mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
1249 lines
40 KiB
C++
1249 lines
40 KiB
C++
/*++
|
|
Copyright (c) 2011 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
goal2sat.cpp
|
|
|
|
Abstract:
|
|
|
|
"Compile" a goal into the SAT engine.
|
|
Atoms are "abstracted" into boolean variables.
|
|
The mapping between boolean variables and atoms
|
|
can be used to convert back the state of the
|
|
SAT engine into a goal.
|
|
|
|
The idea is to support scenarios such as:
|
|
1) simplify, blast, convert into SAT, and solve
|
|
2) convert into SAT, apply SAT for a while, learn new units, and translate back into a goal.
|
|
3) convert into SAT, apply SAT preprocessor (failed literal propagation, resolution, etc) and translate back into a goal.
|
|
4) Convert boolean structure into SAT, convert atoms into another engine, combine engines using lazy combination, solve.
|
|
|
|
Author:
|
|
|
|
Leonardo (leonardo) 2011-10-26
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
#include "util/ref_util.h"
|
|
#include "ast/ast_smt2_pp.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/ast_ll_pp.h"
|
|
#include "ast/pb_decl_plugin.h"
|
|
#include "ast/ast_util.h"
|
|
#include "ast/for_each_expr.h"
|
|
#include "sat/tactic/goal2sat.h"
|
|
#include "sat/ba_solver.h"
|
|
#include "model/model_evaluator.h"
|
|
#include "model/model_v2_pp.h"
|
|
#include "tactic/tactic.h"
|
|
#include "tactic/generic_model_converter.h"
|
|
#include<sstream>
|
|
|
|
struct goal2sat::imp {
|
|
struct frame {
|
|
app * m_t;
|
|
unsigned m_root:1;
|
|
unsigned m_sign:1;
|
|
unsigned m_idx;
|
|
frame(app * t, bool r, bool s, unsigned idx):
|
|
m_t(t), m_root(r), m_sign(s), m_idx(idx) {}
|
|
};
|
|
ast_manager & m;
|
|
pb_util pb;
|
|
sat::ba_solver* m_ext;
|
|
svector<frame> m_frame_stack;
|
|
svector<sat::literal> m_result_stack;
|
|
obj_map<app, sat::literal> m_cache;
|
|
obj_hashtable<expr> m_interface_vars;
|
|
sat::solver_core & m_solver;
|
|
atom2bool_var & m_map;
|
|
dep2asm_map & m_dep2asm;
|
|
sat::literal m_true;
|
|
bool m_ite_extra;
|
|
unsigned long long m_max_memory;
|
|
expr_ref_vector m_trail;
|
|
expr_ref_vector m_interpreted_atoms;
|
|
bool m_default_external;
|
|
bool m_xor_solver;
|
|
bool m_is_lemma;
|
|
|
|
imp(ast_manager & _m, params_ref const & p, sat::solver_core & s, atom2bool_var & map, dep2asm_map& dep2asm, bool default_external):
|
|
m(_m),
|
|
pb(m),
|
|
m_ext(nullptr),
|
|
m_solver(s),
|
|
m_map(map),
|
|
m_dep2asm(dep2asm),
|
|
m_trail(m),
|
|
m_interpreted_atoms(m),
|
|
m_default_external(default_external),
|
|
m_is_lemma(false) {
|
|
updt_params(p);
|
|
m_true = sat::null_literal;
|
|
}
|
|
|
|
void updt_params(params_ref const & p) {
|
|
m_ite_extra = p.get_bool("ite_extra", true);
|
|
m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX));
|
|
m_xor_solver = p.get_bool("xor_solver", false);
|
|
if (m_xor_solver) ensure_extension();
|
|
}
|
|
|
|
void throw_op_not_handled(std::string const& s) {
|
|
std::string s0 = "operator " + s + " not supported, apply simplifier before invoking translator";
|
|
throw tactic_exception(std::move(s0));
|
|
}
|
|
|
|
void mk_clause(sat::literal l) {
|
|
TRACE("goal2sat", tout << "mk_clause: " << l << "\n";);
|
|
m_solver.add_clause(1, &l, false);
|
|
}
|
|
|
|
void set_lemma_mode(bool f) { m_is_lemma = f; }
|
|
|
|
void mk_clause(sat::literal l1, sat::literal l2) {
|
|
TRACE("goal2sat", tout << "mk_clause: " << l1 << " " << l2 << "\n";);
|
|
m_solver.add_clause(l1, l2, m_is_lemma);
|
|
}
|
|
|
|
void mk_clause(sat::literal l1, sat::literal l2, sat::literal l3, bool is_lemma = false) {
|
|
TRACE("goal2sat", tout << "mk_clause: " << l1 << " " << l2 << " " << l3 << "\n";);
|
|
m_solver.add_clause(l1, l2, l3, m_is_lemma || is_lemma);
|
|
}
|
|
|
|
void mk_clause(unsigned num, sat::literal * lits) {
|
|
TRACE("goal2sat", tout << "mk_clause: "; for (unsigned i = 0; i < num; i++) tout << lits[i] << " "; tout << "\n";);
|
|
m_solver.add_clause(num, lits, m_is_lemma);
|
|
}
|
|
|
|
sat::literal mk_true() {
|
|
if (m_true == sat::null_literal) {
|
|
// create fake variable to represent true;
|
|
m_true = sat::literal(m_solver.add_var(false), false);
|
|
mk_clause(m_true); // v is true
|
|
}
|
|
return m_true;
|
|
}
|
|
|
|
void convert_atom(expr * t, bool root, bool sign) {
|
|
SASSERT(m.is_bool(t));
|
|
sat::literal l;
|
|
sat::bool_var v = m_map.to_bool_var(t);
|
|
if (v == sat::null_bool_var) {
|
|
if (m.is_true(t)) {
|
|
l = sign ? ~mk_true() : mk_true();
|
|
}
|
|
else if (m.is_false(t)) {
|
|
l = sign ? mk_true() : ~mk_true();
|
|
}
|
|
else {
|
|
bool ext = m_default_external || !is_uninterp_const(t) || m_interface_vars.contains(t);
|
|
sat::bool_var v = m_solver.add_var(ext);
|
|
m_map.insert(t, v);
|
|
l = sat::literal(v, sign);
|
|
TRACE("sat", tout << "new_var: " << v << ": " << mk_bounded_pp(t, m, 2) << "\n";);
|
|
if (ext && !is_uninterp_const(t)) {
|
|
m_interpreted_atoms.push_back(t);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
SASSERT(v != sat::null_bool_var);
|
|
l = sat::literal(v, sign);
|
|
m_solver.set_eliminated(v, false);
|
|
}
|
|
SASSERT(l != sat::null_literal);
|
|
if (root)
|
|
mk_clause(l);
|
|
else
|
|
m_result_stack.push_back(l);
|
|
}
|
|
|
|
bool convert_app(app* t, bool root, bool sign) {
|
|
if (t->get_family_id() == pb.get_family_id()) {
|
|
ensure_extension();
|
|
m_frame_stack.push_back(frame(to_app(t), root, sign, 0));
|
|
return false;
|
|
}
|
|
else {
|
|
convert_atom(t, root, sign);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool process_cached(app * t, bool root, bool sign) {
|
|
sat::literal l;
|
|
if (m_cache.find(t, l)) {
|
|
if (sign)
|
|
l.neg();
|
|
if (root)
|
|
mk_clause(l);
|
|
else
|
|
m_result_stack.push_back(l);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool visit(expr * t, bool root, bool sign) {
|
|
if (!is_app(t)) {
|
|
convert_atom(t, root, sign);
|
|
return true;
|
|
}
|
|
if (process_cached(to_app(t), root, sign))
|
|
return true;
|
|
if (to_app(t)->get_family_id() != m.get_basic_family_id()) {
|
|
return convert_app(to_app(t), root, sign);
|
|
}
|
|
switch (to_app(t)->get_decl_kind()) {
|
|
case OP_NOT:
|
|
case OP_OR:
|
|
case OP_AND:
|
|
m_frame_stack.push_back(frame(to_app(t), root, sign, 0));
|
|
return false;
|
|
case OP_ITE:
|
|
case OP_EQ:
|
|
if (m.is_bool(to_app(t)->get_arg(1))) {
|
|
m_frame_stack.push_back(frame(to_app(t), root, sign, 0));
|
|
return false;
|
|
}
|
|
else {
|
|
convert_atom(t, root, sign);
|
|
return true;
|
|
}
|
|
case OP_XOR:
|
|
case OP_IMPLIES:
|
|
case OP_DISTINCT: {
|
|
TRACE("goal2sat_not_handled", tout << mk_ismt2_pp(t, m) << "\n";);
|
|
std::ostringstream strm;
|
|
strm << mk_ismt2_pp(t, m);
|
|
throw_op_not_handled(strm.str());
|
|
}
|
|
default:
|
|
convert_atom(t, root, sign);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void convert_or(app * t, bool root, bool sign) {
|
|
TRACE("goal2sat", tout << "convert_or:\n" << mk_bounded_pp(t, m, 2) << "\n";);
|
|
unsigned num = t->get_num_args();
|
|
if (root) {
|
|
SASSERT(num == m_result_stack.size());
|
|
if (sign) {
|
|
// this case should not really happen.
|
|
for (unsigned i = 0; i < num; i++) {
|
|
sat::literal l = m_result_stack[i];
|
|
l.neg();
|
|
mk_clause(l);
|
|
}
|
|
}
|
|
else {
|
|
mk_clause(m_result_stack.size(), m_result_stack.c_ptr());
|
|
}
|
|
m_result_stack.reset();
|
|
}
|
|
else {
|
|
SASSERT(num <= m_result_stack.size());
|
|
sat::bool_var k = m_solver.add_var(false);
|
|
sat::literal l(k, false);
|
|
m_cache.insert(t, l);
|
|
sat::literal * lits = m_result_stack.end() - num;
|
|
for (unsigned i = 0; i < num; i++) {
|
|
mk_clause(~lits[i], l);
|
|
}
|
|
m_result_stack.push_back(~l);
|
|
lits = m_result_stack.end() - num - 1;
|
|
// remark: mk_clause may perform destructive updated to lits.
|
|
// I have to execute it after the binary mk_clause above.
|
|
mk_clause(num+1, lits);
|
|
unsigned old_sz = m_result_stack.size() - num - 1;
|
|
m_result_stack.shrink(old_sz);
|
|
if (sign)
|
|
l.neg();
|
|
m_result_stack.push_back(l);
|
|
}
|
|
}
|
|
|
|
void convert_and(app * t, bool root, bool sign) {
|
|
TRACE("goal2sat", tout << "convert_and:\n" << mk_ismt2_pp(t, m) << "\n";);
|
|
unsigned num = t->get_num_args();
|
|
if (root) {
|
|
if (sign) {
|
|
for (unsigned i = 0; i < num; ++i) {
|
|
m_result_stack[i].neg();
|
|
}
|
|
mk_clause(m_result_stack.size(), m_result_stack.c_ptr());
|
|
}
|
|
else {
|
|
for (unsigned i = 0; i < num; ++i) {
|
|
mk_clause(m_result_stack[i]);
|
|
}
|
|
}
|
|
m_result_stack.reset();
|
|
}
|
|
else {
|
|
SASSERT(num <= m_result_stack.size());
|
|
sat::bool_var k = m_solver.add_var(false);
|
|
sat::literal l(k, false);
|
|
m_cache.insert(t, l);
|
|
// l => /\ lits
|
|
sat::literal * lits = m_result_stack.end() - num;
|
|
for (unsigned i = 0; i < num; i++) {
|
|
mk_clause(~l, lits[i]);
|
|
}
|
|
// /\ lits => l
|
|
for (unsigned i = 0; i < num; ++i) {
|
|
m_result_stack[m_result_stack.size() - num + i].neg();
|
|
}
|
|
m_result_stack.push_back(l);
|
|
lits = m_result_stack.end() - num - 1;
|
|
mk_clause(num+1, lits);
|
|
unsigned old_sz = m_result_stack.size() - num - 1;
|
|
m_result_stack.shrink(old_sz);
|
|
if (sign)
|
|
l.neg();
|
|
m_result_stack.push_back(l);
|
|
TRACE("goal2sat", tout << m_result_stack << "\n";);
|
|
}
|
|
}
|
|
|
|
void convert_ite(app * n, bool root, bool sign) {
|
|
unsigned sz = m_result_stack.size();
|
|
SASSERT(sz >= 3);
|
|
sat::literal c = m_result_stack[sz-3];
|
|
sat::literal t = m_result_stack[sz-2];
|
|
sat::literal e = m_result_stack[sz-1];
|
|
if (root) {
|
|
SASSERT(sz == 3);
|
|
if (sign) {
|
|
mk_clause(~c, ~t);
|
|
mk_clause(c, ~e);
|
|
}
|
|
else {
|
|
mk_clause(~c, t);
|
|
mk_clause(c, e);
|
|
}
|
|
m_result_stack.reset();
|
|
}
|
|
else {
|
|
sat::bool_var k = m_solver.add_var(false);
|
|
sat::literal l(k, false);
|
|
m_cache.insert(n, l);
|
|
mk_clause(~l, ~c, t);
|
|
mk_clause(~l, c, e);
|
|
mk_clause(l, ~c, ~t);
|
|
mk_clause(l, c, ~e);
|
|
if (m_ite_extra) {
|
|
mk_clause(~t, ~e, l, false);
|
|
mk_clause(t, e, ~l, false);
|
|
}
|
|
m_result_stack.shrink(sz-3);
|
|
if (sign)
|
|
l.neg();
|
|
m_result_stack.push_back(l);
|
|
}
|
|
}
|
|
|
|
void convert_iff2(app * t, bool root, bool sign) {
|
|
TRACE("goal2sat", tout << "convert_iff " << root << " " << sign << "\n" << mk_bounded_pp(t, m, 2) << "\n";);
|
|
unsigned sz = m_result_stack.size();
|
|
SASSERT(sz >= 2);
|
|
sat::literal l1 = m_result_stack[sz-1];
|
|
sat::literal l2 = m_result_stack[sz-2];
|
|
if (root) {
|
|
SASSERT(sz == 2);
|
|
if (sign) {
|
|
mk_clause(l1, l2);
|
|
mk_clause(~l1, ~l2);
|
|
}
|
|
else {
|
|
mk_clause(l1, ~l2);
|
|
mk_clause(~l1, l2);
|
|
}
|
|
m_result_stack.reset();
|
|
}
|
|
else {
|
|
sat::bool_var k = m_solver.add_var(false);
|
|
sat::literal l(k, false);
|
|
m_cache.insert(t, l);
|
|
mk_clause(~l, l1, ~l2);
|
|
mk_clause(~l, ~l1, l2);
|
|
mk_clause(l, l1, l2);
|
|
mk_clause(l, ~l1, ~l2);
|
|
m_result_stack.shrink(sz-2);
|
|
if (sign)
|
|
l.neg();
|
|
m_result_stack.push_back(l);
|
|
}
|
|
}
|
|
|
|
void convert_iff(app * t, bool root, bool sign) {
|
|
TRACE("goal2sat", tout << "convert_iff " << root << " " << sign << "\n" << mk_bounded_pp(t, m, 2) << "\n";);
|
|
unsigned sz = m_result_stack.size();
|
|
unsigned num = get_num_args(t);
|
|
SASSERT(sz >= num && num >= 2);
|
|
if (num == 2) {
|
|
convert_iff2(t, root, sign);
|
|
return;
|
|
}
|
|
sat::literal_vector lits;
|
|
sat::bool_var v = m_solver.add_var(true);
|
|
lits.push_back(sat::literal(v, true));
|
|
convert_pb_args(num, lits);
|
|
// ensure that = is converted to xor
|
|
for (unsigned i = 1; i + 1 < lits.size(); ++i) {
|
|
lits[i].neg();
|
|
}
|
|
ensure_extension();
|
|
m_ext->add_xr(lits);
|
|
sat::literal lit(v, sign);
|
|
if (root) {
|
|
m_result_stack.reset();
|
|
mk_clause(lit);
|
|
}
|
|
else {
|
|
m_result_stack.shrink(sz - num);
|
|
m_result_stack.push_back(lit);
|
|
}
|
|
}
|
|
|
|
void convert_pb_args(unsigned num_args, sat::literal_vector& lits) {
|
|
unsigned sz = m_result_stack.size();
|
|
for (unsigned i = 0; i < num_args; ++i) {
|
|
sat::literal lit(m_result_stack[sz - num_args + i]);
|
|
if (!m_solver.is_external(lit.var())) {
|
|
m_solver.set_external(lit.var());
|
|
}
|
|
lits.push_back(lit);
|
|
}
|
|
}
|
|
|
|
typedef std::pair<unsigned, sat::literal> wliteral;
|
|
|
|
void check_unsigned(rational const& c) {
|
|
if (!c.is_unsigned()) {
|
|
throw default_exception("unsigned coefficient expected");
|
|
}
|
|
}
|
|
|
|
void convert_to_wlits(app* t, sat::literal_vector const& lits, svector<wliteral>& wlits) {
|
|
for (unsigned i = 0; i < lits.size(); ++i) {
|
|
rational c = pb.get_coeff(t, i);
|
|
check_unsigned(c);
|
|
wlits.push_back(std::make_pair(c.get_unsigned(), lits[i]));
|
|
}
|
|
}
|
|
|
|
void convert_pb_args(app* t, svector<wliteral>& wlits) {
|
|
sat::literal_vector lits;
|
|
convert_pb_args(t->get_num_args(), lits);
|
|
convert_to_wlits(t, lits, wlits);
|
|
}
|
|
|
|
void push_result(bool root, sat::literal lit, unsigned num_args) {
|
|
if (root) {
|
|
m_result_stack.reset();
|
|
mk_clause(lit);
|
|
}
|
|
else {
|
|
m_result_stack.shrink(m_result_stack.size() - num_args);
|
|
m_result_stack.push_back(lit);
|
|
}
|
|
}
|
|
|
|
void convert_pb_ge(app* t, bool root, bool sign) {
|
|
rational k = pb.get_k(t);
|
|
check_unsigned(k);
|
|
svector<wliteral> wlits;
|
|
convert_pb_args(t, wlits);
|
|
if (root && m_solver.num_user_scopes() == 0) {
|
|
m_result_stack.reset();
|
|
unsigned k1 = k.get_unsigned();
|
|
if (sign) {
|
|
k1 = 1 - k1;
|
|
for (wliteral& wl : wlits) {
|
|
wl.second.neg();
|
|
k1 += wl.first;
|
|
}
|
|
}
|
|
m_ext->add_pb_ge(sat::null_bool_var, wlits, k1);
|
|
}
|
|
else {
|
|
sat::bool_var v = m_solver.add_var(true);
|
|
sat::literal lit(v, sign);
|
|
m_ext->add_pb_ge(v, wlits, k.get_unsigned());
|
|
TRACE("goal2sat", tout << "root: " << root << " lit: " << lit << "\n";);
|
|
push_result(root, lit, t->get_num_args());
|
|
}
|
|
}
|
|
|
|
void convert_pb_le(app* t, bool root, bool sign) {
|
|
rational k = pb.get_k(t);
|
|
k.neg();
|
|
svector<wliteral> wlits;
|
|
convert_pb_args(t, wlits);
|
|
for (wliteral& wl : wlits) {
|
|
wl.second.neg();
|
|
k += rational(wl.first);
|
|
}
|
|
check_unsigned(k);
|
|
if (root && m_solver.num_user_scopes() == 0) {
|
|
m_result_stack.reset();
|
|
unsigned k1 = k.get_unsigned();
|
|
if (sign) {
|
|
k1 = 1 - k1;
|
|
for (wliteral& wl : wlits) {
|
|
wl.second.neg();
|
|
k1 += wl.first;
|
|
}
|
|
}
|
|
m_ext->add_pb_ge(sat::null_bool_var, wlits, k1);
|
|
}
|
|
else {
|
|
sat::bool_var v = m_solver.add_var(true);
|
|
sat::literal lit(v, sign);
|
|
m_ext->add_pb_ge(v, wlits, k.get_unsigned());
|
|
TRACE("goal2sat", tout << "root: " << root << " lit: " << lit << "\n";);
|
|
push_result(root, lit, t->get_num_args());
|
|
}
|
|
}
|
|
|
|
void convert_pb_eq(app* t, bool root, bool sign) {
|
|
rational k = pb.get_k(t);
|
|
SASSERT(k.is_unsigned());
|
|
svector<wliteral> wlits;
|
|
convert_pb_args(t, wlits);
|
|
bool base_assert = (root && !sign && m_solver.num_user_scopes() == 0);
|
|
sat::bool_var v1 = base_assert ? sat::null_bool_var : m_solver.add_var(true);
|
|
sat::bool_var v2 = base_assert ? sat::null_bool_var : m_solver.add_var(true);
|
|
m_ext->add_pb_ge(v1, wlits, k.get_unsigned());
|
|
k.neg();
|
|
for (wliteral& wl : wlits) {
|
|
wl.second.neg();
|
|
k += rational(wl.first);
|
|
}
|
|
check_unsigned(k);
|
|
m_ext->add_pb_ge(v2, wlits, k.get_unsigned());
|
|
if (base_assert) {
|
|
m_result_stack.reset();
|
|
}
|
|
else {
|
|
sat::literal l1(v1, false), l2(v2, false);
|
|
sat::bool_var v = m_solver.add_var(false);
|
|
sat::literal l(v, false);
|
|
mk_clause(~l, l1);
|
|
mk_clause(~l, l2);
|
|
mk_clause(~l1, ~l2, l);
|
|
m_cache.insert(t, l);
|
|
if (sign) l.neg();
|
|
push_result(root, l, t->get_num_args());
|
|
}
|
|
}
|
|
|
|
void convert_at_least_k(app* t, rational const& k, bool root, bool sign) {
|
|
SASSERT(k.is_unsigned());
|
|
sat::literal_vector lits;
|
|
convert_pb_args(t->get_num_args(), lits);
|
|
unsigned k2 = k.get_unsigned();
|
|
if (root && m_solver.num_user_scopes() == 0) {
|
|
m_result_stack.reset();
|
|
if (sign) {
|
|
for (sat::literal& l : lits) l.neg();
|
|
k2 = lits.size() + 1 - k2;
|
|
}
|
|
m_ext->add_at_least(sat::null_bool_var, lits, k2);
|
|
}
|
|
else {
|
|
sat::bool_var v = m_solver.add_var(true);
|
|
sat::literal lit(v, false);
|
|
m_ext->add_at_least(v, lits, k.get_unsigned());
|
|
m_cache.insert(t, lit);
|
|
if (sign) lit.neg();
|
|
TRACE("goal2sat", tout << "root: " << root << " lit: " << lit << "\n";);
|
|
push_result(root, lit, t->get_num_args());
|
|
}
|
|
}
|
|
|
|
void convert_at_most_k(app* t, rational const& k, bool root, bool sign) {
|
|
SASSERT(k.is_unsigned());
|
|
sat::literal_vector lits;
|
|
convert_pb_args(t->get_num_args(), lits);
|
|
for (sat::literal& l : lits) {
|
|
l.neg();
|
|
}
|
|
unsigned k2 = lits.size() - k.get_unsigned();
|
|
if (root && m_solver.num_user_scopes() == 0) {
|
|
m_result_stack.reset();
|
|
if (sign) {
|
|
for (sat::literal& l : lits) l.neg();
|
|
k2 = lits.size() + 1 - k2;
|
|
}
|
|
m_ext->add_at_least(sat::null_bool_var, lits, k2);
|
|
}
|
|
else {
|
|
sat::bool_var v = m_solver.add_var(true);
|
|
sat::literal lit(v, false);
|
|
m_ext->add_at_least(v, lits, k2);
|
|
m_cache.insert(t, lit);
|
|
if (sign) lit.neg();
|
|
push_result(root, lit, t->get_num_args());
|
|
}
|
|
}
|
|
|
|
void convert_eq_k(app* t, rational const& k, bool root, bool sign) {
|
|
SASSERT(k.is_unsigned());
|
|
sat::literal_vector lits;
|
|
convert_pb_args(t->get_num_args(), lits);
|
|
sat::bool_var v1 = (root && !sign) ? sat::null_bool_var : m_solver.add_var(true);
|
|
sat::bool_var v2 = (root && !sign) ? sat::null_bool_var : m_solver.add_var(true);
|
|
m_ext->add_at_least(v1, lits, k.get_unsigned());
|
|
for (sat::literal& l : lits) {
|
|
l.neg();
|
|
}
|
|
m_ext->add_at_least(v2, lits, lits.size() - k.get_unsigned());
|
|
|
|
|
|
if (root && !sign) {
|
|
m_result_stack.reset();
|
|
}
|
|
else {
|
|
sat::literal l1(v1, false), l2(v2, false);
|
|
sat::bool_var v = m_solver.add_var(false);
|
|
sat::literal l(v, false);
|
|
mk_clause(~l, l1);
|
|
mk_clause(~l, l2);
|
|
mk_clause(~l1, ~l2, l);
|
|
m_cache.insert(t, l);
|
|
if (sign) l.neg();
|
|
push_result(root, l, t->get_num_args());
|
|
}
|
|
}
|
|
|
|
void ensure_extension() {
|
|
if (!m_ext) {
|
|
sat::extension* ext = m_solver.get_extension();
|
|
if (ext) {
|
|
m_ext = dynamic_cast<sat::ba_solver*>(ext);
|
|
SASSERT(m_ext);
|
|
}
|
|
if (!m_ext) {
|
|
m_ext = alloc(sat::ba_solver);
|
|
m_solver.set_extension(m_ext);
|
|
}
|
|
}
|
|
}
|
|
|
|
void convert(app * t, bool root, bool sign) {
|
|
if (t->get_family_id() == m.get_basic_family_id()) {
|
|
switch (to_app(t)->get_decl_kind()) {
|
|
case OP_OR:
|
|
convert_or(t, root, sign);
|
|
break;
|
|
case OP_AND:
|
|
convert_and(t, root, sign);
|
|
break;
|
|
case OP_ITE:
|
|
convert_ite(t, root, sign);
|
|
break;
|
|
case OP_EQ:
|
|
convert_iff(t, root, sign);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
else if (t->get_family_id() == pb.get_family_id()) {
|
|
ensure_extension();
|
|
rational k;
|
|
switch (t->get_decl_kind()) {
|
|
case OP_AT_MOST_K:
|
|
k = pb.get_k(t);
|
|
convert_at_most_k(t, k, root, sign);
|
|
break;
|
|
case OP_AT_LEAST_K:
|
|
k = pb.get_k(t);
|
|
convert_at_least_k(t, k, root, sign);
|
|
break;
|
|
case OP_PB_LE:
|
|
if (pb.has_unit_coefficients(t)) {
|
|
k = pb.get_k(t);
|
|
convert_at_most_k(t, k, root, sign);
|
|
}
|
|
else {
|
|
convert_pb_le(t, root, sign);
|
|
}
|
|
break;
|
|
case OP_PB_GE:
|
|
if (pb.has_unit_coefficients(t)) {
|
|
k = pb.get_k(t);
|
|
convert_at_least_k(t, k, root, sign);
|
|
}
|
|
else {
|
|
convert_pb_ge(t, root, sign);
|
|
}
|
|
break;
|
|
case OP_PB_EQ:
|
|
if (pb.has_unit_coefficients(t)) {
|
|
k = pb.get_k(t);
|
|
convert_eq_k(t, k, root, sign);
|
|
}
|
|
else {
|
|
convert_pb_eq(t, root, sign);
|
|
}
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
unsigned get_num_args(app* t) {
|
|
|
|
if (m.is_iff(t) && m_xor_solver) {
|
|
unsigned n = 2;
|
|
while (m.is_iff(t->get_arg(1))) {
|
|
++n;
|
|
t = to_app(t->get_arg(1));
|
|
}
|
|
return n;
|
|
}
|
|
else {
|
|
return t->get_num_args();
|
|
}
|
|
}
|
|
|
|
expr* get_arg(app* t, unsigned idx) {
|
|
if (m.is_iff(t) && m_xor_solver) {
|
|
while (idx >= 1) {
|
|
SASSERT(m.is_iff(t));
|
|
t = to_app(t->get_arg(1));
|
|
--idx;
|
|
}
|
|
if (m.is_iff(t)) {
|
|
return t->get_arg(idx);
|
|
}
|
|
else {
|
|
return t;
|
|
}
|
|
}
|
|
else {
|
|
return t->get_arg(idx);
|
|
}
|
|
}
|
|
|
|
void process(expr * n) {
|
|
//SASSERT(m_result_stack.empty());
|
|
TRACE("goal2sat", tout << "converting: " << mk_bounded_pp(n, m, 2) << "\n";);
|
|
if (visit(n, true, false)) {
|
|
SASSERT(m_result_stack.empty());
|
|
return;
|
|
}
|
|
while (!m_frame_stack.empty()) {
|
|
loop:
|
|
if (m.canceled())
|
|
throw tactic_exception(m.limit().get_cancel_msg());
|
|
if (memory::get_allocation_size() > m_max_memory)
|
|
throw tactic_exception(TACTIC_MAX_MEMORY_MSG);
|
|
frame & fr = m_frame_stack.back();
|
|
app * t = fr.m_t;
|
|
bool root = fr.m_root;
|
|
bool sign = fr.m_sign;
|
|
TRACE("goal2sat_bug", tout << "result stack\n";
|
|
tout << mk_ismt2_pp(t, m) << " root: " << root << " sign: " << sign << "\n";
|
|
tout << m_result_stack << "\n";);
|
|
if (fr.m_idx == 0 && process_cached(t, root, sign)) {
|
|
m_frame_stack.pop_back();
|
|
continue;
|
|
}
|
|
if (m.is_not(t)) {
|
|
m_frame_stack.pop_back();
|
|
visit(t->get_arg(0), root, !sign);
|
|
continue;
|
|
}
|
|
unsigned num = get_num_args(t);
|
|
while (fr.m_idx < num) {
|
|
expr * arg = get_arg(t, fr.m_idx);
|
|
fr.m_idx++;
|
|
if (!visit(arg, false, false))
|
|
goto loop;
|
|
}
|
|
TRACE("goal2sat_bug", tout << "converting\n";
|
|
tout << mk_ismt2_pp(t, m) << " root: " << root << " sign: " << sign << "\n";
|
|
tout << m_result_stack << "\n";);
|
|
convert(t, root, sign);
|
|
m_frame_stack.pop_back();
|
|
}
|
|
CTRACE("goal2sat", !m_result_stack.empty(), tout << m_result_stack << "\n";);
|
|
SASSERT(m_result_stack.empty());
|
|
}
|
|
|
|
void insert_dep(expr* dep0, expr* dep, bool sign) {
|
|
SASSERT(sign || dep0 == dep); // !sign || (not dep0) == dep.
|
|
SASSERT(!sign || m.is_not(dep0));
|
|
expr_ref new_dep(m), fml(m);
|
|
if (is_uninterp_const(dep)) {
|
|
new_dep = dep;
|
|
}
|
|
else {
|
|
new_dep = m.mk_fresh_const("dep", m.mk_bool_sort());
|
|
m_trail.push_back(new_dep);
|
|
m_interface_vars.insert(new_dep);
|
|
fml = m.mk_iff(new_dep, dep);
|
|
process(fml);
|
|
}
|
|
convert_atom(new_dep, false, false);
|
|
sat::literal lit = m_result_stack.back();
|
|
m_dep2asm.insert(dep0, sign?~lit:lit);
|
|
m_result_stack.pop_back();
|
|
}
|
|
|
|
void operator()(goal const & g) {
|
|
m_interface_vars.reset();
|
|
collect_boolean_interface(g, m_interface_vars);
|
|
unsigned size = g.size();
|
|
expr_ref f(m), d_new(m);
|
|
ptr_vector<expr> deps;
|
|
expr_ref_vector fmls(m);
|
|
for (unsigned idx = 0; idx < size; idx++) {
|
|
f = g.form(idx);
|
|
// Add assumptions.
|
|
if (g.dep(idx)) {
|
|
deps.reset();
|
|
fmls.reset();
|
|
m.linearize(g.dep(idx), deps);
|
|
fmls.push_back(f);
|
|
for (expr * d : deps) {
|
|
expr * d1 = d;
|
|
SASSERT(m.is_bool(d));
|
|
bool sign = m.is_not(d, d1);
|
|
|
|
insert_dep(d, d1, sign);
|
|
if (d == f) {
|
|
goto skip_dep;
|
|
}
|
|
if (sign) {
|
|
d_new = d1;
|
|
}
|
|
else {
|
|
d_new = m.mk_not(d);
|
|
}
|
|
fmls.push_back(d_new);
|
|
}
|
|
f = m.mk_or(fmls.size(), fmls.c_ptr());
|
|
}
|
|
TRACE("goal2sat", tout << mk_bounded_pp(f, m, 2) << "\n";);
|
|
process(f);
|
|
skip_dep:
|
|
;
|
|
}
|
|
}
|
|
|
|
void operator()(unsigned sz, expr * const * fs) {
|
|
m_interface_vars.reset();
|
|
collect_boolean_interface(m, sz, fs, m_interface_vars);
|
|
|
|
for (unsigned i = 0; i < sz; i++)
|
|
process(fs[i]);
|
|
}
|
|
|
|
};
|
|
|
|
struct unsupported_bool_proc {
|
|
struct found {};
|
|
ast_manager & m;
|
|
unsupported_bool_proc(ast_manager & _m):m(_m) {}
|
|
void operator()(var *) {}
|
|
void operator()(quantifier *) {}
|
|
void operator()(app * n) {
|
|
if (n->get_family_id() == m.get_basic_family_id()) {
|
|
switch (n->get_decl_kind()) {
|
|
case OP_XOR:
|
|
case OP_IMPLIES:
|
|
case OP_DISTINCT:
|
|
throw found();
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
\brief Return true if s contains an unsupported Boolean operator.
|
|
goal_rewriter (with the following configuration) can be used to
|
|
eliminate unsupported operators.
|
|
:elim-and true
|
|
:blast-distinct true
|
|
*/
|
|
bool goal2sat::has_unsupported_bool(goal const & g) {
|
|
return test<unsupported_bool_proc>(g);
|
|
}
|
|
|
|
goal2sat::goal2sat():m_imp(nullptr), m_interpreted_atoms(nullptr) {
|
|
}
|
|
|
|
void goal2sat::collect_param_descrs(param_descrs & r) {
|
|
insert_max_memory(r);
|
|
r.insert("ite_extra", CPK_BOOL, "(default: true) add redundant clauses (that improve unit propagation) when encoding if-then-else formulas");
|
|
}
|
|
|
|
struct goal2sat::scoped_set_imp {
|
|
goal2sat * m_owner;
|
|
scoped_set_imp(goal2sat * o, goal2sat::imp * i):m_owner(o) {
|
|
m_owner->m_imp = i;
|
|
}
|
|
~scoped_set_imp() {
|
|
m_owner->m_imp = nullptr;
|
|
}
|
|
};
|
|
|
|
|
|
void goal2sat::operator()(goal const & g, params_ref const & p, sat::solver_core & t, atom2bool_var & m, dep2asm_map& dep2asm, bool default_external, bool is_lemma) {
|
|
imp proc(g.m(), p, t, m, dep2asm, default_external);
|
|
scoped_set_imp set(this, &proc);
|
|
proc.set_lemma_mode(is_lemma);
|
|
proc(g);
|
|
dealloc(m_interpreted_atoms);
|
|
m_interpreted_atoms = alloc(expr_ref_vector, g.m());
|
|
m_interpreted_atoms->append(proc.m_interpreted_atoms);
|
|
}
|
|
|
|
void goal2sat::get_interpreted_atoms(expr_ref_vector& atoms) {
|
|
if (m_interpreted_atoms) {
|
|
atoms.append(*m_interpreted_atoms);
|
|
}
|
|
}
|
|
|
|
|
|
sat2goal::mc::mc(ast_manager& m): m(m), m_var2expr(m) {}
|
|
|
|
void sat2goal::mc::flush_smc(sat::solver_core& s, atom2bool_var const& map) {
|
|
s.flush(m_smc);
|
|
m_var2expr.resize(s.num_vars());
|
|
map.mk_var_inv(m_var2expr);
|
|
}
|
|
|
|
void sat2goal::mc::flush_gmc() {
|
|
sat::literal_vector updates;
|
|
m_smc.expand(updates);
|
|
if (!m_gmc) m_gmc = alloc(generic_model_converter, m, "sat2goal");
|
|
// now gmc owns the model converter
|
|
sat::literal_vector clause;
|
|
expr_ref_vector tail(m);
|
|
expr_ref def(m);
|
|
for (unsigned i = 0; i < updates.size(); ++i) {
|
|
sat::literal l = updates[i];
|
|
if (l == sat::null_literal) {
|
|
sat::literal lit0 = clause[0];
|
|
for (unsigned i = 1; i < clause.size(); ++i) {
|
|
tail.push_back(lit2expr(~clause[i]));
|
|
}
|
|
def = m.mk_or(lit2expr(lit0), mk_and(tail));
|
|
if (lit0.sign()) {
|
|
lit0.neg();
|
|
def = m.mk_not(def);
|
|
}
|
|
m_gmc->add(lit2expr(lit0), def);
|
|
clause.reset();
|
|
tail.reset();
|
|
}
|
|
// short circuit for equivalences:
|
|
else if (clause.empty() && tail.empty() &&
|
|
i + 5 < updates.size() &&
|
|
updates[i] == ~updates[i + 3] &&
|
|
updates[i + 1] == ~updates[i + 4] &&
|
|
updates[i + 2] == sat::null_literal &&
|
|
updates[i + 5] == sat::null_literal) {
|
|
sat::literal r = ~updates[i+1];
|
|
if (l.sign()) {
|
|
l.neg();
|
|
r.neg();
|
|
}
|
|
m_gmc->add(lit2expr(l), lit2expr(r));
|
|
i += 5;
|
|
}
|
|
else {
|
|
clause.push_back(l);
|
|
}
|
|
}
|
|
}
|
|
|
|
model_converter* sat2goal::mc::translate(ast_translation& translator) {
|
|
mc* result = alloc(mc, translator.to());
|
|
result->m_smc.copy(m_smc);
|
|
result->m_gmc = m_gmc ? dynamic_cast<generic_model_converter*>(m_gmc->translate(translator)) : nullptr;
|
|
for (app* e : m_var2expr) {
|
|
result->m_var2expr.push_back(translator(e));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void sat2goal::mc::set_env(ast_pp_util* visitor) {
|
|
flush_gmc();
|
|
if (m_gmc) m_gmc->set_env(visitor);
|
|
}
|
|
|
|
void sat2goal::mc::display(std::ostream& out) {
|
|
flush_gmc();
|
|
if (m_gmc) m_gmc->display(out);
|
|
}
|
|
|
|
void sat2goal::mc::get_units(obj_map<expr, bool>& units) {
|
|
flush_gmc();
|
|
if (m_gmc) m_gmc->get_units(units);
|
|
}
|
|
|
|
|
|
void sat2goal::mc::operator()(sat::model& md) {
|
|
m_smc(md);
|
|
}
|
|
|
|
void sat2goal::mc::operator()(model_ref & md) {
|
|
// apply externalized model converter
|
|
if (m_gmc) (*m_gmc)(md);
|
|
TRACE("sat_mc", tout << "after sat_mc\n"; model_v2_pp(tout, *md););
|
|
}
|
|
|
|
|
|
void sat2goal::mc::operator()(expr_ref& fml) {
|
|
flush_gmc();
|
|
if (m_gmc) (*m_gmc)(fml);
|
|
}
|
|
|
|
void sat2goal::mc::insert(sat::bool_var v, app * atom, bool aux) {
|
|
SASSERT(!m_var2expr.get(v, nullptr));
|
|
m_var2expr.reserve(v + 1);
|
|
m_var2expr.set(v, atom);
|
|
if (aux) {
|
|
SASSERT(is_uninterp_const(atom));
|
|
SASSERT(m.is_bool(atom));
|
|
if (!m_gmc) m_gmc = alloc(generic_model_converter, m, "sat2goal");
|
|
m_gmc->hide(atom->get_decl());
|
|
}
|
|
}
|
|
|
|
expr_ref sat2goal::mc::lit2expr(sat::literal l) {
|
|
if (!m_var2expr.get(l.var())) {
|
|
app* aux = m.mk_fresh_const(nullptr, m.mk_bool_sort());
|
|
m_var2expr.set(l.var(), aux);
|
|
if (!m_gmc) m_gmc = alloc(generic_model_converter, m, "sat2goal");
|
|
m_gmc->hide(aux->get_decl());
|
|
}
|
|
VERIFY(m_var2expr.get(l.var()));
|
|
expr_ref result(m_var2expr.get(l.var()), m);
|
|
if (l.sign()) {
|
|
result = m.mk_not(result);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
struct sat2goal::imp {
|
|
|
|
typedef mc sat_model_converter;
|
|
|
|
ast_manager & m;
|
|
expr_ref_vector m_lit2expr;
|
|
unsigned long long m_max_memory;
|
|
bool m_learned;
|
|
|
|
imp(ast_manager & _m, params_ref const & p):m(_m), m_lit2expr(m) {
|
|
updt_params(p);
|
|
}
|
|
|
|
void updt_params(params_ref const & p) {
|
|
m_learned = p.get_bool("learned", false);
|
|
m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX));
|
|
}
|
|
|
|
void checkpoint() {
|
|
if (m.canceled())
|
|
throw tactic_exception(m.limit().get_cancel_msg());
|
|
if (memory::get_allocation_size() > m_max_memory)
|
|
throw tactic_exception(TACTIC_MAX_MEMORY_MSG);
|
|
}
|
|
|
|
expr * lit2expr(ref<mc>& mc, sat::literal l) {
|
|
if (!m_lit2expr.get(l.index())) {
|
|
SASSERT(m_lit2expr.get((~l).index()) == 0);
|
|
app* aux = mc ? mc->var2expr(l.var()) : nullptr;
|
|
if (!aux) {
|
|
aux = m.mk_fresh_const(nullptr, m.mk_bool_sort());
|
|
if (mc) {
|
|
mc->insert(l.var(), aux, true);
|
|
}
|
|
}
|
|
sat::literal lit(l.var(), false);
|
|
m_lit2expr.set(lit.index(), aux);
|
|
m_lit2expr.set((~lit).index(), m.mk_not(aux));
|
|
}
|
|
return m_lit2expr.get(l.index());
|
|
}
|
|
|
|
void assert_pb(ref<mc>& mc, goal& r, sat::ba_solver::pb const& p) {
|
|
pb_util pb(m);
|
|
ptr_buffer<expr> lits;
|
|
vector<rational> coeffs;
|
|
for (auto const& wl : p) {
|
|
lits.push_back(lit2expr(mc, wl.second));
|
|
coeffs.push_back(rational(wl.first));
|
|
}
|
|
rational k(p.k());
|
|
expr_ref fml(pb.mk_ge(p.size(), coeffs.c_ptr(), lits.c_ptr(), k), m);
|
|
|
|
if (p.lit() != sat::null_literal) {
|
|
fml = m.mk_eq(lit2expr(mc, p.lit()), fml);
|
|
}
|
|
r.assert_expr(fml);
|
|
}
|
|
|
|
void assert_card(ref<mc>& mc, goal& r, sat::ba_solver::card const& c) {
|
|
pb_util pb(m);
|
|
ptr_buffer<expr> lits;
|
|
for (sat::literal l : c) {
|
|
lits.push_back(lit2expr(mc, l));
|
|
}
|
|
expr_ref fml(pb.mk_at_least_k(c.size(), lits.c_ptr(), c.k()), m);
|
|
|
|
if (c.lit() != sat::null_literal) {
|
|
fml = m.mk_eq(lit2expr(mc, c.lit()), fml);
|
|
}
|
|
r.assert_expr(fml);
|
|
}
|
|
|
|
void assert_xor(ref<mc>& mc, goal & r, sat::ba_solver::xr const& x) {
|
|
ptr_buffer<expr> lits;
|
|
for (sat::literal l : x) {
|
|
lits.push_back(lit2expr(mc, l));
|
|
}
|
|
expr_ref fml(m.mk_xor(x.size(), lits.c_ptr()), m);
|
|
|
|
if (x.lit() != sat::null_literal) {
|
|
fml = m.mk_eq(lit2expr(mc, x.lit()), fml);
|
|
}
|
|
r.assert_expr(fml);
|
|
}
|
|
|
|
void assert_clauses(ref<mc>& mc, sat::solver_core const & s, sat::clause_vector const& clauses, goal & r, bool asserted) {
|
|
ptr_buffer<expr> lits;
|
|
unsigned small_lbd = 3; // s.get_config().m_gc_small_lbd;
|
|
for (sat::clause* cp : clauses) {
|
|
checkpoint();
|
|
lits.reset();
|
|
sat::clause const & c = *cp;
|
|
if (asserted || m_learned || c.glue() <= small_lbd) {
|
|
for (sat::literal l : c) {
|
|
lits.push_back(lit2expr(mc, l));
|
|
}
|
|
r.assert_expr(m.mk_or(lits.size(), lits.c_ptr()));
|
|
}
|
|
}
|
|
}
|
|
|
|
sat::ba_solver* get_ba_solver(sat::solver_core const& s) {
|
|
return dynamic_cast<sat::ba_solver*>(s.get_extension());
|
|
}
|
|
|
|
void operator()(sat::solver_core & s, atom2bool_var const & map, goal & r, ref<mc> & mc) {
|
|
if (s.at_base_lvl() && s.inconsistent()) {
|
|
r.assert_expr(m.mk_false());
|
|
return;
|
|
}
|
|
if (r.models_enabled() && !mc) {
|
|
mc = alloc(sat_model_converter, m);
|
|
}
|
|
if (mc) mc->flush_smc(s, map);
|
|
m_lit2expr.resize(s.num_vars() * 2);
|
|
map.mk_inv(m_lit2expr);
|
|
// collect units
|
|
unsigned trail_sz = s.init_trail_size();
|
|
for (unsigned i = 0; i < trail_sz; ++i) {
|
|
checkpoint();
|
|
r.assert_expr(lit2expr(mc, s.trail_literal(i)));
|
|
}
|
|
|
|
// collect binary clauses
|
|
svector<sat::solver::bin_clause> bin_clauses;
|
|
s.collect_bin_clauses(bin_clauses, m_learned, false);
|
|
for (sat::solver::bin_clause const& bc : bin_clauses) {
|
|
checkpoint();
|
|
r.assert_expr(m.mk_or(lit2expr(mc, bc.first), lit2expr(mc, bc.second)));
|
|
}
|
|
// collect clauses
|
|
assert_clauses(mc, s, s.clauses(), r, true);
|
|
|
|
sat::ba_solver* ext = get_ba_solver(s);
|
|
if (ext) {
|
|
for (auto* c : ext->constraints()) {
|
|
switch (c->tag()) {
|
|
case sat::ba_solver::card_t:
|
|
assert_card(mc, r, c->to_card());
|
|
break;
|
|
case sat::ba_solver::pb_t:
|
|
assert_pb(mc, r, c->to_pb());
|
|
break;
|
|
case sat::ba_solver::xr_t:
|
|
assert_xor(mc, r, c->to_xr());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_clause(ref<mc>& mc, sat::literal_vector const& lits, expr_ref_vector& lemmas) {
|
|
expr_ref_vector lemma(m);
|
|
for (sat::literal l : lits) {
|
|
expr* e = lit2expr(mc, l);
|
|
if (!e) return;
|
|
lemma.push_back(e);
|
|
}
|
|
lemmas.push_back(mk_or(lemma));
|
|
}
|
|
|
|
void add_clause(ref<mc>& mc, sat::clause const& c, expr_ref_vector& lemmas) {
|
|
expr_ref_vector lemma(m);
|
|
for (sat::literal l : c) {
|
|
expr* e = lit2expr(mc, l);
|
|
if (!e) return;
|
|
lemma.push_back(e);
|
|
}
|
|
lemmas.push_back(mk_or(lemma));
|
|
}
|
|
|
|
};
|
|
|
|
sat2goal::sat2goal():m_imp(nullptr) {
|
|
}
|
|
|
|
void sat2goal::collect_param_descrs(param_descrs & r) {
|
|
insert_max_memory(r);
|
|
r.insert("learned", CPK_BOOL, "(default: false) collect also learned clauses.");
|
|
}
|
|
|
|
struct sat2goal::scoped_set_imp {
|
|
sat2goal * m_owner;
|
|
scoped_set_imp(sat2goal * o, sat2goal::imp * i):m_owner(o) {
|
|
m_owner->m_imp = i;
|
|
}
|
|
~scoped_set_imp() {
|
|
m_owner->m_imp = nullptr;
|
|
}
|
|
};
|
|
|
|
void sat2goal::operator()(sat::solver_core & t, atom2bool_var const & m, params_ref const & p,
|
|
goal & g, ref<mc> & mc) {
|
|
imp proc(g.m(), p);
|
|
scoped_set_imp set(this, &proc);
|
|
proc(t, m, g, mc);
|
|
}
|
|
|
|
|