mirror of
https://github.com/Z3Prover/z3
synced 2026-01-24 02:54:00 +00:00
* restore more aggressive pruning in search tree * restore where we close children to be correct * add core strengthening check * fix recursion bug * less strict core propagation * old search tree version * restore search tree patch * remove flag * debugging inconsistent end state with search, some changes need to be made in search tree, only backtrack should be closing nodes, I think the bug is when we do find_highest_attach for nonchronological backjumping, you might get to a point where the sibling is closed, so then we need to resolve further up the tree * clean up code, fix deadlock * delete test files * clean up --------- Co-authored-by: Ilana Shapiro <ilanashapiro@Mac.localdomain> Co-authored-by: Ilana Shapiro <ilanashapiro@Ilanas-MacBook-Pro.local> Co-authored-by: Ilana Shapiro <ilanashapiro@Ilanas-MBP.lan1>
420 lines
15 KiB
C++
420 lines
15 KiB
C++
/*++
|
||
Copyright (c) 2025 Microsoft Corporation
|
||
|
||
Module Name:
|
||
|
||
search_tree.h
|
||
|
||
Abstract:
|
||
|
||
A binary search tree for managing the search space of a DPLL(T) solver.
|
||
It supports splitting on atoms, backtracking on conflicts, and activating nodes.
|
||
|
||
Nodes can be in one of three states: open, closed, or active.
|
||
- Closed nodes are fully explored (both children are closed).
|
||
- Active nodes have no children and are currently being explored.
|
||
- Open nodes either have children that are open or are leaves.
|
||
|
||
A node can be split if it is active. After splitting, it becomes open and has two open children.
|
||
|
||
Backtracking on a conflict closes all nodes below the last node whose atom is in the conflict set.
|
||
|
||
Activation searches an open node closest to a seed node.
|
||
|
||
Author:
|
||
|
||
Ilana Shapiro 2025-9-06
|
||
|
||
--*/
|
||
|
||
#include "util/util.h"
|
||
#include "util/vector.h"
|
||
#pragma once
|
||
|
||
namespace search_tree {
|
||
|
||
enum class status { open, closed, active };
|
||
|
||
template <typename Config> class node {
|
||
typedef typename Config::literal literal;
|
||
literal m_literal;
|
||
node *m_left = nullptr, *m_right = nullptr, *m_parent = nullptr;
|
||
status m_status;
|
||
vector<literal> m_core;
|
||
|
||
public:
|
||
node(literal const &l, node *parent) : m_literal(l), m_parent(parent), m_status(status::open) {}
|
||
~node() {
|
||
dealloc(m_left);
|
||
dealloc(m_right);
|
||
}
|
||
|
||
status get_status() const {
|
||
return m_status;
|
||
}
|
||
void set_status(status s) {
|
||
m_status = s;
|
||
}
|
||
literal const &get_literal() const {
|
||
return m_literal;
|
||
}
|
||
bool literal_is_null() const {
|
||
return Config::is_null(m_literal);
|
||
}
|
||
void split(literal const &a, literal const &b) {
|
||
SASSERT(!Config::literal_is_null(a));
|
||
SASSERT(!Config::literal_is_null(b));
|
||
if (m_status != status::active)
|
||
return;
|
||
SASSERT(!m_left);
|
||
SASSERT(!m_right);
|
||
m_left = alloc(node<Config>, a, this);
|
||
m_right = alloc(node<Config>, b, this);
|
||
m_status = status::open;
|
||
}
|
||
|
||
node* left() const { return m_left; }
|
||
node* right() const { return m_right; }
|
||
node* parent() const { return m_parent; }
|
||
unsigned depth() const {
|
||
unsigned d = 0;
|
||
node* p = m_parent;
|
||
while (p) {
|
||
++d;
|
||
p = p->parent();
|
||
}
|
||
return d;
|
||
}
|
||
|
||
node *find_active_node() {
|
||
if (m_status == status::active)
|
||
return this;
|
||
if (m_status == status::closed)
|
||
return nullptr;
|
||
node *nodes[2] = {m_left, m_right};
|
||
for (unsigned i = 0; i < 2; ++i) {
|
||
auto res = nodes[i] ? nodes[i]->find_active_node() : nullptr;
|
||
if (res)
|
||
return res;
|
||
}
|
||
if (m_left->get_status() == status::closed && m_right->get_status() == status::closed)
|
||
m_status = status::closed;
|
||
return nullptr;
|
||
}
|
||
|
||
void display(std::ostream &out, unsigned indent) const {
|
||
for (unsigned i = 0; i < indent; ++i)
|
||
out << " ";
|
||
Config::display_literal(out, m_literal);
|
||
out << (get_status() == status::open ? " (o)" : get_status() == status::closed ? " (c)" : " (a)");
|
||
out << "\n";
|
||
if (m_left)
|
||
m_left->display(out, indent + 2);
|
||
if (m_right)
|
||
m_right->display(out, indent + 2);
|
||
}
|
||
|
||
void set_core(vector<literal> const &core) {
|
||
m_core = core;
|
||
}
|
||
vector<literal> const &get_core() const {
|
||
return m_core;
|
||
}
|
||
void clear_core() {
|
||
m_core.clear();
|
||
}
|
||
};
|
||
|
||
template <typename Config> class tree {
|
||
typedef typename Config::literal literal;
|
||
scoped_ptr<node<Config>> m_root = nullptr;
|
||
literal m_null_literal;
|
||
random_gen m_rand;
|
||
|
||
// return an active node in the subtree rooted at n, or nullptr if there is none
|
||
node<Config> *activate_from_root(node<Config> *n) {
|
||
if (!n)
|
||
return nullptr;
|
||
if (n->get_status() != status::open)
|
||
return nullptr;
|
||
auto left = n->left();
|
||
auto right = n->right();
|
||
if (!left && !right) {
|
||
n->set_status(status::active);
|
||
return n;
|
||
}
|
||
node<Config> *nodes[2] = {left, right};
|
||
unsigned index = m_rand(2);
|
||
auto child = activate_from_root(nodes[index]);
|
||
if (child)
|
||
return child;
|
||
child = activate_from_root(nodes[1 - index]);
|
||
if (child)
|
||
return child;
|
||
return nullptr;
|
||
}
|
||
|
||
// Bubble to the highest ancestor where ALL literals in the resolvent
|
||
// are present somewhere on the path from that ancestor to root
|
||
node<Config>* find_highest_attach(node<Config>* p, vector<literal> const& resolvent) {
|
||
node<Config>* candidate = p;
|
||
node<Config>* attach_here = p;
|
||
|
||
while (candidate) {
|
||
bool all_found = true;
|
||
|
||
for (auto const& r : resolvent) {
|
||
bool found = false;
|
||
for (node<Config>* q = candidate; q; q = q->parent()) {
|
||
if (q->get_literal() == r) {
|
||
found = true;
|
||
break;
|
||
}
|
||
}
|
||
if (!found) {
|
||
all_found = false;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (all_found) {
|
||
attach_here = candidate; // bubble up to this node
|
||
}
|
||
|
||
candidate = candidate->parent();
|
||
}
|
||
|
||
return attach_here;
|
||
}
|
||
|
||
// Propagate closure upward via sibling resolution starting at node `cur`.
|
||
// Returns true iff global UNSAT was detected.
|
||
bool propagate_closure_upward(node<Config>* cur) {
|
||
while (true) {
|
||
node<Config>* parent = cur->parent();
|
||
if (!parent)
|
||
return false;
|
||
|
||
auto left = parent->left();
|
||
auto right = parent->right();
|
||
if (!left || !right)
|
||
return false;
|
||
|
||
if (left->get_status() != status::closed ||
|
||
right->get_status() != status::closed)
|
||
return false;
|
||
|
||
if (left->get_core().empty() ||
|
||
right->get_core().empty())
|
||
return false;
|
||
|
||
auto res = compute_sibling_resolvent(left, right);
|
||
|
||
if (res.empty()) {
|
||
close(m_root.get(), res); // global UNSAT
|
||
return true;
|
||
}
|
||
|
||
close(parent, res);
|
||
cur = parent; // keep bubbling
|
||
}
|
||
}
|
||
|
||
void close(node<Config> *n, vector<literal> const &C) {
|
||
if (!n || n->get_status() == status::closed)
|
||
return;
|
||
n->set_status(status::closed);
|
||
n->set_core(C);
|
||
close(n->left(), C);
|
||
close(n->right(), C);
|
||
}
|
||
|
||
// Invariants:
|
||
// Cores labeling nodes are subsets of the literals on the path to the node and the (external) assumption
|
||
// literals. If a parent is open, then the one of the children is open.
|
||
void close_with_core(node<Config> *n, vector<literal> const &C) {
|
||
if (!n)
|
||
return;
|
||
|
||
// If the node is closed AND has a stronger or equal core, we are done.
|
||
// Otherwise, closed nodes may still accept a different (stronger) core to enable pruning/resolution higher in the tree.
|
||
auto subseteq = [](vector<literal> const& A, vector<literal> const& B) {
|
||
return all_of(A, [&](auto const &a) { return B.contains(a); });
|
||
};
|
||
if (n->get_status() == status::closed && subseteq(n->get_core(), C))
|
||
return;
|
||
|
||
node<Config> *p = n->parent();
|
||
|
||
// The conflict does NOT depend on the decision literal at node n, so n’s split literal is irrelevant to this conflict
|
||
// thus the entire subtree under n is closed regardless of the split, so the conflict should be attached higher, at the nearest ancestor that does participate
|
||
if (p && all_of(C, [n](auto const &l) { return l != n->get_literal(); })) {
|
||
close_with_core(p, C);
|
||
return;
|
||
}
|
||
|
||
// Close descendants WITHOUT resolving
|
||
close(n, C);
|
||
|
||
if (!p)
|
||
return;
|
||
auto left = p->left();
|
||
auto right = p->right();
|
||
if (!left || !right)
|
||
return;
|
||
|
||
// only attempt when both children are closed and each has a *non-empty* core
|
||
if (left->get_status() != status::closed || right->get_status() != status::closed) return;
|
||
if (left->get_core().empty() || right->get_core().empty()) return;
|
||
|
||
auto resolvent = compute_sibling_resolvent(left, right);
|
||
if (resolvent.empty()) { // empty resolvent => global UNSAT
|
||
close(m_root.get(), resolvent);
|
||
return;
|
||
}
|
||
|
||
auto attach = find_highest_attach(p, resolvent);
|
||
close(attach, resolvent);
|
||
|
||
// try to propagate the highest attach node upward *with sibling resolution*
|
||
// this handles the case when non-chronological backjumping takes us to a node whose sibling was closed by another thread
|
||
node<Config>* cur = attach;
|
||
propagate_closure_upward(cur);
|
||
}
|
||
|
||
// Given complementary sibling nodes for literals x and ¬x, sibling resolvent = (core_left ∪ core_right) \ {x,
|
||
// ¬x}
|
||
vector<literal> compute_sibling_resolvent(node<Config> *left, node<Config> *right) {
|
||
vector<literal> res;
|
||
|
||
auto &core_l = left->get_core();
|
||
auto &core_r = right->get_core();
|
||
|
||
if (core_l.empty() || core_r.empty() || left->parent() != right->parent())
|
||
return res;
|
||
|
||
auto lit_l = left->get_literal();
|
||
auto lit_r = right->get_literal();
|
||
|
||
for (auto const &lit : core_l)
|
||
if (lit != lit_l && !res.contains(lit))
|
||
res.push_back(lit);
|
||
for (auto const &lit : core_r)
|
||
if (lit != lit_r && !res.contains(lit))
|
||
res.push_back(lit);
|
||
return res;
|
||
}
|
||
|
||
public:
|
||
tree(literal const &null_literal) : m_null_literal(null_literal) {
|
||
reset();
|
||
}
|
||
|
||
void set_seed(unsigned seed) {
|
||
m_rand.set_seed(seed);
|
||
}
|
||
|
||
void reset() {
|
||
m_root = alloc(node<Config>, m_null_literal, nullptr);
|
||
m_root->set_status(status::active);
|
||
}
|
||
|
||
// Split current node if it is active.
|
||
// After the call, n is open and has two children.
|
||
void split(node<Config> *n, literal const &a, literal const &b) {
|
||
n->split(a, b);
|
||
}
|
||
|
||
// conflict is given by a set of literals.
|
||
// they are subsets of the literals on the path from root to n AND the external assumption literals
|
||
void backtrack(node<Config> *n, vector<literal> const &conflict) {
|
||
if (conflict.empty()) {
|
||
close_with_core(m_root.get(), conflict);
|
||
return;
|
||
}
|
||
SASSERT(n != m_root.get());
|
||
// all literals in conflict are on the path from root to n
|
||
// remove assumptions from conflict to ensure this.
|
||
DEBUG_CODE(auto on_path =
|
||
[&](literal const &a) {
|
||
node<Config> *p = n;
|
||
while (p) {
|
||
if (p->get_literal() == a)
|
||
return true;
|
||
p = p->parent();
|
||
}
|
||
return false;
|
||
};
|
||
SASSERT(all_of(conflict, [&](auto const &a) { return on_path(a); })););
|
||
|
||
// Walk upward to find the nearest ancestor whose decision participates in the conflict
|
||
while (n) {
|
||
if (any_of(conflict, [&](auto const &a) { return a == n->get_literal(); })) {
|
||
// close the subtree under n (preserves core attached to n), and attempt to resolve upwards
|
||
close_with_core(n, conflict);
|
||
return;
|
||
}
|
||
|
||
n = n->parent();
|
||
}
|
||
UNREACHABLE();
|
||
}
|
||
|
||
// return an active node in the tree, or nullptr if there is none
|
||
// first check if there is a node to activate under n,
|
||
// if not, go up the tree and try to activate a sibling subtree
|
||
node<Config> *activate_node(node<Config> *n) {
|
||
if (!n) {
|
||
if (m_root->get_status() == status::active)
|
||
return m_root.get();
|
||
n = m_root.get();
|
||
}
|
||
auto res = activate_from_root(n);
|
||
if (res)
|
||
return res;
|
||
|
||
auto p = n->parent();
|
||
while (p) {
|
||
if (p->left() && p->left()->get_status() == status::closed &&
|
||
p->right() && p->right()->get_status() == status::closed) {
|
||
if (p->get_status() != status::closed)
|
||
return nullptr; // inconsistent state
|
||
n = p;
|
||
p = n->parent();
|
||
continue;
|
||
}
|
||
if (n == p->left()) {
|
||
res = activate_from_root(p->right());
|
||
if (res)
|
||
return res;
|
||
}
|
||
else {
|
||
VERIFY(n == p->right());
|
||
res = activate_from_root(p->left());
|
||
if (res)
|
||
return res;
|
||
}
|
||
n = p;
|
||
p = n->parent();
|
||
}
|
||
return nullptr;
|
||
}
|
||
|
||
node<Config> *find_active_node() {
|
||
return m_root->find_active_node();
|
||
}
|
||
|
||
vector<literal> const &get_core_from_root() const {
|
||
return m_root->get_core();
|
||
}
|
||
|
||
bool is_closed() const {
|
||
return m_root->get_status() == status::closed;
|
||
}
|
||
|
||
std::ostream &display(std::ostream &out) const {
|
||
m_root->display(out, 0);
|
||
return out;
|
||
}
|
||
};
|
||
} // namespace search_tree
|