3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-25 20:46:01 +00:00
z3/src/smt/smt_parallel.h
2025-08-11 10:39:09 -07:00

129 lines
4.2 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
smt_parallel.h
Abstract:
Parallel SMT, portfolio loop specialized to SMT core.
Author:
nbjorner 2020-01-31
Revision History:
--*/
#pragma once
#include "smt/smt_context.h"
#include <thread>
namespace smt {
class parallel {
context& ctx;
unsigned num_threads;
class batch_manager {
enum state {
is_running,
is_sat,
is_unsat,
is_exception_msg,
is_exception_code
};
ast_manager& m;
parallel& p;
std::mutex mux;
state m_state = state::is_running;
expr_ref_vector m_split_atoms; // atoms to split on
vector<expr_ref_vector> m_cubes;
unsigned m_max_batch_size = 10;
unsigned m_exception_code = 0;
std::string m_exception_msg;
obj_hashtable<expr> m_assumptions_used; // assumptions used in unsat cores, to be used in final core
// called from batch manager to cancel other workers if we've reached a verdict
void cancel_workers() {
IF_VERBOSE(0, verbose_stream() << "Canceling workers\n");
for (auto& w : p.m_workers)
w->cancel();
}
public:
batch_manager(ast_manager& m, parallel& p) : m(m), p(p), m_split_atoms(m) { }
void initialize();
void set_unsat(ast_translation& l2g, expr_ref_vector const& unsat_core);
void set_sat(ast_translation& l2g, model& m);
void set_exception(std::string const& msg);
void set_exception(unsigned error_code);
//
// worker threads ask the batch manager for a supply of cubes to check.
// they pass in a translation function from the global context to local context (ast-manager). It is called g2l.
// The batch manager returns a list of cubes to solve.
//
void get_cubes(ast_translation& g2l, vector<expr_ref_vector>& cubes);
//
// worker threads return unprocessed cubes to the batch manager together with split literal candidates.
// the batch manager re-enqueues unprocessed cubes and optionally splits them using the split_atoms returned by this and workers.
//
void return_cubes(ast_translation& l2g, vector<expr_ref_vector>const& cubes, expr_ref_vector const& split_atoms);
void report_assumption_used(ast_translation& l2g, expr* assumption);
void share_lemma(ast_translation& l2g, expr* lemma);
lbool get_result() const;
};
class worker {
unsigned id; // unique identifier for the worker
parallel& p;
batch_manager& b;
ast_manager m;
expr_ref_vector asms;
smt_params m_smt_params;
scoped_ptr<context> ctx;
unsigned m_max_conflicts = 100;
unsigned m_num_shared_units = 0;
void share_units();
lbool check_cube(expr_ref_vector const& cube);
public:
worker(unsigned id, parallel& p, expr_ref_vector const& _asms);
void run();
expr_ref_vector get_split_atoms();
void cancel() {
IF_VERBOSE(0, verbose_stream() << "Worker " << id << " canceling\n");
m.limit().cancel();
}
void collect_statistics(::statistics& st) const {
IF_VERBOSE(0, verbose_stream() << "Collecting statistics for worker " << id << "\n");
ctx->collect_statistics(st);
}
reslimit& limit() {
return m.limit();
}
};
batch_manager m_batch_manager;
ptr_vector<worker> m_workers;
public:
parallel(context& ctx) :
ctx(ctx),
num_threads(std::min(
(unsigned)std::thread::hardware_concurrency(),
ctx.get_fparams().m_threads)),
m_batch_manager(ctx.m, *this) {}
lbool operator()(expr_ref_vector const& asms);
};
}