mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 04:28:17 +00:00
830 lines
30 KiB
C++
830 lines
30 KiB
C++
/*++
|
|
Copyright (c) 2006 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
arith_decl_plugin.cpp
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2008-01-09
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#include "ast/arith_decl_plugin.h"
|
|
#include "util/warning.h"
|
|
#include "math/polynomial/algebraic_numbers.h"
|
|
#include "util/id_gen.h"
|
|
#include "ast/ast_smt2_pp.h"
|
|
#include "util/gparams.h"
|
|
|
|
struct arith_decl_plugin::algebraic_numbers_wrapper {
|
|
unsynch_mpq_manager m_qmanager;
|
|
algebraic_numbers::manager m_amanager;
|
|
id_gen m_id_gen;
|
|
scoped_anum_vector m_nums;
|
|
|
|
algebraic_numbers_wrapper(reslimit& lim):
|
|
m_amanager(lim, m_qmanager),
|
|
m_nums(m_amanager) {
|
|
}
|
|
|
|
~algebraic_numbers_wrapper() {
|
|
}
|
|
|
|
unsigned mk_id(algebraic_numbers::anum const & val) {
|
|
SASSERT(!m_amanager.is_rational(val));
|
|
unsigned new_id = m_id_gen.mk();
|
|
m_nums.reserve(new_id+1);
|
|
m_amanager.set(m_nums[new_id], val);
|
|
TRACE("algebraic2expr", tout << "mk_id -> " << new_id << "\n"; m_amanager.display(tout, val); tout << "\n";);
|
|
return new_id;
|
|
}
|
|
|
|
void recycle_id(unsigned idx) {
|
|
SASSERT(idx < m_nums.size());
|
|
SASSERT(!m_amanager.is_zero(m_nums[idx]));
|
|
TRACE("algebraic2expr", tout << "recycling: " << idx << "\n";);
|
|
m_id_gen.recycle(idx);
|
|
m_amanager.del(m_nums[idx]);
|
|
}
|
|
|
|
algebraic_numbers::anum const & idx2anum(unsigned idx) {
|
|
return m_nums[idx];
|
|
}
|
|
|
|
algebraic_numbers::anum const & to_anum(func_decl * f) {
|
|
SASSERT(f->get_decl_kind() == OP_IRRATIONAL_ALGEBRAIC_NUM);
|
|
return idx2anum(f->get_parameter(0).get_ext_id());
|
|
}
|
|
|
|
};
|
|
|
|
arith_decl_plugin::algebraic_numbers_wrapper & arith_decl_plugin::aw() const {
|
|
if (m_aw == nullptr)
|
|
const_cast<arith_decl_plugin*>(this)->m_aw = alloc(algebraic_numbers_wrapper, m_manager->limit());
|
|
return *m_aw;
|
|
}
|
|
|
|
algebraic_numbers::manager & arith_decl_plugin::am() const {
|
|
return aw().m_amanager;
|
|
}
|
|
|
|
app * arith_decl_plugin::mk_numeral(algebraic_numbers::anum const & val, bool is_int) {
|
|
if (am().is_rational(val)) {
|
|
rational rval;
|
|
am().to_rational(val, rval);
|
|
return mk_numeral(rval, is_int);
|
|
}
|
|
else {
|
|
if (is_int) {
|
|
m_manager->raise_exception("invalid irrational value passed as an integer");
|
|
}
|
|
unsigned idx = aw().mk_id(val);
|
|
parameter p(idx, true);
|
|
SASSERT(p.is_external());
|
|
func_decl * decl = m_manager->mk_const_decl(m_rootv_sym, m_real_decl, func_decl_info(m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM, 1, &p));
|
|
app * r = m_manager->mk_const(decl);
|
|
|
|
if (log_constant_meaning_prelude(r)) {
|
|
am().display_root_smt2(m_manager->trace_stream(), val);
|
|
m_manager->trace_stream() << "\n";
|
|
}
|
|
|
|
return r;
|
|
}
|
|
}
|
|
|
|
app * arith_decl_plugin::mk_numeral(sexpr const * p, unsigned i) {
|
|
scoped_anum r(am());
|
|
am().mk_root(p, i, r);
|
|
return mk_numeral(r, false);
|
|
}
|
|
|
|
void arith_decl_plugin::del(parameter const & p) {
|
|
SASSERT(p.is_external());
|
|
if (m_aw != nullptr) {
|
|
aw().recycle_id(p.get_ext_id());
|
|
}
|
|
}
|
|
|
|
parameter arith_decl_plugin::translate(parameter const & p, decl_plugin & target) {
|
|
SASSERT(p.is_external());
|
|
arith_decl_plugin & _target = static_cast<arith_decl_plugin&>(target);
|
|
return parameter(_target.aw().mk_id(aw().idx2anum(p.get_ext_id())), true);
|
|
}
|
|
|
|
|
|
void arith_decl_plugin::set_manager(ast_manager * m, family_id id) {
|
|
decl_plugin::set_manager(m, id);
|
|
|
|
m_real_decl = m->mk_sort(symbol("Real"), sort_info(id, REAL_SORT));
|
|
m->inc_ref(m_real_decl);
|
|
sort * r = m_real_decl;
|
|
|
|
m_int_decl = m->mk_sort(symbol("Int"), sort_info(id, INT_SORT));
|
|
m->inc_ref(m_int_decl);
|
|
sort * i = m_int_decl;
|
|
|
|
sort * b = m->mk_bool_sort();
|
|
|
|
#define MK_PRED(FIELD, NAME, KIND, SORT) { \
|
|
func_decl_info info(id, KIND); \
|
|
info.set_chainable(true); \
|
|
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, b, info); \
|
|
m->inc_ref(FIELD); \
|
|
}
|
|
|
|
MK_PRED(m_r_le_decl, "<=", OP_LE, r);
|
|
MK_PRED(m_r_ge_decl, ">=", OP_GE, r);
|
|
MK_PRED(m_r_lt_decl, "<", OP_LT, r);
|
|
MK_PRED(m_r_gt_decl, ">", OP_GT, r);
|
|
|
|
MK_PRED(m_i_le_decl, "<=", OP_LE, i);
|
|
MK_PRED(m_i_ge_decl, ">=", OP_GE, i);
|
|
MK_PRED(m_i_lt_decl, "<", OP_LT, i);
|
|
MK_PRED(m_i_gt_decl, ">", OP_GT, i);
|
|
|
|
#define MK_AC_OP(FIELD, NAME, KIND, SORT) { \
|
|
func_decl_info info(id, KIND); \
|
|
info.set_associative(); \
|
|
info.set_flat_associative(); \
|
|
info.set_commutative(); \
|
|
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, SORT, info); \
|
|
m->inc_ref(FIELD); \
|
|
}
|
|
|
|
#define MK_LEFT_ASSOC_OP(FIELD, NAME, KIND, SORT) { \
|
|
func_decl_info info(id, KIND); \
|
|
info.set_left_associative(); \
|
|
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, SORT, info); \
|
|
m->inc_ref(FIELD); \
|
|
}
|
|
|
|
|
|
#define MK_OP(FIELD, NAME, KIND, SORT) \
|
|
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, SORT, func_decl_info(id, KIND)); \
|
|
m->inc_ref(FIELD)
|
|
|
|
#define MK_UNARY(FIELD, NAME, KIND, SORT) \
|
|
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, func_decl_info(id, KIND)); \
|
|
m->inc_ref(FIELD)
|
|
|
|
MK_AC_OP(m_r_add_decl, "+", OP_ADD, r);
|
|
MK_LEFT_ASSOC_OP(m_r_sub_decl, "-", OP_SUB, r);
|
|
MK_AC_OP(m_r_mul_decl, "*", OP_MUL, r);
|
|
MK_LEFT_ASSOC_OP(m_r_div_decl, "/", OP_DIV, r);
|
|
MK_UNARY(m_r_uminus_decl, "-", OP_UMINUS, r);
|
|
|
|
MK_AC_OP(m_i_add_decl, "+", OP_ADD, i);
|
|
MK_LEFT_ASSOC_OP(m_i_sub_decl, "-", OP_SUB, i);
|
|
MK_AC_OP(m_i_mul_decl, "*", OP_MUL, i);
|
|
MK_LEFT_ASSOC_OP(m_i_div_decl, "div", OP_IDIV, i);
|
|
MK_OP(m_i_rem_decl, "rem", OP_REM, i);
|
|
MK_OP(m_i_mod_decl, "mod", OP_MOD, i);
|
|
MK_UNARY(m_i_uminus_decl, "-", OP_UMINUS, i);
|
|
|
|
m_to_real_decl = m->mk_func_decl(symbol("to_real"), i, r, func_decl_info(id, OP_TO_REAL));
|
|
m->inc_ref(m_to_real_decl);
|
|
m_to_int_decl = m->mk_func_decl(symbol("to_int"), r, i, func_decl_info(id, OP_TO_INT));
|
|
m->inc_ref(m_to_int_decl);
|
|
m_is_int_decl = m->mk_func_decl(symbol("is_int"), r, m->mk_bool_sort(), func_decl_info(id, OP_IS_INT));
|
|
m->inc_ref(m_is_int_decl);
|
|
|
|
MK_OP(m_r_power_decl, "^", OP_POWER, r);
|
|
MK_OP(m_i_power_decl, "^", OP_POWER, i);
|
|
|
|
MK_UNARY(m_i_abs_decl, "abs", OP_ABS, i);
|
|
MK_UNARY(m_r_abs_decl, "abs", OP_ABS, r);
|
|
|
|
MK_UNARY(m_sin_decl, "sin", OP_SIN, r);
|
|
MK_UNARY(m_cos_decl, "cos", OP_COS, r);
|
|
MK_UNARY(m_tan_decl, "tan", OP_TAN, r);
|
|
MK_UNARY(m_asin_decl, "asin", OP_ASIN, r);
|
|
MK_UNARY(m_acos_decl, "acos", OP_ACOS, r);
|
|
MK_UNARY(m_atan_decl, "atan", OP_ATAN, r);
|
|
MK_UNARY(m_sinh_decl, "sinh", OP_SINH, r);
|
|
MK_UNARY(m_cosh_decl, "cosh", OP_COSH, r);
|
|
MK_UNARY(m_tanh_decl, "tanh", OP_TANH, r);
|
|
MK_UNARY(m_asinh_decl, "asinh", OP_ASINH, r);
|
|
MK_UNARY(m_acosh_decl, "acosh", OP_ACOSH, r);
|
|
MK_UNARY(m_atanh_decl, "atanh", OP_ATANH, r);
|
|
|
|
func_decl * pi_decl = m->mk_const_decl(symbol("pi"), r, func_decl_info(id, OP_PI));
|
|
m_pi = m->mk_const(pi_decl);
|
|
m->inc_ref(m_pi);
|
|
|
|
func_decl * e_decl = m->mk_const_decl(symbol("euler"), r, func_decl_info(id, OP_E));
|
|
m_e = m->mk_const(e_decl);
|
|
m->inc_ref(m_e);
|
|
|
|
|
|
MK_OP(m_neg_root_decl, "neg-root", OP_NEG_ROOT, r);
|
|
MK_UNARY(m_u_asin_decl, "asin-u", OP_U_ASIN, r);
|
|
MK_UNARY(m_u_acos_decl, "acos-u", OP_U_ACOS, r);
|
|
}
|
|
|
|
arith_decl_plugin::arith_decl_plugin():
|
|
m_aw(nullptr),
|
|
m_intv_sym("Int"),
|
|
m_realv_sym("Real"),
|
|
m_rootv_sym("RootObject"),
|
|
m_real_decl(nullptr),
|
|
m_int_decl(nullptr),
|
|
m_r_le_decl(nullptr),
|
|
m_r_ge_decl(nullptr),
|
|
m_r_lt_decl(nullptr),
|
|
m_r_gt_decl(nullptr),
|
|
m_r_add_decl(nullptr),
|
|
m_r_sub_decl(nullptr),
|
|
m_r_uminus_decl(nullptr),
|
|
m_r_mul_decl(nullptr),
|
|
m_r_div_decl(nullptr),
|
|
m_i_le_decl(nullptr),
|
|
m_i_ge_decl(nullptr),
|
|
m_i_lt_decl(nullptr),
|
|
m_i_gt_decl(nullptr),
|
|
m_i_add_decl(nullptr),
|
|
m_i_sub_decl(nullptr),
|
|
m_i_uminus_decl(nullptr),
|
|
m_i_mul_decl(nullptr),
|
|
m_i_div_decl(nullptr),
|
|
m_i_mod_decl(nullptr),
|
|
m_i_rem_decl(nullptr),
|
|
m_to_real_decl(nullptr),
|
|
m_to_int_decl(nullptr),
|
|
m_is_int_decl(nullptr),
|
|
m_r_power_decl(nullptr),
|
|
m_i_power_decl(nullptr),
|
|
m_r_abs_decl(nullptr),
|
|
m_i_abs_decl(nullptr),
|
|
m_sin_decl(nullptr),
|
|
m_cos_decl(nullptr),
|
|
m_tan_decl(nullptr),
|
|
m_asin_decl(nullptr),
|
|
m_acos_decl(nullptr),
|
|
m_atan_decl(nullptr),
|
|
m_sinh_decl(nullptr),
|
|
m_cosh_decl(nullptr),
|
|
m_tanh_decl(nullptr),
|
|
m_asinh_decl(nullptr),
|
|
m_acosh_decl(nullptr),
|
|
m_atanh_decl(nullptr),
|
|
m_pi(nullptr),
|
|
m_e(nullptr),
|
|
m_neg_root_decl(nullptr),
|
|
m_u_asin_decl(nullptr),
|
|
m_u_acos_decl(nullptr),
|
|
m_convert_int_numerals_to_real(false) {
|
|
}
|
|
|
|
arith_decl_plugin::~arith_decl_plugin() {
|
|
dealloc(m_aw);
|
|
}
|
|
|
|
void arith_decl_plugin::finalize() {
|
|
#define DEC_REF(decl) if (decl) { m_manager->dec_ref(decl); } ((void) 0)
|
|
DEC_REF(m_real_decl);
|
|
DEC_REF(m_int_decl);
|
|
DEC_REF(m_r_le_decl);
|
|
DEC_REF(m_r_ge_decl);
|
|
DEC_REF(m_r_lt_decl);
|
|
DEC_REF(m_r_gt_decl);
|
|
DEC_REF(m_r_add_decl);
|
|
DEC_REF(m_r_sub_decl);
|
|
DEC_REF(m_r_uminus_decl);
|
|
DEC_REF(m_r_mul_decl);
|
|
DEC_REF(m_r_div_decl);
|
|
DEC_REF(m_i_le_decl);
|
|
DEC_REF(m_i_ge_decl);
|
|
DEC_REF(m_i_lt_decl);
|
|
DEC_REF(m_i_gt_decl);
|
|
DEC_REF(m_i_add_decl);
|
|
DEC_REF(m_i_sub_decl);
|
|
DEC_REF(m_i_uminus_decl);
|
|
DEC_REF(m_i_mul_decl);
|
|
DEC_REF(m_i_div_decl);
|
|
DEC_REF(m_i_mod_decl);
|
|
DEC_REF(m_i_rem_decl);
|
|
DEC_REF(m_to_real_decl);
|
|
DEC_REF(m_to_int_decl);
|
|
DEC_REF(m_is_int_decl);
|
|
DEC_REF(m_i_power_decl);
|
|
DEC_REF(m_r_power_decl);
|
|
DEC_REF(m_i_abs_decl);
|
|
DEC_REF(m_r_abs_decl);
|
|
DEC_REF(m_sin_decl);
|
|
DEC_REF(m_cos_decl);
|
|
DEC_REF(m_tan_decl);
|
|
DEC_REF(m_asin_decl);
|
|
DEC_REF(m_acos_decl);
|
|
DEC_REF(m_atan_decl);
|
|
DEC_REF(m_sinh_decl);
|
|
DEC_REF(m_cosh_decl);
|
|
DEC_REF(m_tanh_decl);
|
|
DEC_REF(m_asinh_decl);
|
|
DEC_REF(m_acosh_decl);
|
|
DEC_REF(m_atanh_decl);
|
|
DEC_REF(m_pi);
|
|
DEC_REF(m_e);
|
|
DEC_REF(m_neg_root_decl);
|
|
DEC_REF(m_u_asin_decl);
|
|
DEC_REF(m_u_acos_decl);
|
|
m_manager->dec_array_ref(m_small_ints.size(), m_small_ints.c_ptr());
|
|
m_manager->dec_array_ref(m_small_reals.size(), m_small_reals.c_ptr());
|
|
}
|
|
|
|
sort * arith_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) {
|
|
switch (k) {
|
|
case REAL_SORT: return m_real_decl;
|
|
case INT_SORT: return m_int_decl;
|
|
default: return nullptr;
|
|
}
|
|
}
|
|
|
|
inline func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, bool is_real) {
|
|
switch (k) {
|
|
case OP_LE: return is_real ? m_r_le_decl : m_i_le_decl;
|
|
case OP_GE: return is_real ? m_r_ge_decl : m_i_ge_decl;
|
|
case OP_LT: return is_real ? m_r_lt_decl : m_i_lt_decl;
|
|
case OP_GT: return is_real ? m_r_gt_decl : m_i_gt_decl;
|
|
case OP_ADD: return is_real ? m_r_add_decl : m_i_add_decl;
|
|
case OP_SUB: return is_real ? m_r_sub_decl : m_i_sub_decl;
|
|
case OP_UMINUS: return is_real ? m_r_uminus_decl : m_i_uminus_decl;
|
|
case OP_MUL: return is_real ? m_r_mul_decl : m_i_mul_decl;
|
|
case OP_DIV: return m_r_div_decl;
|
|
case OP_IDIV: return m_i_div_decl;
|
|
case OP_IDIVIDES: UNREACHABLE();
|
|
case OP_REM: return m_i_rem_decl;
|
|
case OP_MOD: return m_i_mod_decl;
|
|
case OP_DIV0: return m_manager->mk_func_decl(symbol("/0"), m_real_decl, m_real_decl, m_real_decl, func_decl_info(m_family_id, OP_DIV0));
|
|
case OP_IDIV0: return m_manager->mk_func_decl(symbol("div0"), m_int_decl, m_int_decl, m_int_decl, func_decl_info(m_family_id, OP_IDIV0));
|
|
case OP_REM0: return m_manager->mk_func_decl(symbol("rem0"), m_int_decl, m_int_decl, m_int_decl, func_decl_info(m_family_id, OP_REM0));
|
|
case OP_MOD0: return m_manager->mk_func_decl(symbol("mod0"), m_int_decl, m_int_decl, m_int_decl, func_decl_info(m_family_id, OP_MOD0));
|
|
case OP_POWER0:
|
|
if (is_real) {
|
|
return m_manager->mk_func_decl(symbol("^0"), m_real_decl, m_real_decl, m_real_decl, func_decl_info(m_family_id, OP_POWER0));
|
|
}
|
|
return m_manager->mk_func_decl(symbol("^0"), m_int_decl, m_int_decl, m_int_decl, func_decl_info(m_family_id, OP_POWER0));
|
|
case OP_TO_REAL: return m_to_real_decl;
|
|
case OP_TO_INT: return m_to_int_decl;
|
|
case OP_IS_INT: return m_is_int_decl;
|
|
case OP_POWER: return is_real ? m_r_power_decl : m_i_power_decl;
|
|
case OP_ABS: return is_real ? m_r_abs_decl : m_i_abs_decl;
|
|
case OP_SIN: return m_sin_decl;
|
|
case OP_COS: return m_cos_decl;
|
|
case OP_TAN: return m_tan_decl;
|
|
case OP_ASIN: return m_asin_decl;
|
|
case OP_ACOS: return m_acos_decl;
|
|
case OP_ATAN: return m_atan_decl;
|
|
case OP_SINH: return m_sinh_decl;
|
|
case OP_COSH: return m_cosh_decl;
|
|
case OP_TANH: return m_tanh_decl;
|
|
case OP_ASINH: return m_asinh_decl;
|
|
case OP_ACOSH: return m_acosh_decl;
|
|
case OP_ATANH: return m_atanh_decl;
|
|
case OP_PI: return m_pi->get_decl();
|
|
case OP_E: return m_e->get_decl();
|
|
//case OP_0_PW_0_INT: return m_0_pw_0_int->get_decl();
|
|
//case OP_0_PW_0_REAL: return m_0_pw_0_real->get_decl();
|
|
case OP_NEG_ROOT: return m_neg_root_decl;
|
|
//case OP_DIV_0: return m_div_0_decl;
|
|
//case OP_IDIV_0: return m_idiv_0_decl;
|
|
//case OP_MOD_0: return m_mod_0_decl;
|
|
case OP_U_ASIN: return m_u_asin_decl;
|
|
case OP_U_ACOS: return m_u_acos_decl;
|
|
default: return nullptr;
|
|
}
|
|
}
|
|
|
|
void arith_decl_plugin::check_arity(unsigned arity, unsigned expected_arity) {
|
|
if (arity != expected_arity) {
|
|
m_manager->raise_exception("invalid number of arguments passed to function");
|
|
}
|
|
}
|
|
|
|
inline decl_kind arith_decl_plugin::fix_kind(decl_kind k, unsigned arity) {
|
|
if (k == OP_SUB && arity == 1) {
|
|
return OP_UMINUS;
|
|
}
|
|
return k;
|
|
}
|
|
|
|
#define MAX_SMALL_NUM_TO_CACHE 16
|
|
|
|
app * arith_decl_plugin::mk_numeral(rational const & val, bool is_int) {
|
|
if (is_int && !val.is_int()) {
|
|
m_manager->raise_exception("invalid rational value passed as an integer");
|
|
}
|
|
if (val.is_unsigned()) {
|
|
unsigned u_val = val.get_unsigned();
|
|
if (u_val < MAX_SMALL_NUM_TO_CACHE) {
|
|
if (is_int && !m_convert_int_numerals_to_real) {
|
|
app * r = m_small_ints.get(u_val, 0);
|
|
if (r == nullptr) {
|
|
parameter p[2] = { parameter(val), parameter(1) };
|
|
r = m_manager->mk_const(m_manager->mk_const_decl(m_intv_sym, m_int_decl, func_decl_info(m_family_id, OP_NUM, 2, p)));
|
|
m_manager->inc_ref(r);
|
|
m_small_ints.setx(u_val, r, 0);
|
|
|
|
if (log_constant_meaning_prelude(r)) {
|
|
m_manager->trace_stream() << u_val << "\n";
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
else {
|
|
app * r = m_small_reals.get(u_val, 0);
|
|
if (r == nullptr) {
|
|
parameter p[2] = { parameter(val), parameter(0) };
|
|
r = m_manager->mk_const(m_manager->mk_const_decl(m_realv_sym, m_real_decl, func_decl_info(m_family_id, OP_NUM, 2, p)));
|
|
m_manager->inc_ref(r);
|
|
m_small_reals.setx(u_val, r, 0);
|
|
|
|
if (log_constant_meaning_prelude(r)) {
|
|
m_manager->trace_stream() << u_val << "\n";
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
}
|
|
parameter p[2] = { parameter(val), parameter(static_cast<int>(is_int)) };
|
|
func_decl * decl;
|
|
|
|
if (is_int && !m_convert_int_numerals_to_real)
|
|
decl = m_manager->mk_const_decl(m_intv_sym, m_int_decl, func_decl_info(m_family_id, OP_NUM, 2, p));
|
|
else
|
|
decl = m_manager->mk_const_decl(m_realv_sym, m_real_decl, func_decl_info(m_family_id, OP_NUM, 2, p));
|
|
app * r = m_manager->mk_const(decl);
|
|
|
|
if (log_constant_meaning_prelude(r)) {
|
|
val.display_smt2(m_manager->trace_stream());
|
|
m_manager->trace_stream() << "\n";
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
func_decl * arith_decl_plugin::mk_num_decl(unsigned num_parameters, parameter const * parameters, unsigned arity) {
|
|
if (!(num_parameters == 2 && arity == 0 && parameters[0].is_rational() && parameters[1].is_int())) {
|
|
m_manager->raise_exception("invalid numeral declaration");
|
|
return nullptr;
|
|
}
|
|
if (parameters[1].get_int() != 0)
|
|
return m_manager->mk_const_decl(m_intv_sym, m_int_decl, func_decl_info(m_family_id, OP_NUM, num_parameters, parameters));
|
|
else
|
|
return m_manager->mk_const_decl(m_realv_sym, m_real_decl, func_decl_info(m_family_id, OP_NUM, num_parameters, parameters));
|
|
}
|
|
|
|
static bool use_coercion(decl_kind k) {
|
|
return k == OP_ADD || k == OP_SUB || k == OP_MUL || k == OP_POWER || k == OP_LE || k == OP_GE || k == OP_LT || k == OP_GT || k == OP_UMINUS;
|
|
}
|
|
|
|
static bool has_real_arg(unsigned arity, sort * const * domain, sort * real_sort) {
|
|
for (unsigned i = 0; i < arity; i++)
|
|
if (domain[i] == real_sort)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool has_real_arg(ast_manager * m, unsigned num_args, expr * const * args, sort * real_sort) {
|
|
for (unsigned i = 0; i < num_args; i++)
|
|
if (m->get_sort(args[i]) == real_sort)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_const_op(decl_kind k) {
|
|
return
|
|
k == OP_PI ||
|
|
k == OP_E;
|
|
//k == OP_0_PW_0_INT ||
|
|
//k == OP_0_PW_0_REAL;
|
|
}
|
|
|
|
func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
|
|
unsigned arity, sort * const * domain, sort * range) {
|
|
if (k == OP_NUM)
|
|
return mk_num_decl(num_parameters, parameters, arity);
|
|
if (arity == 0 && !is_const_op(k)) {
|
|
m_manager->raise_exception("no arguments supplied to arithmetical operator");
|
|
return nullptr;
|
|
}
|
|
if (k == OP_IDIVIDES) {
|
|
if (arity != 1 || domain[0] != m_int_decl || num_parameters != 1 || !parameters[0].is_int()) {
|
|
m_manager->raise_exception("invalid divides application. Expects integer parameter and one argument of sort integer");
|
|
}
|
|
return m_manager->mk_func_decl(symbol("divisible"), 1, &m_int_decl, m_manager->mk_bool_sort(),
|
|
func_decl_info(m_family_id, k, num_parameters, parameters));
|
|
}
|
|
|
|
if (m_manager->int_real_coercions() && use_coercion(k)) {
|
|
return mk_func_decl(fix_kind(k, arity), has_real_arg(arity, domain, m_real_decl));
|
|
}
|
|
else {
|
|
bool is_real = arity > 0 && domain[0] == m_real_decl;
|
|
return mk_func_decl(fix_kind(k, arity), is_real);
|
|
}
|
|
}
|
|
|
|
func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
|
|
unsigned num_args, expr * const * args, sort * range) {
|
|
if (k == OP_NUM)
|
|
return mk_num_decl(num_parameters, parameters, num_args);
|
|
if (num_args == 0 && !is_const_op(k)) {
|
|
m_manager->raise_exception("no arguments supplied to arithmetical operator");
|
|
return nullptr;
|
|
}
|
|
if (k == OP_IDIVIDES) {
|
|
if (num_args != 1 || m_manager->get_sort(args[0]) != m_int_decl || num_parameters != 1 || !parameters[0].is_int()) {
|
|
m_manager->raise_exception("invalid divides application. Expects integer parameter and one argument of sort integer");
|
|
}
|
|
return m_manager->mk_func_decl(symbol("divisible"), 1, &m_int_decl, m_manager->mk_bool_sort(),
|
|
func_decl_info(m_family_id, k, num_parameters, parameters));
|
|
}
|
|
if (m_manager->int_real_coercions() && use_coercion(k)) {
|
|
return mk_func_decl(fix_kind(k, num_args), has_real_arg(m_manager, num_args, args, m_real_decl));
|
|
}
|
|
else {
|
|
bool is_real = num_args > 0 && m_manager->get_sort(args[0]) == m_real_decl;
|
|
return mk_func_decl(fix_kind(k, num_args), is_real);
|
|
}
|
|
}
|
|
|
|
void arith_decl_plugin::get_sort_names(svector<builtin_name>& sort_names, symbol const & logic) {
|
|
if (logic == "NRA" ||
|
|
logic == "QF_NRA" ||
|
|
logic == "QF_UFNRA") {
|
|
m_convert_int_numerals_to_real = true;
|
|
sort_names.push_back(builtin_name("Real", REAL_SORT));
|
|
}
|
|
else {
|
|
// TODO: only define Int and Real in the right logics
|
|
sort_names.push_back(builtin_name("Int", INT_SORT));
|
|
sort_names.push_back(builtin_name("Real", REAL_SORT));
|
|
}
|
|
}
|
|
|
|
void arith_decl_plugin::get_op_names(svector<builtin_name>& op_names, symbol const & logic) {
|
|
op_names.push_back(builtin_name("<=",OP_LE));
|
|
op_names.push_back(builtin_name(">=",OP_GE));
|
|
op_names.push_back(builtin_name("<",OP_LT));
|
|
op_names.push_back(builtin_name(">",OP_GT));
|
|
op_names.push_back(builtin_name("+",OP_ADD));
|
|
op_names.push_back(builtin_name("-",OP_SUB));
|
|
op_names.push_back(builtin_name("~",OP_UMINUS));
|
|
op_names.push_back(builtin_name("*",OP_MUL));
|
|
op_names.push_back(builtin_name("/",OP_DIV));
|
|
op_names.push_back(builtin_name("div",OP_IDIV));
|
|
if (gparams::get_value("smtlib2_compliant") == "true") {
|
|
op_names.push_back(builtin_name("divisible",OP_IDIVIDES));
|
|
}
|
|
op_names.push_back(builtin_name("rem",OP_REM));
|
|
op_names.push_back(builtin_name("mod",OP_MOD));
|
|
op_names.push_back(builtin_name("to_real",OP_TO_REAL));
|
|
op_names.push_back(builtin_name("to_int",OP_TO_INT));
|
|
op_names.push_back(builtin_name("is_int",OP_IS_INT));
|
|
op_names.push_back(builtin_name("abs", OP_ABS));
|
|
if (logic == symbol::null || logic == symbol("ALL")) {
|
|
op_names.push_back(builtin_name("^", OP_POWER));
|
|
op_names.push_back(builtin_name("sin", OP_SIN));
|
|
op_names.push_back(builtin_name("cos", OP_COS));
|
|
op_names.push_back(builtin_name("tan", OP_TAN));
|
|
op_names.push_back(builtin_name("asin", OP_ASIN));
|
|
op_names.push_back(builtin_name("acos", OP_ACOS));
|
|
op_names.push_back(builtin_name("atan", OP_ATAN));
|
|
op_names.push_back(builtin_name("sinh", OP_SINH));
|
|
op_names.push_back(builtin_name("cosh", OP_COSH));
|
|
op_names.push_back(builtin_name("tanh", OP_TANH));
|
|
op_names.push_back(builtin_name("asinh", OP_ASINH));
|
|
op_names.push_back(builtin_name("acosh", OP_ACOSH));
|
|
op_names.push_back(builtin_name("atanh", OP_ATANH));
|
|
op_names.push_back(builtin_name("pi", OP_PI));
|
|
op_names.push_back(builtin_name("euler", OP_E));
|
|
}
|
|
}
|
|
|
|
bool arith_decl_plugin::is_value(app * e) const {
|
|
return
|
|
is_app_of(e, m_family_id, OP_NUM) ||
|
|
is_app_of(e, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM) ||
|
|
is_app_of(e, m_family_id, OP_PI) ||
|
|
is_app_of(e, m_family_id, OP_E);
|
|
}
|
|
|
|
bool arith_decl_plugin::is_unique_value(app * e) const {
|
|
return
|
|
is_app_of(e, m_family_id, OP_NUM) ||
|
|
is_app_of(e, m_family_id, OP_PI) ||
|
|
is_app_of(e, m_family_id, OP_E);
|
|
}
|
|
|
|
bool arith_decl_plugin::are_equal(app * a, app * b) const {
|
|
if (decl_plugin::are_equal(a, b)) {
|
|
return true;
|
|
}
|
|
|
|
if (is_app_of(a, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM) && is_app_of(b, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM)) {
|
|
return am().eq(aw().to_anum(a->get_decl()), aw().to_anum(b->get_decl()));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool arith_decl_plugin::are_distinct(app * a, app * b) const {
|
|
TRACE("are_distinct_bug", tout << mk_ismt2_pp(a, *m_manager) << "\n" << mk_ismt2_pp(b, *m_manager) << "\n";);
|
|
if (decl_plugin::are_distinct(a,b)) {
|
|
return true;
|
|
}
|
|
|
|
if (is_app_of(a, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM) && is_app_of(b, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM)) {
|
|
return am().neq(aw().to_anum(a->get_decl()), aw().to_anum(b->get_decl()));
|
|
}
|
|
|
|
#define is_non_zero(e) is_app_of(e,m_family_id, OP_NUM) && !to_app(e)->get_decl()->get_parameter(0).get_rational().is_zero()
|
|
|
|
if (is_app_of(a, m_family_id, OP_ADD) &&
|
|
a->get_num_args() == 2 &&
|
|
to_app(a)->get_arg(0) == b &&
|
|
is_non_zero(to_app(a)->get_arg(1))) {
|
|
return true;
|
|
}
|
|
if (is_app_of(a, m_family_id, OP_ADD) &&
|
|
a->get_num_args() == 2 &&
|
|
to_app(a)->get_arg(1) == b &&
|
|
is_non_zero(to_app(a)->get_arg(0))) {
|
|
return true;
|
|
}
|
|
if (is_app_of(b, m_family_id, OP_ADD) &&
|
|
b->get_num_args() == 2 &&
|
|
to_app(b)->get_arg(1) == a &&
|
|
is_non_zero(to_app(b)->get_arg(0))) {
|
|
return true;
|
|
}
|
|
if (is_app_of(b, m_family_id, OP_ADD) &&
|
|
b->get_num_args() == 2 &&
|
|
to_app(b)->get_arg(0) == a &&
|
|
is_non_zero(to_app(b)->get_arg(1))) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
expr * arith_decl_plugin::get_some_value(sort * s) {
|
|
SASSERT(s == m_int_decl || s == m_real_decl);
|
|
return mk_numeral(rational(0), s == m_int_decl);
|
|
}
|
|
|
|
bool arith_recognizers::is_numeral(expr const * n, rational & val, bool & is_int) const {
|
|
if (!is_app_of(n, m_afid, OP_NUM))
|
|
return false;
|
|
func_decl * decl = to_app(n)->get_decl();
|
|
val = decl->get_parameter(0).get_rational();
|
|
is_int = decl->get_parameter(1).get_int() != 0;
|
|
return true;
|
|
}
|
|
|
|
bool arith_recognizers::is_irrational_algebraic_numeral(expr const * n) const {
|
|
return is_app(n) && to_app(n)->is_app_of(m_afid, OP_IRRATIONAL_ALGEBRAIC_NUM);
|
|
}
|
|
|
|
|
|
#define IS_INT_EXPR_DEPTH_LIMIT 100
|
|
bool arith_recognizers::is_int_expr(expr const *e) const {
|
|
if (is_int(e)) return true;
|
|
if (is_uninterp(e)) return false;
|
|
ptr_buffer<const expr> todo;
|
|
todo.push_back(e);
|
|
rational r;
|
|
unsigned i = 0;
|
|
while (!todo.empty()) {
|
|
++i;
|
|
if (i > IS_INT_EXPR_DEPTH_LIMIT) {return false;}
|
|
e = todo.back();
|
|
todo.pop_back();
|
|
if (is_to_real(e)) {
|
|
// pass
|
|
}
|
|
else if (is_numeral(e, r) && r.is_int()) {
|
|
// pass
|
|
}
|
|
else if (is_add(e) || is_mul(e)) {
|
|
todo.append(to_app(e)->get_num_args(), to_app(e)->get_args());
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
arith_util::arith_util(ast_manager & m):
|
|
arith_recognizers(m.mk_family_id("arith")),
|
|
m_manager(m),
|
|
m_plugin(nullptr) {
|
|
}
|
|
|
|
void arith_util::init_plugin() {
|
|
SASSERT(m_plugin == 0);
|
|
m_plugin = static_cast<arith_decl_plugin*>(m_manager.get_plugin(m_afid));
|
|
}
|
|
|
|
bool arith_util::is_irrational_algebraic_numeral2(expr const * n, algebraic_numbers::anum & val) {
|
|
if (!is_app_of(n, m_afid, OP_IRRATIONAL_ALGEBRAIC_NUM))
|
|
return false;
|
|
am().set(val, to_irrational_algebraic_numeral(n));
|
|
return true;
|
|
}
|
|
|
|
algebraic_numbers::anum const & arith_util::to_irrational_algebraic_numeral(expr const * n) {
|
|
SASSERT(is_irrational_algebraic_numeral(n));
|
|
return plugin().aw().to_anum(to_app(n)->get_decl());
|
|
}
|
|
|
|
expr_ref arith_util::mk_mul_simplify(expr_ref_vector const& args) {
|
|
return mk_mul_simplify(args.size(), args.c_ptr());
|
|
|
|
}
|
|
expr_ref arith_util::mk_mul_simplify(unsigned sz, expr* const* args) {
|
|
expr_ref result(m_manager);
|
|
|
|
switch (sz) {
|
|
case 0:
|
|
result = mk_numeral(rational(1), true);
|
|
break;
|
|
case 1:
|
|
result = args[0];
|
|
break;
|
|
default:
|
|
result = mk_mul(sz, args);
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
expr_ref arith_util::mk_add_simplify(expr_ref_vector const& args) {
|
|
return mk_add_simplify(args.size(), args.c_ptr());
|
|
|
|
}
|
|
expr_ref arith_util::mk_add_simplify(unsigned sz, expr* const* args) {
|
|
expr_ref result(m_manager);
|
|
|
|
switch (sz) {
|
|
case 0:
|
|
result = mk_numeral(rational(0), true);
|
|
break;
|
|
case 1:
|
|
result = args[0];
|
|
break;
|
|
default:
|
|
result = mk_add(sz, args);
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool arith_util::is_considered_uninterpreted(func_decl* f, unsigned n, expr* const* args, func_decl_ref& f_out) {
|
|
rational r;
|
|
if (is_decl_of(f, m_afid, OP_DIV) && is_numeral(args[1], r) && r.is_zero()) {
|
|
f_out = mk_div0();
|
|
return true;
|
|
}
|
|
if (is_decl_of(f, m_afid, OP_IDIV) && is_numeral(args[1], r) && r.is_zero()) {
|
|
sort* rs[2] = { mk_real(), mk_real() };
|
|
f_out = m_manager.mk_func_decl(m_afid, OP_IDIV0, 0, nullptr, 2, rs, mk_real());
|
|
return true;
|
|
}
|
|
if (is_decl_of(f, m_afid, OP_MOD) && is_numeral(args[1], r) && r.is_zero()) {
|
|
sort* rs[2] = { mk_real(), mk_real() };
|
|
f_out = m_manager.mk_func_decl(m_afid, OP_MOD0, 0, nullptr, 2, rs, mk_real());
|
|
return true;
|
|
}
|
|
if (is_decl_of(f, m_afid, OP_REM) && is_numeral(args[1], r) && r.is_zero()) {
|
|
sort* rs[2] = { mk_real(), mk_real() };
|
|
f_out = m_manager.mk_func_decl(m_afid, OP_REM0, 0, nullptr, 2, rs, mk_real());
|
|
return true;
|
|
}
|
|
if (is_decl_of(f, m_afid, OP_POWER) && is_numeral(args[1], r) && r.is_zero() && is_numeral(args[0], r) && r.is_zero()) {
|
|
sort* rs[2] = { mk_real(), mk_real() };
|
|
f_out = m_manager.mk_func_decl(m_afid, OP_POWER0, 0, nullptr, 2, rs, mk_real());
|
|
return true;
|
|
}
|
|
return plugin().is_considered_uninterpreted(f);
|
|
}
|
|
|
|
func_decl* arith_util::mk_div0() {
|
|
sort* rs[2] = { mk_real(), mk_real() };
|
|
return m_manager.mk_func_decl(m_afid, OP_DIV0, 0, nullptr, 2, rs, mk_real());
|
|
}
|
|
|
|
func_decl* arith_util::mk_idiv0() {
|
|
sort* rs[2] = { mk_int(), mk_int() };
|
|
return m_manager.mk_func_decl(m_afid, OP_IDIV0, 0, nullptr, 2, rs, mk_int());
|
|
}
|