3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-05 14:55:45 +00:00
z3/src/math/polysat/linear_solver.cpp
Nikolaj Bjorner b36bc11b85 remove eq constraint, fix gc for external constraints
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2021-09-11 20:09:28 +02:00

288 lines
8.3 KiB
C++

/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
linear_solver.cpp
Author:
Nikolaj Bjorner (nbjorner) 2021-05-14
Jakob Rath 2021-05-14
--*/
#include "math/bigfix/u256.h"
#include "math/polysat/linear_solver.h"
#include "math/polysat/fixplex_def.h"
#include "math/polysat/solver.h"
inline unsigned numeral2hash(u256 const& n) { return n.hash(); }
namespace polysat {
void linear_solver::push() {
m_trail.push_back(trail_i::inc_level_i);
for (auto* f : m_fix_ptr)
f->push();
}
void linear_solver::pop(unsigned n) {
for (auto* f : m_fix_ptr)
f->pop(n);
while (n > 0) {
switch (m_trail.back()) {
case trail_i::inc_level_i:
--n;
break;
case trail_i::add_var_i: {
auto [v, sz] = m_rows.back();
--m_sz2num_vars[sz];
m_rows.pop_back();
break;
}
case trail_i::add_mono_i: {
auto m = m_monomials.back();
m_mono2var.erase(m);
m_alloc.deallocate(m.num_vars*sizeof(unsigned), m.vars);
m_monomials.pop_back();
break;
}
case trail_i::set_active_i:
m_active.pop_back();
break;
default:
UNREACHABLE();
}
m_trail.pop_back();
}
m_unsat_f = nullptr;
}
fixplex_base* linear_solver::sz2fixplex(unsigned sz) {
fixplex_base* b = m_fix.get(sz, nullptr);
if (!b) {
switch (sz) {
case 8:
b = alloc(fixplex<generic_uint_ext<unsigned char>>, s.params(), s.m_lim);
break;
case 16:
b = alloc(fixplex<generic_uint_ext<unsigned short>>, s.params(), s.m_lim);
break;
case 32:
b = alloc(fixplex<generic_uint_ext<unsigned>>, s.params(), s.m_lim);
break;
case 64:
b = alloc(fixplex<uint64_ext>, s.params(), s.m_lim);
break;
case 128:
NOT_IMPLEMENTED_YET();
break;
case 256:
b = alloc(fixplex<generic_uint_ext<u256>>, s.params(), s.m_lim);
break;
default:
NOT_IMPLEMENTED_YET();
break;
}
if (b)
m_fix_ptr.push_back(b);
m_fix.set(sz, b);
}
return b;
}
var_t linear_solver::internalize_pdd(pdd const& p) {
unsigned sz = p.power_of_2();
linearize(p);
if (m_vars.size() == 1 && m_coeffs.back() == 1)
return m_vars.back();
var_t v = fresh_var(sz);
m_vars.push_back(v);
m_coeffs.push_back(rational::power_of_two(sz) - 1);
auto* f = sz2fixplex(sz);
if (f)
f->add_row(v, m_vars.size(), m_vars.data(), m_coeffs.data());
return v;
}
/**
* create the row c.p() - v == 0
* when equality is asserted, set range on v as v == 0 or v > 0.
*/
void linear_solver::new_le(ule_constraint& c) {
var_t v = internalize_pdd(c.lhs());
var_t w = internalize_pdd(c.rhs());
auto pr = std::make_pair(v, w);
m_bool_var2row.setx(c.bvar(), pr, pr);
}
//
// v <= w:
// static constraints:
// - lo(v) <= lo(w)
// - hi(v) <= hi(w)
//
// special case for inequalities with constant bounds
// bounds propagation on fp, then bounds strengthening
// based on static constraints
// internal backtrack search over bounds
// inequality graph (with offsets)
//
void linear_solver::assert_le(bool is_positive, ule_constraint& c) {
auto [v, w] = m_bool_var2row[c.bvar()];
unsigned sz = c.lhs().power_of_2();
auto* fp = sz2fixplex(sz);
if (!fp)
return;
unsigned c_dep = constraint_idx2dep(m_active.size() - 1);
rational z(0);
if (c.rhs().is_val()) {
bool is_max_value = false;
if (is_positive)
// v <= rhs
fp->set_bounds(v, z, c.rhs().val(), c_dep);
else if (is_max_value)
throw default_exception("conflict not implemented");
else
// rhs < v
fp->set_bounds(v, c.rhs().val() + 1, z, c_dep);
return;
}
if (c.lhs().is_val()) {
if (is_positive)
// w >= lhs
fp->set_bounds(w, c.lhs().val(), z, c_dep);
else if (c.lhs().val() == 0)
throw default_exception("conflict not implemented");
else
// w < lhs
fp->set_bounds(w, z, c.lhs().val() - 1, c_dep);
return;
}
if (is_positive)
fp->add_le(v, w, c_dep);
else
fp->add_lt(w, v, c_dep);
}
void linear_solver::new_constraint(constraint& c) {
if (c.is_ule())
new_le(c.to_ule());
}
void linear_solver::activate_constraint(bool is_positive, constraint& c) {
if (!c.is_ule())
return;
m_active.push_back(&c);
m_trail.push_back(trail_i::set_active_i);
assert_le(is_positive, c.to_ule());
}
void linear_solver::linearize(pdd const& p) {
unsigned sz = p.power_of_2();
m_vars.reset();
m_coeffs.reset();
for (auto const& m : p) {
m_vars.push_back(mono2var(sz, m.vars));
m_coeffs.push_back(m.coeff);
}
}
var_t linear_solver::mono2var(unsigned sz, unsigned_vector const& var) {
mono_info m(sz, var.size(), var.data()), m1;
if (m_mono2var.find(m, m1))
return m1.var;
m.vars = static_cast<unsigned*>(m_alloc.allocate(var.size()*sizeof(unsigned)));
for (unsigned i = 0; i < var.size(); ++i)
m.vars[i] = var[i];
m.var = fresh_var(sz);
m_mono2var.insert(m);
m_monomials.push_back(m);
m_trail.push_back(trail_i::add_mono_i);
return m.var;
}
var_t linear_solver::pvar2var(unsigned sz, pvar v) {
unsigned_vector vars;
vars.push_back(v);
return mono2var(sz, vars);
}
var_t linear_solver::fresh_var(unsigned sz) {
m_sz2num_vars.reserve(sz + 1);
m_trail.push_back(trail_i::add_var_i);
m_rows.push_back(std::make_pair(0, sz));
return m_sz2num_vars[sz]++;
}
void linear_solver::set_value(pvar v, rational const& value, unsigned dep) {
unsigned sz = s.size(v);
auto* fp = sz2fixplex(sz);
if (!fp)
return;
var_t w = pvar2var(sz, v);
fp->set_value(w, value, external_dep2dep(dep));
}
void linear_solver::set_bound(pvar v, rational const& lo, rational const& hi, unsigned dep) {
unsigned sz = s.size(v);
auto* fp = sz2fixplex(sz);
if (!fp)
return;
var_t w = pvar2var(sz, v);
fp->set_bounds(w, lo, hi, external_dep2dep(dep));
}
/**
* check integer modular feasibility under current bounds.
* and inequalities
*/
lbool linear_solver::check() {
lbool res = l_true;
m_unsat_f = nullptr;
for (auto* fp : m_fix_ptr) {
lbool r = fp->make_feasible();
if (r == l_false) {
m_unsat_f = fp;
return r;
}
if (r == l_undef)
res = l_undef;
}
return res;
}
void linear_solver::unsat_core(ptr_vector<constraint>& cs, unsigned_vector& deps) {
SASSERT(m_unsat_f);
deps.reset();
cs.reset();
for (unsigned dep : m_unsat_f->get_unsat_core()) {
if (is_constraint_dep(dep))
cs.push_back(m_active[dep2constraint_idx(dep)]);
else
deps.push_back(dep2external_dep(dep));
}
}
// current value assigned to (linear) variable according to tableau.
bool linear_solver::value(pvar v, rational& val) {
unsigned sz = s.size(v);
auto* fp = sz2fixplex(sz);
if (!fp)
return false;
val = fp->get_value(pvar2var(sz, v));
return true;
}
};