|
|
prune_unfixed(lambda, s.get_model());
|
|
break;
|
|
}
|
|
sat::literal_vector const& core = s.get_core();
|
|
sat::literal_vector occurs;
|
|
IF_VERBOSE(1, verbose_stream() << "(core " << core.size() << ")\n";);
|
|
for (unsigned i = 0; i < omegaN.size(); ++i) {
|
|
if (core.contains(omegaN[i])) {
|
|
occurs.push_back(omegaN[i]);
|
|
}
|
|
}
|
|
if (occurs.size() == 1) {
|
|
sat::literal lit = occurs.back();
|
|
sat::literal nlit = ~lit;
|
|
conseq.push_back(core);
|
|
back_remove(lambda, ~lit);
|
|
back_remove(gamma, ~lit);
|
|
s.mk_clause(1, &nlit);
|
|
}
|
|
for (unsigned i = 0; i < omegaN.size(); ++i) {
|
|
if (occurs.contains(omegaN[i])) {
|
|
omegaN[i] = omegaN.back();
|
|
omegaN.pop_back();
|
|
--i;
|
|
}
|
|
}
|
|
if (omegaN.empty() && occurs.size() > 1) {
|
|
brute_force_consequences(s, asms, gamma, conseq);
|
|
for (unsigned i = 0; i < gamma.size(); ++i) {
|
|
back_remove(lambda, gamma[i]);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return l_true;
|
|
}
|
|
|
|
|
|
lbool solver::get_consequences(literal_vector const& asms, bool_var_vector const& vars, vector<literal_vector>& conseq) {
|
|
literal_vector lits;
|
|
lbool is_sat = l_true;
|
|
|
|
if (m_config.m_restart_max != UINT_MAX && !m_model_is_current) {
|
|
return get_bounded_consequences(asms, vars, conseq);
|
|
}
|
|
if (!m_model_is_current) {
|
|
is_sat = check(asms.size(), asms.data());
|
|
}
|
|
if (is_sat != l_true) {
|
|
return is_sat;
|
|
}
|
|
model mdl = get_model();
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
bool_var v = vars[i];
|
|
switch (get_model()[v]) {
|
|
case l_true: lits.push_back(literal(v, false)); break;
|
|
case l_false: lits.push_back(literal(v, true)); break;
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
if (false && asms.empty()) {
|
|
is_sat = core_chunking(*this, mdl, vars, asms, conseq, 100);
|
|
}
|
|
else {
|
|
is_sat = get_consequences(asms, lits, conseq);
|
|
}
|
|
set_model(mdl, !mdl.empty());
|
|
return is_sat;
|
|
}
|
|
|
|
void solver::fixup_consequence_core() {
|
|
index_set s;
|
|
TRACE("sat", tout << m_core << "\n";);
|
|
for (unsigned i = 0; i < m_core.size(); ++i) {
|
|
TRACE("sat", tout << m_core[i] << ": "; display_index_set(tout, m_antecedents.find(m_core[i].var())) << "\n";);
|
|
s |= m_antecedents.find(m_core[i].var());
|
|
}
|
|
m_core.reset();
|
|
for (unsigned idx : s) {
|
|
m_core.push_back(to_literal(idx));
|
|
}
|
|
TRACE("sat", tout << m_core << "\n";);
|
|
}
|
|
|
|
bool solver::reached_max_conflicts() {
|
|
if (m_config.m_max_conflicts == 0 || m_conflicts_since_init > m_config.m_max_conflicts) {
|
|
if (m_reason_unknown != "sat.max.conflicts") {
|
|
m_reason_unknown = "sat.max.conflicts";
|
|
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "(sat \"abort: max-conflicts = " << m_conflicts_since_init << "\")\n";);
|
|
}
|
|
return !inconsistent();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
lbool solver::get_bounded_consequences(literal_vector const& asms, bool_var_vector const& vars, vector<literal_vector>& conseq) {
|
|
bool_var_set unfixed_vars;
|
|
unsigned num_units = 0, num_iterations = 0;
|
|
for (bool_var v : vars) {
|
|
unfixed_vars.insert(v);
|
|
}
|
|
TRACE("sat", tout << asms << "\n";);
|
|
m_antecedents.reset();
|
|
pop_to_base_level();
|
|
if (inconsistent()) return l_false;
|
|
flet<bool> _searching(m_searching, true);
|
|
init_search();
|
|
propagate(false);
|
|
if (inconsistent()) return l_false;
|
|
if (asms.empty()) {
|
|
bool_var v = mk_var(true, false);
|
|
literal lit(v, false);
|
|
init_assumptions(1, &lit);
|
|
}
|
|
else {
|
|
init_assumptions(asms.size(), asms.data());
|
|
}
|
|
propagate(false);
|
|
if (check_inconsistent()) return l_false;
|
|
|
|
extract_fixed_consequences(num_units, asms, unfixed_vars, conseq);
|
|
|
|
do_simplify();
|
|
if (check_inconsistent()) {
|
|
fixup_consequence_core();
|
|
return l_false;
|
|
}
|
|
|
|
while (true) {
|
|
++num_iterations;
|
|
SASSERT(!inconsistent());
|
|
|
|
lbool r = bounded_search();
|
|
if (r != l_undef) {
|
|
fixup_consequence_core();
|
|
return r;
|
|
}
|
|
|
|
extract_fixed_consequences(num_units, asms, unfixed_vars, conseq);
|
|
|
|
do_restart(true);
|
|
do_simplify();
|
|
if (check_inconsistent()) {
|
|
fixup_consequence_core();
|
|
return l_false;
|
|
}
|
|
do_gc();
|
|
|
|
if (should_cancel()) {
|
|
return l_undef;
|
|
}
|
|
}
|
|
}
|
|
|
|
lbool solver::get_consequences(literal_vector const& asms, literal_vector const& lits, vector<literal_vector>& conseq) {
|
|
TRACE("sat", tout << asms << "\n";);
|
|
m_antecedents.reset();
|
|
literal_set unfixed_lits(lits), assumptions(asms);
|
|
bool_var_set unfixed_vars;
|
|
for (literal lit : lits) {
|
|
unfixed_vars.insert(lit.var());
|
|
}
|
|
|
|
pop_to_base_level();
|
|
if (inconsistent()) return l_false;
|
|
init_search();
|
|
propagate(false);
|
|
if (inconsistent()) return l_false;
|
|
if (asms.empty()) {
|
|
bool_var v = mk_var(true, false);
|
|
literal lit(v, false);
|
|
init_assumptions(1, &lit);
|
|
}
|
|
else {
|
|
init_assumptions(asms.size(), asms.data());
|
|
}
|
|
propagate(false);
|
|
if (check_inconsistent()) return l_false;
|
|
SASSERT(search_lvl() == 1);
|
|
|
|
unsigned num_iterations = 0;
|
|
extract_fixed_consequences(unfixed_lits, assumptions, unfixed_vars, conseq);
|
|
update_unfixed_literals(unfixed_lits, unfixed_vars);
|
|
while (!unfixed_lits.empty()) {
|
|
if (scope_lvl() > search_lvl()) {
|
|
pop(scope_lvl() - search_lvl());
|
|
}
|
|
propagate(false);
|
|
++num_iterations;
|
|
checkpoint();
|
|
unsigned num_resolves = 0;
|
|
unsigned num_fixed = 0;
|
|
unsigned num_assigned = 0;
|
|
lbool is_sat = l_true;
|
|
for (literal lit : unfixed_lits) {
|
|
if (value(lit) != l_undef) {
|
|
++num_fixed;
|
|
if (lvl(lit) <= 1 && value(lit) == l_true) {
|
|
extract_fixed_consequences(lit, assumptions, unfixed_vars, conseq);
|
|
}
|
|
continue;
|
|
}
|
|
push();
|
|
++num_assigned;
|
|
assign_scoped(~lit);
|
|
propagate(false);
|
|
while (inconsistent()) {
|
|
if (!resolve_conflict()) {
|
|
TRACE("sat", display(tout << "inconsistent\n"););
|
|
m_inconsistent = false;
|
|
is_sat = l_undef;
|
|
break;
|
|
}
|
|
propagate(false);
|
|
++num_resolves;
|
|
}
|
|
}
|
|
|
|
extract_fixed_consequences(unfixed_lits, assumptions, unfixed_vars, conseq);
|
|
|
|
if (is_sat == l_true) {
|
|
if (scope_lvl() == search_lvl() && num_resolves > 0) {
|
|
IF_VERBOSE(1, verbose_stream() << "(sat.get-consequences backjump)\n";);
|
|
is_sat = l_undef;
|
|
}
|
|
else {
|
|
is_sat = bounded_search();
|
|
if (is_sat == l_undef) {
|
|
do_restart(true);
|
|
propagate(false);
|
|
}
|
|
extract_fixed_consequences(unfixed_lits, assumptions, unfixed_vars, conseq);
|
|
}
|
|
}
|
|
if (is_sat == l_false) {
|
|
TRACE("sat", tout << "unsat\n";);
|
|
m_inconsistent = false;
|
|
}
|
|
if (is_sat == l_true) {
|
|
delete_unfixed(unfixed_lits, unfixed_vars);
|
|
}
|
|
update_unfixed_literals(unfixed_lits, unfixed_vars);
|
|
IF_VERBOSE(1, verbose_stream() << "(sat.get-consequences"
|
|
<< " iterations: " << num_iterations
|
|
<< " variables: " << unfixed_lits.size()
|
|
<< " fixed: " << conseq.size()
|
|
<< " status: " << is_sat
|
|
<< " pre-assigned: " << num_fixed
|
|
<< " unfixed: " << lits.size() - conseq.size() - unfixed_lits.size()
|
|
<< ")\n";);
|
|
|
|
if (!unfixed_lits.empty() && m_config.m_restart_max <= num_iterations) {
|
|
return l_undef;
|
|
}
|
|
}
|
|
return l_true;
|
|
}
|
|
|
|
void solver::delete_unfixed(literal_set& unfixed_lits, bool_var_set& unfixed_vars) {
|
|
literal_set to_keep;
|
|
for (literal lit : unfixed_lits) {
|
|
if (value(lit) == l_true) {
|
|
to_keep.insert(lit);
|
|
}
|
|
else {
|
|
unfixed_vars.remove(lit.var());
|
|
}
|
|
}
|
|
unfixed_lits = to_keep;
|
|
}
|
|
|
|
void solver::update_unfixed_literals(literal_set& unfixed_lits, bool_var_set& unfixed_vars) {
|
|
literal_vector to_delete;
|
|
for (literal lit : unfixed_lits) {
|
|
if (!unfixed_vars.contains(lit.var())) {
|
|
to_delete.push_back(lit);
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < to_delete.size(); ++i) {
|
|
unfixed_lits.remove(to_delete[i]);
|
|
}
|
|
}
|
|
|
|
|
|
void solver::extract_fixed_consequences(unsigned& start, literal_set const& assumptions, bool_var_set& unfixed, vector<literal_vector>& conseq) {
|
|
SASSERT(!inconsistent());
|
|
unsigned sz = m_trail.size();
|
|
for (unsigned i = start; i < sz && lvl(m_trail[i]) <= 1; ++i) {
|
|
extract_fixed_consequences(m_trail[i], assumptions, unfixed, conseq);
|
|
}
|
|
start = sz;
|
|
}
|
|
|
|
void solver::extract_fixed_consequences(literal_set const& unfixed_lits, literal_set const& assumptions, bool_var_set& unfixed_vars, vector<literal_vector>& conseq) {
|
|
for (literal lit: unfixed_lits) {
|
|
TRACE("sat", tout << "extract: " << lit << " " << value(lit) << " " << lvl(lit) << "\n";);
|
|
|
|
if (lvl(lit) <= 1 && value(lit) == l_true) {
|
|
extract_fixed_consequences(lit, assumptions, unfixed_vars, conseq);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool solver::check_domain(literal lit, literal lit2) {
|
|
if (!m_antecedents.contains(lit2.var())) {
|
|
SASSERT(value(lit2) == l_true);
|
|
SASSERT(m_todo_antecedents.empty() || m_todo_antecedents.back() != lit2);
|
|
m_todo_antecedents.push_back(lit2);
|
|
return false;
|
|
}
|
|
else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool solver::extract_assumptions(literal lit, index_set& s) {
|
|
justification js = m_justification[lit.var()];
|
|
TRACE("sat", tout << lit << " " << js << "\n";);
|
|
bool all_found = true;
|
|
switch (js.get_kind()) {
|
|
case justification::NONE:
|
|
break;
|
|
case justification::BINARY:
|
|
if (!check_domain(lit, ~js.get_literal())) return false;
|
|
s |= m_antecedents.find(js.get_literal().var());
|
|
break;
|
|
case justification::TERNARY:
|
|
if (!check_domain(lit, ~js.get_literal1()) ||
|
|
!check_domain(lit, ~js.get_literal2())) return false;
|
|
s |= m_antecedents.find(js.get_literal1().var());
|
|
s |= m_antecedents.find(js.get_literal2().var());
|
|
break;
|
|
case justification::CLAUSE: {
|
|
clause & c = get_clause(js);
|
|
for (literal l : c) {
|
|
if (l != lit) {
|
|
if (check_domain(lit, ~l) && all_found) {
|
|
s |= m_antecedents.find(l.var());
|
|
}
|
|
else {
|
|
all_found = false;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case justification::EXT_JUSTIFICATION: {
|
|
fill_ext_antecedents(lit, js, true);
|
|
for (literal l : m_ext_antecedents) {
|
|
if (check_domain(lit, l) && all_found) {
|
|
s |= m_antecedents.find(l.var());
|
|
}
|
|
else {
|
|
all_found = false;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
TRACE("sat", display_index_set(tout << lit << ": " , s) << "\n";);
|
|
return all_found;
|
|
}
|
|
|
|
std::ostream& solver::display_index_set(std::ostream& out, index_set const& s) const {
|
|
for (unsigned idx : s) {
|
|
out << to_literal(idx) << " ";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
bool solver::extract_fixed_consequences1(literal lit, literal_set const& assumptions, bool_var_set& unfixed, vector<literal_vector>& conseq) {
|
|
index_set s;
|
|
if (m_antecedents.contains(lit.var())) {
|
|
return true;
|
|
}
|
|
if (assumptions.contains(lit)) {
|
|
s.insert(lit.index());
|
|
}
|
|
else {
|
|
if (!extract_assumptions(lit, s)) {
|
|
SASSERT(!m_todo_antecedents.empty());
|
|
return false;
|
|
}
|
|
add_assumption(lit);
|
|
}
|
|
m_antecedents.insert(lit.var(), s);
|
|
if (unfixed.contains(lit.var())) {
|
|
literal_vector cons;
|
|
cons.push_back(lit);
|
|
for (unsigned idx : s) {
|
|
cons.push_back(to_literal(idx));
|
|
}
|
|
unfixed.remove(lit.var());
|
|
conseq.push_back(cons);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void solver::extract_fixed_consequences(literal lit, literal_set const& assumptions, bool_var_set& unfixed, vector<literal_vector>& conseq) {
|
|
SASSERT(m_todo_antecedents.empty());
|
|
m_todo_antecedents.push_back(lit);
|
|
while (!m_todo_antecedents.empty()) {
|
|
if (extract_fixed_consequences1(m_todo_antecedents.back(), assumptions, unfixed, conseq)) {
|
|
m_todo_antecedents.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
// -----------------------
|
|
//
|
|
// Statistics
|
|
//
|
|
// -----------------------
|
|
|
|
void solver::display_status(std::ostream & out) const {
|
|
unsigned num_bin = 0;
|
|
unsigned num_ext = 0;
|
|
unsigned num_lits = 0;
|
|
unsigned l_idx = 0;
|
|
for (watch_list const& wlist : m_watches) {
|
|
literal l = ~to_literal(l_idx++);
|
|
for (watched const& w : wlist) {
|
|
switch (w.get_kind()) {
|
|
case watched::BINARY:
|
|
if (l.index() < w.get_literal().index()) {
|
|
num_lits += 2;
|
|
num_bin++;
|
|
}
|
|
break;
|
|
case watched::EXT_CONSTRAINT:
|
|
num_ext++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
unsigned num_elim = 0;
|
|
for (bool_var v = 0; v < num_vars(); v++) {
|
|
if (m_eliminated[v])
|
|
num_elim++;
|
|
}
|
|
unsigned num_ter = 0;
|
|
unsigned num_cls = 0;
|
|
clause_vector const * vs[2] = { &m_clauses, &m_learned };
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
clause_vector const & cs = *(vs[i]);
|
|
for (clause* cp : cs) {
|
|
clause & c = *cp;
|
|
if (ENABLE_TERNARY && c.size() == 3)
|
|
num_ter++;
|
|
else
|
|
num_cls++;
|
|
num_lits += c.size();
|
|
}
|
|
}
|
|
unsigned total_cls = num_cls + num_ter + num_bin;
|
|
double mem = static_cast<double>(memory::get_allocation_size())/static_cast<double>(1024*1024);
|
|
out << "(sat-status\n";
|
|
out << " :inconsistent " << (m_inconsistent ? "true" : "false") << "\n";
|
|
out << " :vars " << num_vars() << "\n";
|
|
out << " :elim-vars " << num_elim << "\n";
|
|
out << " :lits " << num_lits << "\n";
|
|
out << " :assigned " << m_trail.size() << "\n";
|
|
out << " :binary-clauses " << num_bin << "\n";
|
|
out << " :ternary-clauses " << num_ter << "\n";
|
|
out << " :clauses " << num_cls << "\n";
|
|
out << " :del-clause " << m_stats.m_del_clause << "\n";
|
|
out << " :avg-clause-size " << (total_cls == 0 ? 0.0 : static_cast<double>(num_lits) / static_cast<double>(total_cls)) << "\n";
|
|
out << " :memory " << std::fixed << std::setprecision(2) << mem << ")" << std::endl;
|
|
}
|
|
|
|
void stats::collect_statistics(statistics & st) const {
|
|
st.update("sat mk clause 2ary", m_mk_bin_clause);
|
|
st.update("sat mk clause 3ary", m_mk_ter_clause);
|
|
st.update("sat mk clause nary", m_mk_clause);
|
|
st.update("sat mk var", m_mk_var);
|
|
st.update("sat gc clause", m_gc_clause);
|
|
st.update("sat del clause", m_del_clause);
|
|
st.update("sat conflicts", m_conflict);
|
|
st.update("sat decisions", m_decision);
|
|
st.update("sat propagations 2ary", m_bin_propagate);
|
|
st.update("sat propagations 3ary", m_ter_propagate);
|
|
st.update("sat propagations nary", m_propagate);
|
|
st.update("sat restarts", m_restart);
|
|
st.update("sat minimized lits", m_minimized_lits);
|
|
st.update("sat subs resolution dyn", m_dyn_sub_res);
|
|
st.update("sat blocked correction sets", m_blocked_corr_sets);
|
|
st.update("sat units", m_units);
|
|
st.update("sat elim bool vars res", m_elim_var_res);
|
|
st.update("sat elim bool vars bdd", m_elim_var_bdd);
|
|
st.update("sat backjumps", m_backjumps);
|
|
st.update("sat backtracks", m_backtracks);
|
|
}
|
|
|
|
void stats::reset() {
|
|
memset(this, 0, sizeof(*this));
|
|
}
|
|
|
|
void mk_stat::display(std::ostream & out) const {
|
|
unsigned given, redundant;
|
|
m_solver.num_binary(given, redundant);
|
|
out << " " << std::setw(5) << m_solver.m_clauses.size() + given << "/" << given;
|
|
out << " " << std::setw(5) << (m_solver.m_learned.size() + redundant - m_solver.m_num_frozen) << "/" << redundant;
|
|
out << " " << std::setw(3) << m_solver.init_trail_size();
|
|
out << " " << std::setw(7) << m_solver.m_stats.m_gc_clause << " ";
|
|
out << " " << std::setw(7) << mem_stat();
|
|
}
|
|
|
|
std::ostream & operator<<(std::ostream & out, mk_stat const & stat) {
|
|
stat.display(out);
|
|
return out;
|
|
}
|
|
|
|
bool solver::all_distinct(literal_vector const& lits) {
|
|
init_visited();
|
|
for (literal l : lits) {
|
|
if (is_visited(l.var())) {
|
|
return false;
|
|
}
|
|
mark_visited(l.var());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool solver::all_distinct(clause const& c) {
|
|
init_visited();
|
|
for (literal l : c) {
|
|
if (is_visited(l.var())) {
|
|
return false;
|
|
}
|
|
mark_visited(l.var());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void solver::init_visited() {
|
|
if (m_visited.empty()) {
|
|
m_visited_ts = 0;
|
|
}
|
|
m_visited_ts++;
|
|
if (m_visited_ts == 0) {
|
|
m_visited_ts = 1;
|
|
m_visited.reset();
|
|
}
|
|
while (m_visited.size() < 2*num_vars()) {
|
|
m_visited.push_back(0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
};
|