3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 20:38:43 +00:00
z3/src/tactic/smtlogics/qfbv_tactic.cpp
2016-02-02 17:58:23 +00:00

140 lines
4.8 KiB
C++

/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
qfbv_tactic.cpp
Abstract:
Tactic for QF_BV based on bit-blasting
Author:
Leonardo (leonardo) 2012-02-22
Notes:
--*/
#include"tactical.h"
#include"simplify_tactic.h"
#include"propagate_values_tactic.h"
#include"solve_eqs_tactic.h"
#include"elim_uncnstr_tactic.h"
#include"smt_tactic.h"
#include"bit_blaster_tactic.h"
#include"bv1_blaster_tactic.h"
#include"max_bv_sharing_tactic.h"
#include"bv_size_reduction_tactic.h"
#include"aig_tactic.h"
#include"sat_tactic.h"
#include"ackermannize_bv_tactic.h"
#define MEMLIMIT 300
tactic * mk_qfbv_preamble(ast_manager& m, params_ref const& p) {
params_ref solve_eq_p;
// conservative guassian elimination.
solve_eq_p.set_uint("solve_eqs_max_occs", 2);
params_ref simp2_p = p;
simp2_p.set_bool("som", true);
simp2_p.set_bool("pull_cheap_ite", true);
simp2_p.set_bool("push_ite_bv", false);
simp2_p.set_bool("local_ctx", true);
simp2_p.set_uint("local_ctx_limit", 10000000);
simp2_p.set_bool("flat", true); // required by som
simp2_p.set_bool("hoist_mul", false); // required by som
params_ref hoist_p;
hoist_p.set_bool("hoist_mul", true);
hoist_p.set_bool("som", false);
return
and_then(
mk_simplify_tactic(m),
mk_propagate_values_tactic(m),
using_params(mk_solve_eqs_tactic(m), solve_eq_p),
mk_elim_uncnstr_tactic(m),
if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))),
using_params(mk_simplify_tactic(m), simp2_p),
//
// Z3 can solve a couple of extra benchmarks by using hoist_mul
// but the timeout in SMT-COMP is too small.
// Moreover, it impacted negatively some easy benchmarks.
// We should decide later, if we keep it or not.
//
using_params(mk_simplify_tactic(m), hoist_p),
mk_max_bv_sharing_tactic(m),
mk_ackermannize_bv_tactic(m,p)
);
}
static tactic * main_p(tactic* t) {
params_ref p;
p.set_bool("elim_and", true);
p.set_bool("push_ite_bv", true);
p.set_bool("blast_distinct", true);
return using_params(t, p);
}
tactic * mk_qfbv_tactic(ast_manager& m, params_ref const & p, tactic* sat, tactic* smt) {
params_ref local_ctx_p = p;
local_ctx_p.set_bool("local_ctx", true);
params_ref solver_p;
solver_p.set_bool("preprocess", false); // preprocessor of smt::context is not needed.
params_ref no_flat_p;
no_flat_p.set_bool("flat", false);
params_ref ctx_simp_p;
ctx_simp_p.set_uint("max_depth", 32);
ctx_simp_p.set_uint("max_steps", 50000000);
params_ref big_aig_p;
big_aig_p.set_bool("aig_per_assertion", false);
tactic* preamble_st = mk_qfbv_preamble(m, p);
tactic * st = main_p(and_then(preamble_st,
// If the user sets HI_DIV0=false, then the formula may contain uninterpreted function
// symbols. In this case, we should not use the `sat', but instead `smt'. Alternatively,
// the UFs can be eliminated by eager ackermannization in the preamble.
cond(mk_is_qfbv_eq_probe(),
and_then(mk_bv1_blaster_tactic(m),
using_params(smt, solver_p)),
cond(mk_is_qfbv_probe(),
and_then(mk_bit_blaster_tactic(m),
when(mk_lt(mk_memory_probe(), mk_const_probe(MEMLIMIT)),
and_then(using_params(and_then(mk_simplify_tactic(m),
mk_solve_eqs_tactic(m)),
local_ctx_p),
if_no_proofs(cond(mk_produce_unsat_cores_probe(),
mk_aig_tactic(),
using_params(mk_aig_tactic(),
big_aig_p))))),
sat),
smt))));
st->updt_params(p);
return st;
}
tactic * mk_qfbv_tactic(ast_manager & m, params_ref const & p) {
tactic * new_sat = cond(mk_produce_proofs_probe(),
and_then(mk_simplify_tactic(m), mk_smt_tactic()),
mk_sat_tactic(m));
return mk_qfbv_tactic(m, p, new_sat, mk_smt_tactic());
}