3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-03 05:47:01 +00:00
z3/src/math/simplex/model_based_opt.h
2018-11-28 20:12:47 +07:00

211 lines
7 KiB
C++

/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
model_based_opt.h
Abstract:
Model-based optimization for linear real arithmetic.
Author:
Nikolaj Bjorner (nbjorner) 2016-27-4
Revision History:
--*/
#ifndef __MODEL_BASED_OPT_H__
#define __MODEL_BASED_OPT_H__
#include "util/util.h"
#include "util/rational.h"
#include "util/inf_eps_rational.h"
namespace opt {
enum ineq_type {
t_eq,
t_lt,
t_le,
t_mod
};
typedef inf_eps_rational<inf_rational> inf_eps;
class model_based_opt {
public:
struct var {
unsigned m_id;
rational m_coeff;
var(unsigned id, rational const& c): m_id(id), m_coeff(c) {}
struct compare {
bool operator()(var x, var y) {
return x.m_id < y.m_id;
}
};
};
struct row {
row(): m_type(t_le), m_value(0), m_alive(false) {}
vector<var> m_vars; // variables with coefficients
rational m_coeff; // constant in inequality
rational m_mod; // value the term divide
ineq_type m_type; // inequality type
rational m_value; // value of m_vars + m_coeff under interpretation of m_var2value.
bool m_alive; // rows can be marked dead if they have been processed.
void reset() { m_vars.reset(); m_coeff.reset(); m_value.reset(); }
void neg() { for (var & v : m_vars) v.m_coeff.neg(); m_coeff.neg(); m_value.neg(); }
rational get_coefficient(unsigned x) const;
};
// A definition is a linear term of the form (vars + coeff) / div
struct def {
def(): m_div(1) {}
def(row const& r, unsigned x);
def(def const& other): m_vars(other.m_vars), m_coeff(other.m_coeff), m_div(other.m_div) {}
vector<var> m_vars;
rational m_coeff;
rational m_div;
def operator+(def const& other) const;
def operator/(unsigned n) const { return *this / rational(n); }
def operator/(rational const& n) const;
def operator*(rational const& n) const;
def operator+(rational const& n) const;
void normalize();
};
private:
vector<row> m_rows;
static const unsigned m_objective_id = 0;
vector<unsigned_vector> m_var2row_ids;
vector<rational> m_var2value;
svector<bool> m_var2is_int;
vector<var> m_new_vars;
unsigned_vector m_lub, m_glb, m_mod;
unsigned_vector m_above, m_below;
unsigned_vector m_retired_rows;
bool invariant();
bool invariant(unsigned index, row const& r);
row& objective() { return m_rows[0]; }
bool find_bound(unsigned x, unsigned& bound_index, rational& bound_coeff, bool is_pos);
rational get_coefficient(unsigned row_id, unsigned var_id) const;
rational eval(row const& r) const;
rational eval(unsigned x) const;
rational eval(def const& d) const;
void resolve(unsigned row_src, rational const& a1, unsigned row_dst, unsigned x);
void solve(unsigned row_src, rational const& a1, unsigned row_dst, unsigned x);
void mul_add(bool same_sign, unsigned row_id1, rational const& c, unsigned row_id2);
void mul_add(unsigned x, rational const& a1, unsigned row_src, rational const& a2, unsigned row_dst);
void mul(unsigned dst, rational const& c);
void add(unsigned dst, rational const& c);
void sub(unsigned dst, rational const& c);
void del_var(unsigned dst, unsigned x);
void set_row(unsigned row_id, vector<var> const& coeffs, rational const& c, rational const& m, ineq_type rel);
void add_constraint(vector<var> const& coeffs, rational const& c, rational const& m, ineq_type r);
void replace_var(unsigned row_id, unsigned x, rational const& A, unsigned y, rational const& B);
void replace_var(unsigned row_id, unsigned x, rational const& C);
void normalize(unsigned row_id);
void mk_coeffs_without(vector<var>& dst, vector<var> const& src, unsigned x);
unsigned new_row();
unsigned copy_row(unsigned row_id);
rational n_sign(rational const& b) const;
void update_values(unsigned_vector const& bound_vars, unsigned_vector const& bound_trail);
void update_value(unsigned x, rational const& val);
def project(unsigned var, bool compute_def);
def solve_for(unsigned row_id, unsigned x, bool compute_def);
def solve_mod(unsigned x, unsigned_vector const& mod_rows, bool compute_def);
bool is_int(unsigned x) const { return m_var2is_int[x]; }
void retire_row(unsigned row_id);
public:
model_based_opt();
// add a fresh variable with value 'value'.
unsigned add_var(rational const& value, bool is_int = false);
// retrieve updated value of variable.
rational get_value(unsigned var_id);
// add a constraint. We assume that the constraint is
// satisfied under the values provided to the variables.
void add_constraint(vector<var> const& coeffs, rational const& c, ineq_type r);
// add a divisibility constraint. The row should divide m.
void add_divides(vector<var> const& coeffs, rational const& c, rational const& m);
// Set the objective function (linear).
void set_objective(vector<var> const& coeffs, rational const& c);
//
// find a maximal value for the objective function over the current values.
// in other words, the returned maximal value may not be globally optimal,
// but the current evaluation of variables are used to select a local
// optimal.
//
inf_eps maximize();
//
// Project set of variables from inequalities.
//
vector<def> project(unsigned num_vars, unsigned const* vars, bool compute_def);
//
// Extract current rows (after projection).
//
void get_live_rows(vector<row>& rows);
void display(std::ostream& out) const;
static std::ostream& display(std::ostream& out, row const& r);
static std::ostream& display(std::ostream& out, def const& r);
static void display(std::ostream& out, vector<var> const& vars, rational const& coeff);
};
}
std::ostream& operator<<(std::ostream& out, opt::ineq_type ie);
inline std::ostream& operator<<(std::ostream& out, opt::model_based_opt::def const& d) { return opt::model_based_opt::display(out, d); }
inline std::ostream& operator<<(std::ostream& out, opt::model_based_opt::row const& r) { return opt::model_based_opt::display(out, r); }
inline std::ostream& operator<<(std::ostream& out, opt::model_based_opt::var const v) { return out << "v" << v.m_id; }
#endif