mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 03:32:28 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			78 lines
		
	
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright Microsoft Research 2016
 | |
| # The following script finds sequences of length n-1 of
 | |
| # integers 0,..,n-1 such that the difference of the n-1
 | |
| # adjacent entries fall in the range 0,..,n-1
 | |
| # This is known as the "The All-Interval Series Problem"
 | |
| # See http://www.csplib.org/Problems/prob007/
 | |
| from __future__ import print_function
 | |
| from z3 import *
 | |
| import time
 | |
| 
 | |
| set_option("sat.gc.burst", False)      # disable GC at every search. It is wasteful for these small queries.
 | |
| 
 | |
| def diff_at_j_is_i(xs, j, i):
 | |
|     assert(0 <= j and j + 1 < len(xs))
 | |
|     assert(1 <= i and i < len(xs))
 | |
|     return Or([ And(xs[j][k], xs[j+1][k-i]) for k in range(i,len(xs))] + 
 | |
|               [ And(xs[j][k], xs[j+1][k+i]) for k in range(0,len(xs)-i)])
 | |
|     
 | |
| 
 | |
| def ais(n):
 | |
|     xij = [ [ Bool("x_%d_%d" % (i,j)) for j in range(n)] for i in range(n) ]
 | |
|     s = SolverFor("QF_FD")
 | |
| # Optionally replace by (slower) default solver if using
 | |
| # more then just finite domains (Booleans, Bit-vectors, enumeration types
 | |
| # and bounded integers)
 | |
| #   s = Solver() 
 | |
|     for i in range(n):
 | |
|         s.add(AtMost(xij[i] + [1]))
 | |
|         s.add(Or(xij[i]))
 | |
|     for j in range(n):
 | |
|         xi = [ xij[i][j] for i in range(n) ]
 | |
|         s.add(AtMost(xi + [1]))
 | |
|         s.add(Or(xi))
 | |
|     dji = [ [ diff_at_j_is_i(xij, j, i + 1) for i in range(n-1)] for j in range(n-1) ]
 | |
|     for j in range(n-1):
 | |
|         s.add(AtMost(dji[j] + [1]))
 | |
|         s.add(Or(dji[j]))
 | |
|     for i in range(n-1):
 | |
|         dj = [dji[j][i] for j in range(n-1)]
 | |
|         s.add(AtMost(dj + [1]))
 | |
|         s.add(Or(dj))
 | |
|     return s, xij
 | |
| 
 | |
| def process_model(s, xij, n):
 | |
|     # x_ij integer i is at position j
 | |
|     # d_ij difference between integer at position j, j+1 is i
 | |
|     # sum_j d_ij = 1 i = 1,...,n-1
 | |
|     # sum_j x_ij = 1
 | |
|     # sum_i x_ij = 1
 | |
|     m = s.model()
 | |
|     block = []
 | |
|     values = []
 | |
|     for i in range(n):
 | |
|         k = -1
 | |
|         for j in range(n):
 | |
|             if is_true(m.eval(xij[i][j])):
 | |
|                assert(k == -1)
 | |
|                block += [xij[i][j]]
 | |
|                k = j
 | |
|         values += [k]
 | |
|     print(values)
 | |
|     sys.stdout.flush()
 | |
|     return block
 | |
| 
 | |
| def all_models(n):
 | |
|     count = 0
 | |
|     s, xij = ais(n)
 | |
|     start = time.time()
 | |
|     while sat == s.check():
 | |
|         block = process_model(s, xij, n)
 | |
|         s.add(Not(And(block)))
 | |
|         count += 1
 | |
|     print(s.statistics())
 | |
|     print(time.time() - start)
 | |
|     print(count)
 | |
| 
 | |
| set_option(verbose=1)  
 | |
| all_models(12)
 |