3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-01-24 02:54:00 +00:00
z3/src/util/search_tree.h
Ilana Shapiro b1b7270686
Fix UNKNOWN bug in search tree about inconsistent end state (#8214)
* restore more aggressive pruning in search tree

* restore where we close children to be correct

* add core strengthening check

* fix recursion bug

* less strict core propagation

* old search tree version

* restore search tree patch

* remove flag

* debugging inconsistent end state with search, some changes need to be made in search tree, only backtrack should be closing nodes, I think the bug is when we do find_highest_attach for nonchronological backjumping, you might get to a point where the sibling is closed, so then we need to resolve further up the tree

* clean up code, fix deadlock

* delete test files

* clean up

---------

Co-authored-by: Ilana Shapiro <ilanashapiro@Mac.localdomain>
Co-authored-by: Ilana Shapiro <ilanashapiro@Ilanas-MacBook-Pro.local>
Co-authored-by: Ilana Shapiro <ilanashapiro@Ilanas-MBP.lan1>
2026-01-16 10:41:13 -08:00

420 lines
15 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 2025 Microsoft Corporation
Module Name:
search_tree.h
Abstract:
A binary search tree for managing the search space of a DPLL(T) solver.
It supports splitting on atoms, backtracking on conflicts, and activating nodes.
Nodes can be in one of three states: open, closed, or active.
- Closed nodes are fully explored (both children are closed).
- Active nodes have no children and are currently being explored.
- Open nodes either have children that are open or are leaves.
A node can be split if it is active. After splitting, it becomes open and has two open children.
Backtracking on a conflict closes all nodes below the last node whose atom is in the conflict set.
Activation searches an open node closest to a seed node.
Author:
Ilana Shapiro 2025-9-06
--*/
#include "util/util.h"
#include "util/vector.h"
#pragma once
namespace search_tree {
enum class status { open, closed, active };
template <typename Config> class node {
typedef typename Config::literal literal;
literal m_literal;
node *m_left = nullptr, *m_right = nullptr, *m_parent = nullptr;
status m_status;
vector<literal> m_core;
public:
node(literal const &l, node *parent) : m_literal(l), m_parent(parent), m_status(status::open) {}
~node() {
dealloc(m_left);
dealloc(m_right);
}
status get_status() const {
return m_status;
}
void set_status(status s) {
m_status = s;
}
literal const &get_literal() const {
return m_literal;
}
bool literal_is_null() const {
return Config::is_null(m_literal);
}
void split(literal const &a, literal const &b) {
SASSERT(!Config::literal_is_null(a));
SASSERT(!Config::literal_is_null(b));
if (m_status != status::active)
return;
SASSERT(!m_left);
SASSERT(!m_right);
m_left = alloc(node<Config>, a, this);
m_right = alloc(node<Config>, b, this);
m_status = status::open;
}
node* left() const { return m_left; }
node* right() const { return m_right; }
node* parent() const { return m_parent; }
unsigned depth() const {
unsigned d = 0;
node* p = m_parent;
while (p) {
++d;
p = p->parent();
}
return d;
}
node *find_active_node() {
if (m_status == status::active)
return this;
if (m_status == status::closed)
return nullptr;
node *nodes[2] = {m_left, m_right};
for (unsigned i = 0; i < 2; ++i) {
auto res = nodes[i] ? nodes[i]->find_active_node() : nullptr;
if (res)
return res;
}
if (m_left->get_status() == status::closed && m_right->get_status() == status::closed)
m_status = status::closed;
return nullptr;
}
void display(std::ostream &out, unsigned indent) const {
for (unsigned i = 0; i < indent; ++i)
out << " ";
Config::display_literal(out, m_literal);
out << (get_status() == status::open ? " (o)" : get_status() == status::closed ? " (c)" : " (a)");
out << "\n";
if (m_left)
m_left->display(out, indent + 2);
if (m_right)
m_right->display(out, indent + 2);
}
void set_core(vector<literal> const &core) {
m_core = core;
}
vector<literal> const &get_core() const {
return m_core;
}
void clear_core() {
m_core.clear();
}
};
template <typename Config> class tree {
typedef typename Config::literal literal;
scoped_ptr<node<Config>> m_root = nullptr;
literal m_null_literal;
random_gen m_rand;
// return an active node in the subtree rooted at n, or nullptr if there is none
node<Config> *activate_from_root(node<Config> *n) {
if (!n)
return nullptr;
if (n->get_status() != status::open)
return nullptr;
auto left = n->left();
auto right = n->right();
if (!left && !right) {
n->set_status(status::active);
return n;
}
node<Config> *nodes[2] = {left, right};
unsigned index = m_rand(2);
auto child = activate_from_root(nodes[index]);
if (child)
return child;
child = activate_from_root(nodes[1 - index]);
if (child)
return child;
return nullptr;
}
// Bubble to the highest ancestor where ALL literals in the resolvent
// are present somewhere on the path from that ancestor to root
node<Config>* find_highest_attach(node<Config>* p, vector<literal> const& resolvent) {
node<Config>* candidate = p;
node<Config>* attach_here = p;
while (candidate) {
bool all_found = true;
for (auto const& r : resolvent) {
bool found = false;
for (node<Config>* q = candidate; q; q = q->parent()) {
if (q->get_literal() == r) {
found = true;
break;
}
}
if (!found) {
all_found = false;
break;
}
}
if (all_found) {
attach_here = candidate; // bubble up to this node
}
candidate = candidate->parent();
}
return attach_here;
}
// Propagate closure upward via sibling resolution starting at node `cur`.
// Returns true iff global UNSAT was detected.
bool propagate_closure_upward(node<Config>* cur) {
while (true) {
node<Config>* parent = cur->parent();
if (!parent)
return false;
auto left = parent->left();
auto right = parent->right();
if (!left || !right)
return false;
if (left->get_status() != status::closed ||
right->get_status() != status::closed)
return false;
if (left->get_core().empty() ||
right->get_core().empty())
return false;
auto res = compute_sibling_resolvent(left, right);
if (res.empty()) {
close(m_root.get(), res); // global UNSAT
return true;
}
close(parent, res);
cur = parent; // keep bubbling
}
}
void close(node<Config> *n, vector<literal> const &C) {
if (!n || n->get_status() == status::closed)
return;
n->set_status(status::closed);
n->set_core(C);
close(n->left(), C);
close(n->right(), C);
}
// Invariants:
// Cores labeling nodes are subsets of the literals on the path to the node and the (external) assumption
// literals. If a parent is open, then the one of the children is open.
void close_with_core(node<Config> *n, vector<literal> const &C) {
if (!n)
return;
// If the node is closed AND has a stronger or equal core, we are done.
// Otherwise, closed nodes may still accept a different (stronger) core to enable pruning/resolution higher in the tree.
auto subseteq = [](vector<literal> const& A, vector<literal> const& B) {
return all_of(A, [&](auto const &a) { return B.contains(a); });
};
if (n->get_status() == status::closed && subseteq(n->get_core(), C))
return;
node<Config> *p = n->parent();
// The conflict does NOT depend on the decision literal at node n, so ns split literal is irrelevant to this conflict
// thus the entire subtree under n is closed regardless of the split, so the conflict should be attached higher, at the nearest ancestor that does participate
if (p && all_of(C, [n](auto const &l) { return l != n->get_literal(); })) {
close_with_core(p, C);
return;
}
// Close descendants WITHOUT resolving
close(n, C);
if (!p)
return;
auto left = p->left();
auto right = p->right();
if (!left || !right)
return;
// only attempt when both children are closed and each has a *non-empty* core
if (left->get_status() != status::closed || right->get_status() != status::closed) return;
if (left->get_core().empty() || right->get_core().empty()) return;
auto resolvent = compute_sibling_resolvent(left, right);
if (resolvent.empty()) { // empty resolvent => global UNSAT
close(m_root.get(), resolvent);
return;
}
auto attach = find_highest_attach(p, resolvent);
close(attach, resolvent);
// try to propagate the highest attach node upward *with sibling resolution*
// this handles the case when non-chronological backjumping takes us to a node whose sibling was closed by another thread
node<Config>* cur = attach;
propagate_closure_upward(cur);
}
// Given complementary sibling nodes for literals x and ¬x, sibling resolvent = (core_left core_right) \ {x,
// ¬x}
vector<literal> compute_sibling_resolvent(node<Config> *left, node<Config> *right) {
vector<literal> res;
auto &core_l = left->get_core();
auto &core_r = right->get_core();
if (core_l.empty() || core_r.empty() || left->parent() != right->parent())
return res;
auto lit_l = left->get_literal();
auto lit_r = right->get_literal();
for (auto const &lit : core_l)
if (lit != lit_l && !res.contains(lit))
res.push_back(lit);
for (auto const &lit : core_r)
if (lit != lit_r && !res.contains(lit))
res.push_back(lit);
return res;
}
public:
tree(literal const &null_literal) : m_null_literal(null_literal) {
reset();
}
void set_seed(unsigned seed) {
m_rand.set_seed(seed);
}
void reset() {
m_root = alloc(node<Config>, m_null_literal, nullptr);
m_root->set_status(status::active);
}
// Split current node if it is active.
// After the call, n is open and has two children.
void split(node<Config> *n, literal const &a, literal const &b) {
n->split(a, b);
}
// conflict is given by a set of literals.
// they are subsets of the literals on the path from root to n AND the external assumption literals
void backtrack(node<Config> *n, vector<literal> const &conflict) {
if (conflict.empty()) {
close_with_core(m_root.get(), conflict);
return;
}
SASSERT(n != m_root.get());
// all literals in conflict are on the path from root to n
// remove assumptions from conflict to ensure this.
DEBUG_CODE(auto on_path =
[&](literal const &a) {
node<Config> *p = n;
while (p) {
if (p->get_literal() == a)
return true;
p = p->parent();
}
return false;
};
SASSERT(all_of(conflict, [&](auto const &a) { return on_path(a); })););
// Walk upward to find the nearest ancestor whose decision participates in the conflict
while (n) {
if (any_of(conflict, [&](auto const &a) { return a == n->get_literal(); })) {
// close the subtree under n (preserves core attached to n), and attempt to resolve upwards
close_with_core(n, conflict);
return;
}
n = n->parent();
}
UNREACHABLE();
}
// return an active node in the tree, or nullptr if there is none
// first check if there is a node to activate under n,
// if not, go up the tree and try to activate a sibling subtree
node<Config> *activate_node(node<Config> *n) {
if (!n) {
if (m_root->get_status() == status::active)
return m_root.get();
n = m_root.get();
}
auto res = activate_from_root(n);
if (res)
return res;
auto p = n->parent();
while (p) {
if (p->left() && p->left()->get_status() == status::closed &&
p->right() && p->right()->get_status() == status::closed) {
if (p->get_status() != status::closed)
return nullptr; // inconsistent state
n = p;
p = n->parent();
continue;
}
if (n == p->left()) {
res = activate_from_root(p->right());
if (res)
return res;
}
else {
VERIFY(n == p->right());
res = activate_from_root(p->left());
if (res)
return res;
}
n = p;
p = n->parent();
}
return nullptr;
}
node<Config> *find_active_node() {
return m_root->find_active_node();
}
vector<literal> const &get_core_from_root() const {
return m_root->get_core();
}
bool is_closed() const {
return m_root->get_status() == status::closed;
}
std::ostream &display(std::ostream &out) const {
m_root->display(out, 0);
return out;
}
};
} // namespace search_tree