3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 11:43:36 +00:00
z3/src/muz/pdr/pdr_util.cpp
Nikolaj Bjorner bf5419d44a move functionality from qe_util to ast_util
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2015-06-23 14:33:45 +02:00

512 lines
16 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
pdr_util.cpp
Abstract:
Utility functions for PDR.
Author:
Krystof Hoder (t-khoder) 2011-8-19.
Revision History:
Notes:
--*/
#include <sstream>
#include "arith_simplifier_plugin.h"
#include "array_decl_plugin.h"
#include "ast_pp.h"
#include "basic_simplifier_plugin.h"
#include "bv_simplifier_plugin.h"
#include "bool_rewriter.h"
#include "dl_util.h"
#include "for_each_expr.h"
#include "smt_params.h"
#include "model.h"
#include "ref_vector.h"
#include "rewriter.h"
#include "rewriter_def.h"
#include "util.h"
#include "pdr_manager.h"
#include "pdr_util.h"
#include "arith_decl_plugin.h"
#include "expr_replacer.h"
#include "model_smt2_pp.h"
#include "poly_rewriter.h"
#include "poly_rewriter_def.h"
#include "arith_rewriter.h"
#include "scoped_proof.h"
namespace pdr {
unsigned ceil_log2(unsigned u) {
if (u == 0) { return 0; }
unsigned pow2 = next_power_of_two(u);
return get_num_1bits(pow2-1);
}
std::string pp_cube(const ptr_vector<expr>& model, ast_manager& m) {
return pp_cube(model.size(), model.c_ptr(), m);
}
std::string pp_cube(const expr_ref_vector& model, ast_manager& m) {
return pp_cube(model.size(), model.c_ptr(), m);
}
std::string pp_cube(const app_ref_vector& model, ast_manager& m) {
return pp_cube(model.size(), model.c_ptr(), m);
}
std::string pp_cube(const app_vector& model, ast_manager& m) {
return pp_cube(model.size(), model.c_ptr(), m);
}
std::string pp_cube(unsigned sz, app * const * lits, ast_manager& m) {
return pp_cube(sz, reinterpret_cast<expr * const *>(lits), m);
}
std::string pp_cube(unsigned sz, expr * const * lits, ast_manager& m) {
std::stringstream res;
res << "(";
expr * const * end = lits+sz;
for (expr * const * it = lits; it!=end; it++) {
res << mk_pp(*it, m);
if (it+1!=end) {
res << ", ";
}
}
res << ")";
return res.str();
}
void reduce_disequalities(model& model, unsigned threshold, expr_ref& fml) {
ast_manager& m = fml.get_manager();
expr_ref_vector conjs(m);
flatten_and(fml, conjs);
obj_map<expr, unsigned> diseqs;
expr* n, *lhs, *rhs;
for (unsigned i = 0; i < conjs.size(); ++i) {
if (m.is_not(conjs[i].get(), n) &&
m.is_eq(n, lhs, rhs)) {
if (!m.is_value(rhs)) {
std::swap(lhs, rhs);
}
if (!m.is_value(rhs)) {
continue;
}
diseqs.insert_if_not_there2(lhs, 0)->get_data().m_value++;
}
}
expr_substitution sub(m);
unsigned orig_size = conjs.size();
unsigned num_deleted = 0;
expr_ref val(m), tmp(m);
proof_ref pr(m);
pr = m.mk_asserted(m.mk_true());
obj_map<expr, unsigned>::iterator it = diseqs.begin();
obj_map<expr, unsigned>::iterator end = diseqs.end();
for (; it != end; ++it) {
if (it->m_value >= threshold) {
model.eval(it->m_key, val);
sub.insert(it->m_key, val, pr);
conjs.push_back(m.mk_eq(it->m_key, val));
num_deleted += it->m_value;
}
}
if (orig_size < conjs.size()) {
scoped_ptr<expr_replacer> rep = mk_expr_simp_replacer(m);
rep->set_substitution(&sub);
for (unsigned i = 0; i < orig_size; ++i) {
tmp = conjs[i].get();
(*rep)(tmp);
if (m.is_true(tmp)) {
conjs[i] = conjs.back();
SASSERT(orig_size <= conjs.size());
conjs.pop_back();
SASSERT(orig_size <= 1 + conjs.size());
if (i + 1 == orig_size) {
// no-op.
}
else if (orig_size <= conjs.size()) {
// no-op
}
else {
SASSERT(orig_size == 1 + conjs.size());
--orig_size;
--i;
}
}
else {
conjs[i] = tmp;
}
}
IF_VERBOSE(2, verbose_stream() << "Deleted " << num_deleted << " disequalities " << conjs.size() << " conjuncts\n";);
}
fml = m.mk_and(conjs.size(), conjs.c_ptr());
}
class test_diff_logic {
ast_manager& m;
arith_util a;
bv_util bv;
bool m_is_dl;
bool m_test_for_utvpi;
bool is_numeric(expr* e) const {
if (a.is_numeral(e)) {
return true;
}
expr* cond, *th, *el;
if (m.is_ite(e, cond, th, el)) {
return is_numeric(th) && is_numeric(el);
}
return false;
}
bool is_arith_expr(expr *e) const {
return is_app(e) && a.get_family_id() == to_app(e)->get_family_id();
}
bool is_offset(expr* e) const {
if (a.is_numeral(e)) {
return true;
}
expr* cond, *th, *el, *e1, *e2;
if (m.is_ite(e, cond, th, el)) {
return is_offset(th) && is_offset(el);
}
// recognize offsets.
if (a.is_add(e, e1, e2)) {
if (is_numeric(e1)) {
return is_offset(e2);
}
if (is_numeric(e2)) {
return is_offset(e1);
}
return false;
}
if (m_test_for_utvpi) {
if (a.is_mul(e, e1, e2)) {
if (is_minus_one(e1)) {
return is_offset(e2);
}
if (is_minus_one(e2)) {
return is_offset(e1);
}
}
}
return !is_arith_expr(e);
}
bool is_minus_one(expr const * e) const {
rational r; return a.is_numeral(e, r) && r.is_minus_one();
}
bool test_ineq(expr* e) const {
SASSERT(a.is_le(e) || a.is_ge(e) || m.is_eq(e));
SASSERT(to_app(e)->get_num_args() == 2);
expr * lhs = to_app(e)->get_arg(0);
expr * rhs = to_app(e)->get_arg(1);
if (is_offset(lhs) && is_offset(rhs))
return true;
if (!is_numeric(rhs))
std::swap(lhs, rhs);
if (!is_numeric(rhs))
return false;
// lhs can be 'x' or '(+ x (* -1 y))'
if (is_offset(lhs))
return true;
expr* arg1, *arg2;
if (!a.is_add(lhs, arg1, arg2))
return false;
// x
if (m_test_for_utvpi) {
return is_offset(arg1) && is_offset(arg2);
}
if (is_arith_expr(arg1))
std::swap(arg1, arg2);
if (is_arith_expr(arg1))
return false;
// arg2: (* -1 y)
expr* m1, *m2;
if (!a.is_mul(arg2, m1, m2))
return false;
return is_minus_one(m1) && is_offset(m2);
}
bool test_eq(expr* e) const {
expr* lhs, *rhs;
VERIFY(m.is_eq(e, lhs, rhs));
if (!a.is_int_real(lhs)) {
return true;
}
if (a.is_numeral(lhs) || a.is_numeral(rhs)) {
return test_ineq(e);
}
return
test_term(lhs) &&
test_term(rhs) &&
!a.is_mul(lhs) &&
!a.is_mul(rhs);
}
bool test_term(expr* e) const {
if (m.is_bool(e)) {
return true;
}
if (a.is_numeral(e)) {
return true;
}
if (is_offset(e)) {
return true;
}
expr* lhs, *rhs;
if (a.is_add(e, lhs, rhs)) {
if (!a.is_numeral(lhs)) {
std::swap(lhs, rhs);
}
return a.is_numeral(lhs) && is_offset(rhs);
}
if (a.is_mul(e, lhs, rhs)) {
return is_minus_one(lhs) || is_minus_one(rhs);
}
return false;
}
bool is_non_arith_or_basic(expr* e) {
if (!is_app(e)) {
return false;
}
family_id fid = to_app(e)->get_family_id();
if (fid == null_family_id &&
!m.is_bool(e) &&
to_app(e)->get_num_args() > 0) {
return true;
}
return
fid != m.get_basic_family_id() &&
fid != null_family_id &&
fid != a.get_family_id() &&
fid != bv.get_family_id();
}
public:
test_diff_logic(ast_manager& m): m(m), a(m), bv(m), m_is_dl(true), m_test_for_utvpi(false) {}
void test_for_utvpi() { m_test_for_utvpi = true; }
void operator()(expr* e) {
if (!m_is_dl) {
return;
}
if (a.is_le(e) || a.is_ge(e)) {
m_is_dl = test_ineq(e);
}
else if (m.is_eq(e)) {
m_is_dl = test_eq(e);
}
else if (is_non_arith_or_basic(e)) {
m_is_dl = false;
}
else if (is_app(e)) {
app* a = to_app(e);
for (unsigned i = 0; m_is_dl && i < a->get_num_args(); ++i) {
m_is_dl = test_term(a->get_arg(i));
}
}
if (!m_is_dl) {
char const* msg = "non-diff: ";
if (m_test_for_utvpi) {
msg = "non-utvpi: ";
}
IF_VERBOSE(1, verbose_stream() << msg << mk_pp(e, m) << "\n";);
}
}
bool is_dl() const { return m_is_dl; }
};
bool is_difference_logic(ast_manager& m, unsigned num_fmls, expr* const* fmls) {
test_diff_logic test(m);
expr_fast_mark1 mark;
for (unsigned i = 0; i < num_fmls; ++i) {
quick_for_each_expr(test, mark, fmls[i]);
}
return test.is_dl();
}
bool is_utvpi_logic(ast_manager& m, unsigned num_fmls, expr* const* fmls) {
test_diff_logic test(m);
test.test_for_utvpi();
expr_fast_mark1 mark;
for (unsigned i = 0; i < num_fmls; ++i) {
quick_for_each_expr(test, mark, fmls[i]);
}
return test.is_dl();
}
class arith_normalizer : public poly_rewriter<arith_rewriter_core> {
ast_manager& m;
arith_util m_util;
enum op_kind { LE, GE, EQ };
public:
arith_normalizer(ast_manager& m, params_ref const& p = params_ref()): poly_rewriter<arith_rewriter_core>(m, p), m(m), m_util(m) {}
br_status mk_app_core(func_decl* f, unsigned num_args, expr* const* args, expr_ref& result) {
br_status st = BR_FAILED;
if (m.is_eq(f)) {
SASSERT(num_args == 2); return mk_eq_core(args[0], args[1], result);
}
if (f->get_family_id() != get_fid()) {
return st;
}
switch (f->get_decl_kind()) {
case OP_NUM: st = BR_FAILED; break;
case OP_IRRATIONAL_ALGEBRAIC_NUM: st = BR_FAILED; break;
case OP_LE: SASSERT(num_args == 2); st = mk_le_core(args[0], args[1], result); break;
case OP_GE: SASSERT(num_args == 2); st = mk_ge_core(args[0], args[1], result); break;
case OP_LT: SASSERT(num_args == 2); st = mk_lt_core(args[0], args[1], result); break;
case OP_GT: SASSERT(num_args == 2); st = mk_gt_core(args[0], args[1], result); break;
default: st = BR_FAILED; break;
}
return st;
}
private:
br_status mk_eq_core(expr* arg1, expr* arg2, expr_ref& result) {
return mk_le_ge_eq_core(arg1, arg2, EQ, result);
}
br_status mk_le_core(expr* arg1, expr* arg2, expr_ref& result) {
return mk_le_ge_eq_core(arg1, arg2, LE, result);
}
br_status mk_ge_core(expr* arg1, expr* arg2, expr_ref& result) {
return mk_le_ge_eq_core(arg1, arg2, GE, result);
}
br_status mk_lt_core(expr* arg1, expr* arg2, expr_ref& result) {
result = m.mk_not(m_util.mk_ge(arg1, arg2));
return BR_REWRITE2;
}
br_status mk_gt_core(expr* arg1, expr* arg2, expr_ref& result) {
result = m.mk_not(m_util.mk_le(arg1, arg2));
return BR_REWRITE2;
}
br_status mk_le_ge_eq_core(expr* arg1, expr* arg2, op_kind kind, expr_ref& result) {
if (m_util.is_real(arg1)) {
numeral g(0);
get_coeffs(arg1, g);
get_coeffs(arg2, g);
if (!g.is_one() && !g.is_zero()) {
SASSERT(g.is_pos());
expr_ref new_arg1 = rdiv_polynomial(arg1, g);
expr_ref new_arg2 = rdiv_polynomial(arg2, g);
switch(kind) {
case LE: result = m_util.mk_le(new_arg1, new_arg2); return BR_DONE;
case GE: result = m_util.mk_ge(new_arg1, new_arg2); return BR_DONE;
case EQ: result = m_util.mk_eq(new_arg1, new_arg2); return BR_DONE;
}
}
}
return BR_FAILED;
}
void update_coeff(numeral const& r, numeral& g) {
if (g.is_zero() || abs(r) < g) {
g = abs(r);
}
}
void get_coeffs(expr* e, numeral& g) {
rational r;
unsigned sz;
expr* const* args = get_monomials(e, sz);
for (unsigned i = 0; i < sz; ++i) {
expr* arg = args[i];
if (!m_util.is_numeral(arg, r)) {
get_power_product(arg, r);
}
update_coeff(r, g);
}
}
expr_ref rdiv_polynomial(expr* e, numeral const& g) {
rational r;
SASSERT(g.is_pos());
SASSERT(!g.is_one());
expr_ref_vector monomes(m);
unsigned sz;
expr* const* args = get_monomials(e, sz);
for (unsigned i = 0; i < sz; ++i) {
expr* arg = args[i];
if (m_util.is_numeral(arg, r)) {
monomes.push_back(m_util.mk_numeral(r/g, false));
}
else {
expr* p = get_power_product(arg, r);
r /= g;
if (r.is_one()) {
monomes.push_back(p);
}
else {
monomes.push_back(m_util.mk_mul(m_util.mk_numeral(r, false), p));
}
}
}
expr_ref result(m);
mk_add(monomes.size(), monomes.c_ptr(), result);
return result;
}
};
struct arith_normalizer_cfg: public default_rewriter_cfg {
arith_normalizer m_r;
bool rewrite_patterns() const { return false; }
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
return m_r.mk_app_core(f, num, args, result);
}
arith_normalizer_cfg(ast_manager & m, params_ref const & p):m_r(m,p) {}
};
class arith_normalizer_star : public rewriter_tpl<arith_normalizer_cfg> {
arith_normalizer_cfg m_cfg;
public:
arith_normalizer_star(ast_manager & m, params_ref const & p):
rewriter_tpl<arith_normalizer_cfg>(m, false, m_cfg),
m_cfg(m, p) {}
};
void normalize_arithmetic(expr_ref& t) {
ast_manager& m = t.get_manager();
scoped_no_proof _sp(m);
params_ref p;
arith_normalizer_star rw(m, p);
expr_ref tmp(m);
rw(t, tmp);
t = tmp;
}
}
template class rewriter_tpl<pdr::arith_normalizer_cfg>;