3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-28 17:08:45 +00:00
z3/src/ast/rewriter/pb2bv_rewriter.cpp
Nikolaj Bjorner c513f3ca09 merge with master
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2018-03-25 14:57:01 -07:00

987 lines
37 KiB
C++
Raw Blame History

/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
pb2bv_rewriter.cpp
Abstralct:
Conversion from pseudo-booleans to bit-vectors.
Author:
Nikolaj Bjorner (nbjorner) 2016-10-23
Notes:
--*/
#include "ast/rewriter/rewriter.h"
#include "ast/rewriter/rewriter_def.h"
#include "util/statistics.h"
#include "ast/rewriter/pb2bv_rewriter.h"
#include "util/sorting_network.h"
#include "ast/ast_util.h"
#include "ast/ast_pp.h"
#include "util/lbool.h"
#include "util/uint_set.h"
#include "util/gparams.h"
const unsigned g_primes[7] = { 2, 3, 5, 7, 11, 13, 17};
struct pb2bv_rewriter::imp {
ast_manager& m;
params_ref m_params;
expr_ref_vector m_lemmas;
func_decl_ref_vector m_fresh; // all fresh variables
unsigned_vector m_fresh_lim;
unsigned m_num_translated;
unsigned m_compile_bv;
unsigned m_compile_card;
struct card2bv_rewriter {
typedef expr* literal;
typedef ptr_vector<expr> literal_vector;
psort_nw<card2bv_rewriter> m_sort;
ast_manager& m;
imp& m_imp;
arith_util au;
pb_util pb;
bv_util bv;
expr_ref_vector m_trail;
expr_ref_vector m_args;
rational m_k;
vector<rational> m_coeffs;
bool m_keep_cardinality_constraints;
bool m_keep_pb_constraints;
bool m_pb_num_system;
bool m_pb_totalizer;
unsigned m_min_arity;
template<lbool is_le>
expr_ref mk_le_ge(expr_ref_vector& fmls, expr* a, expr* b, expr* bound) {
expr_ref x(m), y(m), result(m);
unsigned nb = bv.get_bv_size(a);
x = bv.mk_zero_extend(1, a);
y = bv.mk_zero_extend(1, b);
result = bv.mk_bv_add(x, y);
x = bv.mk_extract(nb, nb, result);
result = bv.mk_extract(nb-1, 0, result);
if (is_le != l_false) {
fmls.push_back(m.mk_eq(x, bv.mk_numeral(rational::zero(), 1)));
fmls.push_back(bv.mk_ule(result, bound));
}
else {
fmls.push_back(m.mk_eq(x, bv.mk_numeral(rational::one(), 1)));
fmls.push_back(bv.mk_ule(bound, result));
}
return result;
}
typedef std::pair<rational, expr_ref> ca;
struct compare_coeffs {
bool operator()(ca const& x, ca const& y) const {
return x.first < y.first;
}
};
void sort_args() {
vector<ca> cas;
for (unsigned i = 0; i < m_args.size(); ++i) {
cas.push_back(std::make_pair(m_coeffs[i], expr_ref(m_args[i].get(), m)));
}
std::sort(cas.begin(), cas.end(), compare_coeffs());
m_coeffs.reset();
m_args.reset();
for (ca const& ca : cas) {
m_coeffs.push_back(ca.first);
m_args.push_back(ca.second);
}
}
//
// create a circuit of size sz*log(k)
// by forming a binary tree adding pairs of values that are assumed <= k,
// and in each step we check that the result is <= k by checking the overflow
// bit and that the non-overflow bits are <= k.
// The procedure for checking >= k is symmetric and checking for = k is
// achieved by checking <= k on intermediary addends and the resulting sum is = k.
//
// is_le = l_true - <=
// is_le = l_undef - =
// is_le = l_false - >=
//
template<lbool is_le>
expr_ref mk_le_ge(rational const & k) {
//sort_args();
unsigned sz = m_args.size();
expr * const* args = m_args.c_ptr();
TRACE("pb",
for (unsigned i = 0; i < sz; ++i) {
tout << m_coeffs[i] << "*" << mk_pp(args[i], m) << " ";
if (i + 1 < sz && !m_coeffs[i+1].is_neg()) tout << "+ ";
}
switch (is_le) {
case l_true: tout << "<= "; break;
case l_undef: tout << "= "; break;
case l_false: tout << ">= "; break;
}
tout << k << "\n";);
if (k.is_zero()) {
if (is_le != l_false) {
return expr_ref(m.mk_not(::mk_or(m_args)), m);
}
else {
return expr_ref(m.mk_true(), m);
}
}
if (k.is_neg()) {
return expr_ref((is_le == l_false)?m.mk_true():m.mk_false(), m);
}
if (m_pb_totalizer) {
expr_ref result(m);
switch (is_le) {
case l_true: if (mk_le_tot(sz, args, k, result)) return result; else break;
case l_false: if (mk_ge_tot(sz, args, k, result)) return result; else break;
case l_undef: break;
}
}
if (m_pb_num_system) {
expr_ref result(m);
switch (is_le) {
case l_true: if (mk_le(sz, args, k, result)) return result; else break;
case l_false: if (mk_ge(sz, args, k, result)) return result; else break;
case l_undef: if (mk_eq(sz, args, k, result)) return result; else break;
}
}
// fall back to divide and conquer encoding.
SASSERT(k.is_pos());
expr_ref zero(m), bound(m);
expr_ref_vector es(m), fmls(m);
unsigned nb = k.get_num_bits();
zero = bv.mk_numeral(rational(0), nb);
bound = bv.mk_numeral(k, nb);
for (unsigned i = 0; i < sz; ++i) {
SASSERT(!m_coeffs[i].is_neg());
if (m_coeffs[i] > k) {
if (is_le != l_false) {
fmls.push_back(m.mk_not(args[i]));
}
else {
fmls.push_back(args[i]);
}
}
else {
es.push_back(mk_ite(args[i], bv.mk_numeral(m_coeffs[i], nb), zero));
}
}
while (es.size() > 1) {
for (unsigned i = 0; i + 1 < es.size(); i += 2) {
es[i/2] = mk_le_ge<is_le>(fmls, es[i].get(), es[i+1].get(), bound);
}
if ((es.size() % 2) == 1) {
es[es.size()/2] = es.back();
}
es.shrink((1 + es.size())/2);
}
switch (is_le) {
case l_true:
return ::mk_and(fmls);
case l_false:
if (!es.empty()) {
fmls.push_back(bv.mk_ule(bound, es.back()));
}
return ::mk_or(fmls);
case l_undef:
if (es.empty()) {
fmls.push_back(m.mk_bool_val(k.is_zero()));
}
else {
fmls.push_back(m.mk_eq(bound, es.back()));
}
return ::mk_and(fmls);
default:
UNREACHABLE();
return expr_ref(m.mk_true(), m);
}
}
/**
\brief Totalizer encoding. Based on a version by Miguel.
*/
bool mk_le_tot(unsigned sz, expr * const * args, rational const& _k, expr_ref& result) {
SASSERT(sz == m_coeffs.size());
if (!_k.is_unsigned() || sz == 0) return false;
unsigned k = _k.get_unsigned();
expr_ref_vector args1(m);
rational bound;
flip(sz, args, args1, _k, bound);
if (bound.get_unsigned() < k) {
return mk_ge_tot(sz, args1.c_ptr(), bound, result);
}
if (k > 20) {
return false;
}
result = m.mk_not(bounded_addition(sz, args, k + 1));
TRACE("pb", tout << result << "\n";);
return true;
}
bool mk_ge_tot(unsigned sz, expr * const * args, rational const& _k, expr_ref& result) {
SASSERT(sz == m_coeffs.size());
if (!_k.is_unsigned() || sz == 0) return false;
unsigned k = _k.get_unsigned();
expr_ref_vector args1(m);
rational bound;
flip(sz, args, args1, _k, bound);
if (bound.get_unsigned() < k) {
return mk_le_tot(sz, args1.c_ptr(), bound, result);
}
if (k > 20) {
return false;
}
result = bounded_addition(sz, args, k);
TRACE("pb", tout << result << "\n";);
return true;
}
void flip(unsigned sz, expr* const* args, expr_ref_vector& args1, rational const& k, rational& bound) {
bound = -k;
for (unsigned i = 0; i < sz; ++i) {
args1.push_back(mk_not(args[i]));
bound += m_coeffs[i];
}
}
expr_ref bounded_addition(unsigned sz, expr * const * args, unsigned k) {
SASSERT(sz > 0);
expr_ref result(m);
vector<expr_ref_vector> es;
vector<unsigned_vector> coeffs;
for (unsigned i = 0; i < m_coeffs.size(); ++i) {
unsigned_vector v;
expr_ref_vector e(m);
unsigned c = m_coeffs[i].get_unsigned();
v.push_back(c >= k ? k : c);
e.push_back(args[i]);
es.push_back(e);
coeffs.push_back(v);
}
while (es.size() > 1) {
for (unsigned i = 0; i + 1 < es.size(); i += 2) {
expr_ref_vector o(m);
unsigned_vector oc;
tot_adder(es[i], coeffs[i], es[i + 1], coeffs[i + 1], k, o, oc);
es[i / 2].set(o);
coeffs[i / 2] = oc;
}
if ((es.size() % 2) == 1) {
es[es.size() / 2].set(es.back());
coeffs[es.size() / 2] = coeffs.back();
}
es.shrink((1 + es.size())/2);
coeffs.shrink((1 + coeffs.size())/2);
}
SASSERT(coeffs.size() == 1);
SASSERT(coeffs[0].back() <= k);
if (coeffs[0].back() == k) {
result = es[0].back();
}
else {
result = m.mk_false();
}
return result;
}
void tot_adder(expr_ref_vector const& l, unsigned_vector const& lc,
expr_ref_vector const& r, unsigned_vector const& rc,
unsigned k,
expr_ref_vector& o, unsigned_vector & oc) {
SASSERT(l.size() == lc.size());
SASSERT(r.size() == rc.size());
uint_set sums;
vector<expr_ref_vector> trail;
u_map<unsigned> sum2def;
for (unsigned i = 0; i <= l.size(); ++i) {
for (unsigned j = (i == 0) ? 1 : 0; j <= r.size(); ++j) {
unsigned sum = std::min(k, ((i == 0) ? 0 : lc[i - 1]) + ((j == 0) ? 0 : rc[j - 1]));
sums.insert(sum);
}
}
for (unsigned u : sums) {
oc.push_back(u);
}
std::sort(oc.begin(), oc.end());
DEBUG_CODE(
for (unsigned i = 0; i + 1 < oc.size(); ++i) {
SASSERT(oc[i] < oc[i+1]);
});
for (unsigned i = 0; i < oc.size(); ++i) {
sum2def.insert(oc[i], i);
trail.push_back(expr_ref_vector(m));
}
for (unsigned i = 0; i <= l.size(); ++i) {
for (unsigned j = (i == 0) ? 1 : 0; j <= r.size(); ++j) {
if (i != 0 && j != 0 && (lc[i - 1] >= k || rc[j - 1] >= k)) continue;
unsigned sum = std::min(k, ((i == 0) ? 0 : lc[i - 1]) + ((j == 0) ? 0 : rc[j - 1]));
expr_ref_vector ands(m);
if (i != 0) {
ands.push_back(l[i - 1]);
}
if (j != 0) {
ands.push_back(r[j - 1]);
}
trail[sum2def.find(sum)].push_back(::mk_and(ands));
}
}
for (unsigned i = 0; i < oc.size(); ++i) {
o.push_back(::mk_or(trail[sum2def.find(oc[i])]));
}
}
/**
\brief MiniSat+ based encoding of PB constraints.
The procedure is described in "Translating Pseudo-Boolean Constraints into SAT "
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Niklas Een, Niklas S<>rensson, JSAT 2006.
*/
vector<rational> m_min_base;
rational m_min_cost;
vector<rational> m_base;
void create_basis(vector<rational> const& seq, rational carry_in, rational cost) {
if (cost >= m_min_cost) {
return;
}
rational delta_cost(0);
for (unsigned i = 0; i < seq.size(); ++i) {
delta_cost += seq[i];
}
if (cost + delta_cost < m_min_cost) {
m_min_cost = cost + delta_cost;
m_min_base = m_base;
m_min_base.push_back(delta_cost + rational::one());
}
for (unsigned i = 0; i < sizeof(g_primes)/sizeof(*g_primes); ++i) {
vector<rational> seq1;
rational p(g_primes[i]);
rational rest = carry_in;
// create seq1
for (unsigned j = 0; j < seq.size(); ++j) {
rest += seq[j] % p;
if (seq[j] >= p) {
seq1.push_back(div(seq[j], p));
}
}
m_base.push_back(p);
create_basis(seq1, div(rest, p), cost + rest);
m_base.pop_back();
}
}
bool create_basis() {
m_base.reset();
m_min_cost = rational(INT_MAX);
m_min_base.reset();
rational cost(0);
create_basis(m_coeffs, rational::zero(), cost);
m_base = m_min_base;
TRACE("pb",
tout << "Base: ";
for (unsigned i = 0; i < m_base.size(); ++i) {
tout << m_base[i] << " ";
}
tout << "\n";);
return
!m_base.empty() &&
m_base.back().is_unsigned() &&
m_base.back().get_unsigned() <= 20*m_base.size();
}
/**
\brief Check if 'out mod n >= lim'.
*/
expr_ref mod_ge(ptr_vector<expr> const& out, unsigned n, unsigned lim) {
TRACE("pb", for (unsigned i = 0; i < out.size(); ++i) tout << mk_pp(out[i], m) << " "; tout << "\n";
tout << "n:" << n << " lim: " << lim << "\n";);
if (lim == n) {
return expr_ref(m.mk_false(), m);
}
if (lim == 0) {
return expr_ref(m.mk_true(), m);
}
SASSERT(0 < lim && lim < n);
expr_ref_vector ors(m);
for (unsigned j = 0; j + lim - 1 < out.size(); j += n) {
expr_ref tmp(m);
tmp = out[j + lim - 1];
if (j + n - 1 < out.size()) {
tmp = m.mk_and(tmp, m.mk_not(out[j + n - 1]));
}
ors.push_back(tmp);
}
return ::mk_or(ors);
}
// x0 + 5x1 + 3x2 >= k
// x0 x1 x1 -> s0 s1 s2
// s2 x1 x2 -> s3 s4 s5
// k = 7: s5 or (s4 & not s2 & s0)
// k = 6: s4
// k = 5: s4 or (s3 & not s2 & s1)
// k = 4: s4 or (s3 & not s2 & s0)
// k = 3: s3
//
bool mk_ge(unsigned sz, expr * const* args, rational bound, expr_ref& result) {
if (!create_basis()) return false;
if (!bound.is_unsigned()) return false;
vector<rational> coeffs(m_coeffs);
result = m.mk_true();
expr_ref_vector carry(m), new_carry(m);
m_base.push_back(bound + rational::one());
for (rational b_i : m_base) {
unsigned B = b_i.get_unsigned();
unsigned d_i = (bound % b_i).get_unsigned();
bound = div(bound, b_i);
for (unsigned j = 0; j < coeffs.size(); ++j) {
rational c = coeffs[j] % b_i;
SASSERT(c.is_unsigned());
for (unsigned k = 0; k < c.get_unsigned(); ++k) {
carry.push_back(args[j]);
}
coeffs[j] = div(coeffs[j], b_i);
}
TRACE("pb", tout << "Carry: " << carry << "\n";
for (auto c : coeffs) tout << c << " ";
tout << "\n";
);
ptr_vector<expr> out;
m_sort.sorting(carry.size(), carry.c_ptr(), out);
expr_ref gt = mod_ge(out, B, d_i + 1);
expr_ref ge = mod_ge(out, B, d_i);
result = mk_and(ge, result);
result = mk_or(gt, result);
TRACE("pb", tout << "b: " << b_i << " d: " << d_i << " gt: " << gt << " ge: " << ge << " " << result << "\n";);
new_carry.reset();
for (unsigned j = B - 1; j < out.size(); j += B) {
new_carry.push_back(out[j]);
}
carry.reset();
carry.append(new_carry);
}
TRACE("pb", tout << "bound: " << bound << " Carry: " << carry << " result: " << result << "\n";);
return true;
}
expr_ref mk_and(expr_ref& a, expr_ref& b) {
if (m.is_true(a)) return b;
if (m.is_true(b)) return a;
if (m.is_false(a)) return a;
if (m.is_false(b)) return b;
return expr_ref(m.mk_and(a, b), m);
}
expr_ref mk_or(expr_ref& a, expr_ref& b) {
if (m.is_true(a)) return a;
if (m.is_true(b)) return b;
if (m.is_false(a)) return b;
if (m.is_false(b)) return a;
return expr_ref(m.mk_or(a, b), m);
}
bool mk_le(unsigned sz, expr * const* args, rational const& k, expr_ref& result) {
expr_ref_vector args1(m);
rational bound(-k);
for (unsigned i = 0; i < sz; ++i) {
args1.push_back(mk_not(args[i]));
bound += m_coeffs[i];
}
return mk_ge(sz, args1.c_ptr(), bound, result);
}
bool mk_eq(unsigned sz, expr * const* args, rational const& k, expr_ref& result) {
expr_ref r1(m), r2(m);
if (mk_ge(sz, args, k, r1) && mk_le(sz, args, k, r2)) {
result = m.mk_and(r1, r2);
return true;
}
else {
return false;
}
}
expr_ref mk_bv(func_decl * f, unsigned sz, expr * const* args) {
++m_imp.m_compile_bv;
decl_kind kind = f->get_decl_kind();
rational k = pb.get_k(f);
m_coeffs.reset();
m_args.reset();
for (unsigned i = 0; i < sz; ++i) {
m_coeffs.push_back(pb.get_coeff(f, i));
m_args.push_back(args[i]);
}
CTRACE("pb", k.is_neg(), tout << expr_ref(m.mk_app(f, sz, args), m) << "\n";);
SASSERT(!k.is_neg());
switch (kind) {
case OP_PB_GE:
case OP_AT_LEAST_K: {
dualize(f, m_args, k);
SASSERT(!k.is_neg());
return mk_le_ge<l_true>(k);
}
case OP_PB_LE:
case OP_AT_MOST_K:
return mk_le_ge<l_true>(k);
case OP_PB_EQ:
return mk_le_ge<l_undef>(k);
default:
UNREACHABLE();
return expr_ref(m.mk_true(), m);
}
}
void dualize(func_decl* f, expr_ref_vector & args, rational & k) {
k.neg();
for (unsigned i = 0; i < args.size(); ++i) {
k += pb.get_coeff(f, i);
args[i] = ::mk_not(m, args[i].get());
}
}
expr* negate(expr* e) {
if (m.is_not(e, e)) return e;
return m.mk_not(e);
}
expr* mk_ite(expr* c, expr* hi, expr* lo) {
while (m.is_not(c, c)) {
std::swap(hi, lo);
}
if (hi == lo) return hi;
if (m.is_true(hi) && m.is_false(lo)) return c;
if (m.is_false(hi) && m.is_true(lo)) return negate(c);
if (m.is_true(hi)) return m.mk_or(c, lo);
if (m.is_false(lo)) return m.mk_and(c, hi);
if (m.is_false(hi)) return m.mk_and(negate(c), lo);
if (m.is_true(lo)) return m.mk_implies(c, hi);
return m.mk_ite(c, hi, lo);
}
bool is_or(func_decl* f) {
switch (f->get_decl_kind()) {
case OP_AT_MOST_K:
case OP_PB_LE:
return false;
case OP_AT_LEAST_K:
case OP_PB_GE:
return pb.get_k(f).is_one();
case OP_PB_EQ:
return false;
default:
UNREACHABLE();
return false;
}
}
public:
card2bv_rewriter(imp& i, ast_manager& m):
m_sort(*this),
m(m),
m_imp(i),
au(m),
pb(m),
bv(m),
m_trail(m),
m_args(m),
m_keep_cardinality_constraints(false),
m_keep_pb_constraints(false),
m_pb_num_system(false),
m_pb_totalizer(false),
m_min_arity(9)
{}
bool mk_app(bool full, func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
if (f->get_family_id() == pb.get_family_id() && mk_pb(full, f, sz, args, result)) {
// skip
}
else if (au.is_le(f) && is_pb(args[0], args[1])) {
result = mk_le_ge<l_true>(m_k);
}
else if (au.is_lt(f) && is_pb(args[0], args[1])) {
++m_k;
result = mk_le_ge<l_true>(m_k);
}
else if (au.is_ge(f) && is_pb(args[1], args[0])) {
result = mk_le_ge<l_true>(m_k);
}
else if (au.is_gt(f) && is_pb(args[1], args[0])) {
++m_k;
result = mk_le_ge<l_true>(m_k);
}
else if (m.is_eq(f) && is_pb(args[0], args[1])) {
result = mk_le_ge<l_undef>(m_k);
}
else {
return false;
}
++m_imp.m_num_translated;
return true;
}
br_status mk_app_core(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
if (mk_app(true, f, sz, args, result)) {
return BR_DONE;
}
else {
return BR_FAILED;
}
}
bool mk_app(expr* e, expr_ref& r) {
app* a;
return (is_app(e) && (a = to_app(e), mk_app(false, a->get_decl(), a->get_num_args(), a->get_args(), r)));
}
bool is_pb(expr* x, expr* y) {
m_args.reset();
m_coeffs.reset();
m_k.reset();
return is_pb(x, rational::one()) && is_pb(y, rational::minus_one());
}
bool is_pb(expr* e, rational const& mul) {
if (!is_app(e)) {
return false;
}
app* a = to_app(e);
rational r, r1, r2;
expr* c, *th, *el;
unsigned sz = a->get_num_args();
if (a->get_family_id() == au.get_family_id()) {
switch (a->get_decl_kind()) {
case OP_ADD:
for (unsigned i = 0; i < sz; ++i) {
if (!is_pb(a->get_arg(i), mul)) return false;
}
return true;
case OP_SUB: {
if (!is_pb(a->get_arg(0), mul)) return false;
r = -mul;
for (unsigned i = 1; i < sz; ++i) {
if (!is_pb(a->get_arg(1), r)) return false;
}
return true;
}
case OP_UMINUS:
return is_pb(a->get_arg(0), -mul);
case OP_NUM:
VERIFY(au.is_numeral(a, r));
m_k -= mul * r;
return true;
case OP_MUL:
if (sz != 2) {
return false;
}
if (au.is_numeral(a->get_arg(0), r)) {
r *= mul;
return is_pb(a->get_arg(1), r);
}
if (au.is_numeral(a->get_arg(1), r)) {
r *= mul;
return is_pb(a->get_arg(0), r);
}
return false;
default:
return false;
}
}
if (m.is_ite(a, c, th, el) && au.is_numeral(th, r1) && au.is_numeral(el, r2)) {
r1 *= mul;
r2 *= mul;
if (r1 < r2) {
m_args.push_back(::mk_not(m, c));
m_coeffs.push_back(r2-r1);
m_k -= r1;
}
else {
m_args.push_back(c);
m_coeffs.push_back(r1-r2);
m_k -= r2;
}
return true;
}
return false;
}
bool mk_pb(bool full, func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
SASSERT(f->get_family_id() == pb.get_family_id());
if (is_or(f)) {
result = m.mk_or(sz, args);
}
else if (pb.is_at_most_k(f) && pb.get_k(f).is_unsigned()) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.le(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_at_least_k(f) && pb.get_k(f).is_unsigned()) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.ge(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_eq(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.eq(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_le(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.le(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_ge(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.ge(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_eq(f) && pb.get_k(f).is_unsigned() && has_small_coefficients(f) && m_keep_pb_constraints) {
return false;
}
else if (pb.is_le(f) && pb.get_k(f).is_unsigned() && has_small_coefficients(f) && m_keep_pb_constraints) {
return false;
}
else if (pb.is_ge(f) && pb.get_k(f).is_unsigned() && has_small_coefficients(f) && m_keep_pb_constraints) {
return false;
}
else {
result = mk_bv(f, sz, args);
}
return true;
}
bool has_small_coefficients(func_decl* f) {
unsigned sz = f->get_arity();
unsigned sum = 0;
for (unsigned i = 0; i < sz; ++i) {
rational c = pb.get_coeff(f, i);
if (!c.is_unsigned()) return false;
unsigned sum1 = sum + c.get_unsigned();
if (sum1 < sum) return false;
sum = sum1;
}
return true;
}
// definitions used for sorting network
literal mk_false() { return m.mk_false(); }
literal mk_true() { return m.mk_true(); }
literal mk_max(literal a, literal b) { return trail(m.mk_or(a, b)); }
literal mk_min(literal a, literal b) { return trail(m.mk_and(a, b)); }
literal mk_not(literal a) { if (m.is_not(a,a)) return a; return trail(m.mk_not(a)); }
std::ostream& pp(std::ostream& out, literal lit) { return out << mk_ismt2_pp(lit, m); }
literal trail(literal l) {
m_trail.push_back(l);
return l;
}
literal fresh(char const* n) {
expr_ref fr(m.mk_fresh_const(n, m.mk_bool_sort()), m);
m_imp.m_fresh.push_back(to_app(fr)->get_decl());
return trail(fr);
}
void mk_clause(unsigned n, literal const* lits) {
m_imp.m_lemmas.push_back(::mk_or(m, n, lits));
}
void keep_cardinality_constraints(bool f) {
m_keep_cardinality_constraints = f;
}
void keep_pb_constraints(bool f) {
m_keep_pb_constraints = f;
}
void pb_num_system(bool f) {
m_pb_num_system = f;
}
void pb_totalizer(bool f) {
m_pb_totalizer = f;
}
void set_at_most1(sorting_network_encoding enc) { m_sort.cfg().m_encoding = enc; }
};
struct card2bv_rewriter_cfg : public default_rewriter_cfg {
card2bv_rewriter m_r;
bool rewrite_patterns() const { return false; }
bool flat_assoc(func_decl * f) const { return false; }
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
result_pr = nullptr;
return m_r.mk_app_core(f, num, args, result);
}
card2bv_rewriter_cfg(imp& i, ast_manager & m):m_r(i, m) {}
void keep_cardinality_constraints(bool f) { m_r.keep_cardinality_constraints(f); }
void keep_pb_constraints(bool f) { m_r.keep_pb_constraints(f); }
void pb_num_system(bool f) { m_r.pb_num_system(f); }
void pb_totalizer(bool f) { m_r.pb_totalizer(f); }
void set_at_most1(sorting_network_encoding enc) { m_r.set_at_most1(enc); }
};
class card_pb_rewriter : public rewriter_tpl<card2bv_rewriter_cfg> {
public:
card2bv_rewriter_cfg m_cfg;
card_pb_rewriter(imp& i, ast_manager & m):
rewriter_tpl<card2bv_rewriter_cfg>(m, false, m_cfg),
m_cfg(i, m) {}
void keep_cardinality_constraints(bool f) { m_cfg.keep_cardinality_constraints(f); }
void keep_pb_constraints(bool f) { m_cfg.keep_pb_constraints(f); }
void pb_num_system(bool f) { m_cfg.pb_num_system(f); }
void pb_totalizer(bool f) { m_cfg.pb_totalizer(f); }
void set_at_most1(sorting_network_encoding e) { m_cfg.set_at_most1(e); }
void rewrite(expr* e, expr_ref& r, proof_ref& p) {
expr_ref ee(e, m());
if (m_cfg.m_r.mk_app(e, r)) {
ee = r;
// mp proof?
}
(*this)(ee, r, p);
}
};
card_pb_rewriter m_rw;
bool keep_cardinality() const {
params_ref const& p = m_params;
return
p.get_bool("keep_cardinality_constraints", false) ||
p.get_bool("sat.cardinality.solver", false) ||
p.get_bool("cardinality.solver", false) ||
gparams::get_module("sat").get_bool("cardinality.solver", false);
}
bool keep_pb() const {
params_ref const& p = m_params;
return
p.get_bool("keep_pb_constraints", false) ||
p.get_bool("sat.pb.solver", false) ||
p.get_bool("pb.solver", false) ||
gparams::get_module("sat").get_sym("pb.solver", symbol()) == symbol("solver") ;
}
bool pb_num_system() const {
return m_params.get_bool("pb_num_system", false) ||
gparams::get_module("sat").get_sym("pb.solver", symbol()) == symbol("sorting");
}
bool pb_totalizer() const {
return m_params.get_bool("pb_totalizer", false) ||
gparams::get_module("sat").get_sym("pb.solver", symbol()) == symbol("totalizer");
}
sorting_network_encoding atmost1_encoding() const {
symbol enc = m_params.get_sym("atmost1_encoding", symbol());
if (enc == symbol()) {
enc = gparams::get_module("sat").get_sym("atmost1_encoding", symbol());
}
if (enc == symbol("grouped")) return sorting_network_encoding::grouped_at_most_1;
if (enc == symbol("bimander")) return sorting_network_encoding::bimander_at_most_1;
if (enc == symbol("ordered")) return sorting_network_encoding::ordered_at_most_1;
return grouped_at_most_1;
}
imp(ast_manager& m, params_ref const& p):
m(m), m_params(p), m_lemmas(m),
m_fresh(m),
m_num_translated(0),
m_rw(*this, m) {
updt_params(p);
m_compile_bv = 0;
m_compile_card = 0;
}
void updt_params(params_ref const & p) {
m_params.append(p);
m_rw.keep_cardinality_constraints(keep_cardinality());
m_rw.keep_pb_constraints(keep_pb());
m_rw.pb_num_system(pb_num_system());
m_rw.pb_totalizer(pb_totalizer());
m_rw.set_at_most1(atmost1_encoding());
}
void collect_param_descrs(param_descrs& r) const {
r.insert("keep_cardinality_constraints", CPK_BOOL, "(default: true) retain cardinality constraints (don't bit-blast them) and use built-in cardinality solver");
r.insert("keep_pb_constraints", CPK_BOOL, "(default: true) retain pb constraints (don't bit-blast them) and use built-in pb solver");
r.insert("pb_num_system", CPK_BOOL, "(default: false) use pb number system encoding");
r.insert("pb_totalizer", CPK_BOOL, "(default: false) use pb totalizer encoding");
}
unsigned get_num_steps() const { return m_rw.get_num_steps(); }
void cleanup() { m_rw.cleanup(); }
void operator()(expr * e, expr_ref & result, proof_ref & result_proof) {
// m_rw(e, result, result_proof);
m_rw.rewrite(e, result, result_proof);
}
void push() {
m_fresh_lim.push_back(m_fresh.size());
}
void pop(unsigned num_scopes) {
SASSERT(m_lemmas.empty()); // lemmas must be flushed before pop.
if (num_scopes > 0) {
SASSERT(num_scopes <= m_fresh_lim.size());
unsigned new_sz = m_fresh_lim.size() - num_scopes;
unsigned lim = m_fresh_lim[new_sz];
m_fresh.resize(lim);
m_fresh_lim.resize(new_sz);
}
m_rw.reset();
}
void flush_side_constraints(expr_ref_vector& side_constraints) {
side_constraints.append(m_lemmas);
m_lemmas.reset();
}
void collect_statistics(statistics & st) const {
st.update("pb-compile-bv", m_compile_bv);
st.update("pb-compile-card", m_compile_card);
st.update("pb-aux-variables", m_fresh.size());
st.update("pb-aux-clauses", m_rw.m_cfg.m_r.m_sort.m_stats.m_num_compiled_clauses);
}
};
pb2bv_rewriter::pb2bv_rewriter(ast_manager & m, params_ref const& p) { m_imp = alloc(imp, m, p); }
pb2bv_rewriter::~pb2bv_rewriter() { dealloc(m_imp); }
void pb2bv_rewriter::updt_params(params_ref const & p) { m_imp->updt_params(p); }
void pb2bv_rewriter::collect_param_descrs(param_descrs& r) const { m_imp->collect_param_descrs(r); }
ast_manager & pb2bv_rewriter::m() const { return m_imp->m; }
unsigned pb2bv_rewriter::get_num_steps() const { return m_imp->get_num_steps(); }
void pb2bv_rewriter::cleanup() { ast_manager& mgr = m(); params_ref p = m_imp->m_params; dealloc(m_imp); m_imp = alloc(imp, mgr, p); }
func_decl_ref_vector const& pb2bv_rewriter::fresh_constants() const { return m_imp->m_fresh; }
void pb2bv_rewriter::operator()(expr * e, expr_ref & result, proof_ref & result_proof) { (*m_imp)(e, result, result_proof); }
void pb2bv_rewriter::push() { m_imp->push(); }
void pb2bv_rewriter::pop(unsigned num_scopes) { m_imp->pop(num_scopes); }
void pb2bv_rewriter::flush_side_constraints(expr_ref_vector& side_constraints) { m_imp->flush_side_constraints(side_constraints); }
unsigned pb2bv_rewriter::num_translated() const { return m_imp->m_num_translated; }
void pb2bv_rewriter::collect_statistics(statistics & st) const { m_imp->collect_statistics(st); }