3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 11:17:07 +00:00
z3/src/smt/theory_str.h
2017-05-13 14:18:05 -04:00

656 lines
25 KiB
C++

/*++
Module Name:
theory_str.h
Abstract:
String Theory Plugin
Author:
Murphy Berzish and Yunhui Zheng
Revision History:
--*/
#ifndef _THEORY_STR_H_
#define _THEORY_STR_H_
#include"smt_theory.h"
#include"theory_str_params.h"
#include"trail.h"
#include"th_rewriter.h"
#include"value_factory.h"
#include"smt_model_generator.h"
#include"arith_decl_plugin.h"
#include<set>
#include<stack>
#include<vector>
#include<map>
#include"seq_decl_plugin.h"
#include"union_find.h"
namespace smt {
typedef hashtable<symbol, symbol_hash_proc, symbol_eq_proc> symbol_set;
class str_value_factory : public value_factory {
seq_util u;
symbol_set m_strings;
std::string delim;
unsigned m_next;
public:
str_value_factory(ast_manager & m, family_id fid) :
value_factory(m, fid),
u(m), delim("!"), m_next(0) {}
virtual ~str_value_factory() {}
virtual expr * get_some_value(sort * s) {
return u.str.mk_string(symbol("some value"));
}
virtual bool get_some_values(sort * s, expr_ref & v1, expr_ref & v2) {
v1 = u.str.mk_string(symbol("value 1"));
v2 = u.str.mk_string(symbol("value 2"));
return true;
}
virtual expr * get_fresh_value(sort * s) {
if (u.is_string(s)) {
while (true) {
std::ostringstream strm;
strm << delim << std::hex << (m_next++) << std::dec << delim;
symbol sym(strm.str().c_str());
if (m_strings.contains(sym)) continue;
m_strings.insert(sym);
return u.str.mk_string(sym);
}
}
sort* seq = 0;
if (u.is_re(s, seq)) {
expr* v0 = get_fresh_value(seq);
return u.re.mk_to_re(v0);
}
TRACE("t_str", tout << "unexpected sort in get_fresh_value(): " << mk_pp(s, m_manager) << std::endl;);
UNREACHABLE(); return NULL;
}
virtual void register_value(expr * n) { /* Ignore */ }
};
// rather than modify obj_pair_map I inherit from it and add my own helper methods
class theory_str_contain_pair_bool_map_t : public obj_pair_map<expr, expr, expr*> {
public:
expr * operator[](std::pair<expr*, expr*> key) const {
expr * value;
bool found = this->find(key.first, key.second, value);
if (found) {
return value;
} else {
TRACE("t_str", tout << "WARNING: lookup miss in contain_pair_bool_map!" << std::endl;);
return NULL;
}
}
bool contains(std::pair<expr*, expr*> key) const {
expr * unused;
return this->find(key.first, key.second, unused);
}
};
template<typename Ctx>
class binary_search_trail : public trail<Ctx> {
obj_map<expr, ptr_vector<expr> > & target;
expr * entry;
public:
binary_search_trail(obj_map<expr, ptr_vector<expr> > & target, expr * entry) :
target(target), entry(entry) {}
virtual ~binary_search_trail() {}
virtual void undo(Ctx & ctx) {
TRACE("t_str_binary_search", tout << "in binary_search_trail::undo()" << std::endl;);
if (target.contains(entry)) {
if (!target[entry].empty()) {
target[entry].pop_back();
} else {
TRACE("t_str_binary_search", tout << "WARNING: attempt to remove length tester from an empty stack" << std::endl;);
}
} else {
TRACE("t_str_binary_search", tout << "WARNING: attempt to access length tester map via invalid key" << std::endl;);
}
}
};
class nfa {
protected:
bool m_valid;
unsigned m_next_id;
unsigned next_id() {
unsigned retval = m_next_id;
++m_next_id;
return retval;
}
unsigned m_start_state;
unsigned m_end_state;
std::map<unsigned, std::map<char, unsigned> > transition_map;
std::map<unsigned, std::set<unsigned> > epsilon_map;
void make_transition(unsigned start, char symbol, unsigned end) {
transition_map[start][symbol] = end;
}
void make_epsilon_move(unsigned start, unsigned end) {
epsilon_map[start].insert(end);
}
// Convert a regular expression to an e-NFA using Thompson's construction
void convert_re(expr * e, unsigned & start, unsigned & end, seq_util & u);
public:
nfa(seq_util & u, expr * e)
: m_valid(true), m_next_id(0), m_start_state(0), m_end_state(0) {
convert_re(e, m_start_state, m_end_state, u);
}
nfa() : m_valid(false), m_next_id(0), m_start_state(0), m_end_state(0) {}
bool is_valid() const {
return m_valid;
}
void epsilon_closure(unsigned start, std::set<unsigned> & closure);
bool matches(zstring input);
};
class theory_str : public theory {
struct T_cut
{
int level;
std::map<expr*, int> vars;
T_cut() {
level = -100;
}
};
typedef trail_stack<theory_str> th_trail_stack;
typedef union_find<theory_str> th_union_find;
typedef map<rational, expr*, obj_hash<rational>, default_eq<rational> > rational_map;
struct zstring_hash_proc {
unsigned operator()(zstring const & s) const {
return string_hash(s.encode().c_str(), static_cast<unsigned>(s.length()), 17);
}
};
typedef map<zstring, expr*, zstring_hash_proc, default_eq<zstring> > string_map;
protected:
theory_str_params const & m_params;
/*
* Setting EagerStringConstantLengthAssertions to true allows some methods,
* in particular internalize_term(), to add
* length assertions about relevant string constants.
* Note that currently this should always be set to 'true', or else *no* length assertions
* will be made about string constants.
*/
bool opt_EagerStringConstantLengthAssertions;
/*
* If VerifyFinalCheckProgress is set to true, continuing after final check is invoked
* without asserting any new axioms is considered a bug and will throw an exception.
*/
bool opt_VerifyFinalCheckProgress;
/*
* This constant controls how eagerly we expand unrolls in unbounded regex membership tests.
*/
int opt_LCMUnrollStep;
/*
* If NoQuickReturn_IntegerTheory is set to true,
* integer theory integration checks that assert axioms
* will not return from the function after asserting their axioms.
* The default behaviour of Z3str2 is to set this to 'false'. This may be incorrect.
*/
bool opt_NoQuickReturn_IntegerTheory;
/*
* If DisableIntegerTheoryIntegration is set to true,
* ALL calls to the integer theory integration methods
* (get_value, get_len_value, lower_bound, upper_bound)
* will ignore what the arithmetic solver believes about length terms,
* and will return no information.
*
* This reduces performance significantly, but can be useful to enable
* if it is suspected that string-integer integration, or the arithmetic solver itself,
* might have a bug.
*
* The default behaviour of Z3str2 is to set this to 'false'.
*/
bool opt_DisableIntegerTheoryIntegration;
/*
* If DeferEQCConsistencyCheck is set to true,
* expensive calls to new_eq_check() will be deferred until final check,
* at which time the consistency of *all* string equivalence classes will be validated.
*/
bool opt_DeferEQCConsistencyCheck;
/*
* If CheckVariableScope is set to true,
* pop_scope_eh() and final_check_eh() will run extra checks
* to determine whether the current assignment
* contains references to any internal variables that are no longer in scope.
*/
bool opt_CheckVariableScope;
/*
* If ConcatOverlapAvoid is set to true,
* the check to simplify Concat = Concat in handle_equality() will
* avoid simplifying wrt. pairs of Concat terms that will immediately
* result in an overlap. (false = Z3str2 behaviour)
*/
bool opt_ConcatOverlapAvoid;
bool search_started;
arith_util m_autil;
seq_util u;
int sLevel;
bool finalCheckProgressIndicator;
expr_ref_vector m_trail; // trail for generated terms
str_value_factory * m_factory;
// terms we couldn't go through set_up_axioms() with because they weren't internalized
expr_ref_vector m_delayed_axiom_setup_terms;
ptr_vector<enode> m_basicstr_axiom_todo;
svector<std::pair<enode*,enode*> > m_str_eq_todo;
ptr_vector<enode> m_concat_axiom_todo;
ptr_vector<enode> m_string_constant_length_todo;
ptr_vector<enode> m_concat_eval_todo;
// enode lists for library-aware/high-level string terms (e.g. substr, contains)
ptr_vector<enode> m_library_aware_axiom_todo;
// hashtable of all exprs for which we've already set up term-specific axioms --
// this prevents infinite recursive descent with respect to axioms that
// include an occurrence of the term for which axioms are being generated
obj_hashtable<expr> axiomatized_terms;
int tmpStringVarCount;
int tmpXorVarCount;
int tmpLenTestVarCount;
int tmpValTestVarCount;
std::map<std::pair<expr*, expr*>, std::map<int, expr*> > varForBreakConcat;
bool avoidLoopCut;
bool loopDetected;
obj_map<expr, std::stack<T_cut*> > cut_var_map;
expr_ref m_theoryStrOverlapAssumption_term;
obj_hashtable<expr> variable_set;
obj_hashtable<expr> internal_variable_set;
obj_hashtable<expr> regex_variable_set;
std::map<int, std::set<expr*> > internal_variable_scope_levels;
obj_hashtable<expr> internal_lenTest_vars;
obj_hashtable<expr> internal_valTest_vars;
obj_hashtable<expr> internal_unrollTest_vars;
obj_hashtable<expr> input_var_in_len;
obj_map<expr, unsigned int> fvar_len_count_map;
std::map<expr*, ptr_vector<expr> > fvar_lenTester_map;
obj_map<expr, expr*> lenTester_fvar_map;
std::map<expr*, std::map<int, svector<std::pair<int, expr*> > > > fvar_valueTester_map;
std::map<expr*, expr*> valueTester_fvar_map;
std::map<expr*, int_vector> val_range_map;
// This can't be an expr_ref_vector because the constructor is wrong,
// we would need to modify the allocator so we pass in ast_manager
std::map<expr*, std::map<std::set<expr*>, ptr_vector<expr> > > unroll_tries_map;
std::map<expr*, expr*> unroll_var_map;
std::map<std::pair<expr*, expr*>, expr*> concat_eq_unroll_ast_map;
expr_ref_vector contains_map;
theory_str_contain_pair_bool_map_t contain_pair_bool_map;
//obj_map<expr, obj_pair_set<expr, expr> > contain_pair_idx_map;
std::map<expr*, std::set<std::pair<expr*, expr*> > > contain_pair_idx_map;
std::map<std::pair<expr*, zstring>, expr*> regex_in_bool_map;
std::map<expr*, std::set<zstring> > regex_in_var_reg_str_map;
std::map<expr*, nfa> regex_nfa_cache; // Regex term --> NFA
char * char_set;
std::map<char, int> charSetLookupTable;
int charSetSize;
obj_pair_map<expr, expr, expr*> concat_astNode_map;
// all (str.to-int) and (int.to-str) terms
expr_ref_vector string_int_conversion_terms;
obj_hashtable<expr> string_int_axioms;
// used when opt_FastLengthTesterCache is true
rational_map lengthTesterCache;
// used when opt_FastValueTesterCache is true
string_map valueTesterCache;
string_map stringConstantCache;
unsigned long totalCacheAccessCount;
unsigned long cacheHitCount;
unsigned long cacheMissCount;
unsigned m_fresh_id;
// cache mapping each string S to Length(S)
obj_map<expr, app*> length_ast_map;
th_union_find m_find;
th_trail_stack m_trail_stack;
theory_var get_var(expr * n) const;
expr * get_eqc_next(expr * n);
app * get_ast(theory_var i);
// binary search heuristic data
struct binary_search_info {
rational lowerBound;
rational midPoint;
rational upperBound;
rational windowSize;
binary_search_info() : lowerBound(rational::zero()), midPoint(rational::zero()),
upperBound(rational::zero()), windowSize(rational::zero()) {}
binary_search_info(rational lower, rational mid, rational upper, rational windowSize) :
lowerBound(lower), midPoint(mid), upperBound(upper), windowSize(windowSize) {}
void calculate_midpoint() {
midPoint = floor(lowerBound + ((upperBound - lowerBound) / rational(2)) );
}
};
// maps a free string var to a stack of active length testers.
// can use binary_search_trail to record changes to this object
obj_map<expr, ptr_vector<expr> > binary_search_len_tester_stack;
// maps a length tester var to the *active* search window
obj_map<expr, binary_search_info> binary_search_len_tester_info;
// maps a free string var to the first length tester to be (re)used
obj_map<expr, expr*> binary_search_starting_len_tester;
// maps a length tester to the next length tester to be (re)used if the split is "low"
obj_map<expr, expr*> binary_search_next_var_low;
// maps a length tester to the next length tester to be (re)used if the split is "high"
obj_map<expr, expr*> binary_search_next_var_high;
// finite model finding data
// maps a finite model tester var to a list of variables that will be tested
obj_map<expr, ptr_vector<expr> > finite_model_test_varlists;
protected:
void assert_axiom(expr * e);
void assert_implication(expr * premise, expr * conclusion);
expr * rewrite_implication(expr * premise, expr * conclusion);
expr * mk_string(zstring const& str);
expr * mk_string(const char * str);
app * mk_strlen(expr * e);
expr * mk_concat(expr * n1, expr * n2);
expr * mk_concat_const_str(expr * n1, expr * n2);
app * mk_contains(expr * haystack, expr * needle);
app * mk_indexof(expr * haystack, expr * needle);
app * mk_fresh_const(char const* name, sort* s);
literal mk_literal(expr* _e);
app * mk_int(int n);
app * mk_int(rational & q);
void check_and_init_cut_var(expr * node);
void add_cut_info_one_node(expr * baseNode, int slevel, expr * node);
void add_cut_info_merge(expr * destNode, int slevel, expr * srcNode);
bool has_self_cut(expr * n1, expr * n2);
// for ConcatOverlapAvoid
bool will_result_in_overlap(expr * lhs, expr * rhs);
void track_variable_scope(expr * var);
app * mk_str_var(std::string name);
app * mk_int_var(std::string name);
app * mk_nonempty_str_var();
app * mk_internal_xor_var();
expr * mk_internal_valTest_var(expr * node, int len, int vTries);
app * mk_regex_rep_var();
app * mk_unroll_bound_var();
app * mk_unroll_test_var();
void add_nonempty_constraint(expr * s);
void instantiate_concat_axiom(enode * cat);
void try_eval_concat(enode * cat);
void instantiate_basic_string_axioms(enode * str);
void instantiate_str_eq_length_axiom(enode * lhs, enode * rhs);
void instantiate_axiom_CharAt(enode * e);
void instantiate_axiom_prefixof(enode * e);
void instantiate_axiom_suffixof(enode * e);
void instantiate_axiom_Contains(enode * e);
void instantiate_axiom_Indexof(enode * e);
void instantiate_axiom_Indexof2(enode * e);
void instantiate_axiom_LastIndexof(enode * e);
void instantiate_axiom_Substr(enode * e);
void instantiate_axiom_Replace(enode * e);
void instantiate_axiom_str_to_int(enode * e);
void instantiate_axiom_int_to_str(enode * e);
expr * mk_RegexIn(expr * str, expr * regexp);
void instantiate_axiom_RegexIn(enode * e);
app * mk_unroll(expr * n, expr * bound);
void process_unroll_eq_const_str(expr * unrollFunc, expr * constStr);
void unroll_str2reg_constStr(expr * unrollFunc, expr * eqConstStr);
void process_concat_eq_unroll(expr * concat, expr * unroll);
void set_up_axioms(expr * ex);
void handle_equality(expr * lhs, expr * rhs);
app * mk_value_helper(app * n);
expr * get_eqc_value(expr * n, bool & hasEqcValue);
expr * z3str2_get_eqc_value(expr * n , bool & hasEqcValue);
bool in_same_eqc(expr * n1, expr * n2);
expr * collect_eq_nodes(expr * n, expr_ref_vector & eqcSet);
bool get_value(expr* e, rational& val) const;
bool get_len_value(expr* e, rational& val);
bool lower_bound(expr* _e, rational& lo);
bool upper_bound(expr* _e, rational& hi);
bool can_two_nodes_eq(expr * n1, expr * n2);
bool can_concat_eq_str(expr * concat, zstring& str);
bool can_concat_eq_concat(expr * concat1, expr * concat2);
bool check_concat_len_in_eqc(expr * concat);
bool check_length_consistency(expr * n1, expr * n2);
bool check_length_const_string(expr * n1, expr * constStr);
bool check_length_eq_var_concat(expr * n1, expr * n2);
bool check_length_concat_concat(expr * n1, expr * n2);
bool check_length_concat_var(expr * concat, expr * var);
bool check_length_var_var(expr * var1, expr * var2);
void check_contain_in_new_eq(expr * n1, expr * n2);
void check_contain_by_eqc_val(expr * varNode, expr * constNode);
void check_contain_by_substr(expr * varNode, expr_ref_vector & willEqClass);
void check_contain_by_eq_nodes(expr * n1, expr * n2);
bool in_contain_idx_map(expr * n);
void compute_contains(std::map<expr*, expr*> & varAliasMap,
std::map<expr*, expr*> & concatAliasMap, std::map<expr*, expr *> & varConstMap,
std::map<expr*, expr*> & concatConstMap, std::map<expr*, std::map<expr*, int> > & varEqConcatMap);
expr * dealias_node(expr * node, std::map<expr*, expr*> & varAliasMap, std::map<expr*, expr*> & concatAliasMap);
void get_grounded_concats(expr* node, std::map<expr*, expr*> & varAliasMap,
std::map<expr*, expr*> & concatAliasMap, std::map<expr*, expr*> & varConstMap,
std::map<expr*, expr*> & concatConstMap, std::map<expr*, std::map<expr*, int> > & varEqConcatMap,
std::map<expr*, std::map<std::vector<expr*>, std::set<expr*> > > & groundedMap);
void print_grounded_concat(expr * node, std::map<expr*, std::map<std::vector<expr*>, std::set<expr*> > > & groundedMap);
void check_subsequence(expr* str, expr* strDeAlias, expr* subStr, expr* subStrDeAlias, expr* boolVar,
std::map<expr*, std::map<std::vector<expr*>, std::set<expr*> > > & groundedMap);
bool is_partial_in_grounded_concat(const std::vector<expr*> & strVec, const std::vector<expr*> & subStrVec);
void get_nodes_in_concat(expr * node, ptr_vector<expr> & nodeList);
expr * simplify_concat(expr * node);
void simplify_parent(expr * nn, expr * eq_str);
void simplify_concat_equality(expr * lhs, expr * rhs);
void solve_concat_eq_str(expr * concat, expr * str);
void infer_len_concat_equality(expr * nn1, expr * nn2);
bool infer_len_concat(expr * n, rational & nLen);
void infer_len_concat_arg(expr * n, rational len);
bool is_concat_eq_type1(expr * concatAst1, expr * concatAst2);
bool is_concat_eq_type2(expr * concatAst1, expr * concatAst2);
bool is_concat_eq_type3(expr * concatAst1, expr * concatAst2);
bool is_concat_eq_type4(expr * concatAst1, expr * concatAst2);
bool is_concat_eq_type5(expr * concatAst1, expr * concatAst2);
bool is_concat_eq_type6(expr * concatAst1, expr * concatAst2);
void process_concat_eq_type1(expr * concatAst1, expr * concatAst2);
void process_concat_eq_type2(expr * concatAst1, expr * concatAst2);
void process_concat_eq_type3(expr * concatAst1, expr * concatAst2);
void process_concat_eq_type4(expr * concatAst1, expr * concatAst2);
void process_concat_eq_type5(expr * concatAst1, expr * concatAst2);
void process_concat_eq_type6(expr * concatAst1, expr * concatAst2);
void print_cut_var(expr * node, std::ofstream & xout);
void generate_mutual_exclusion(expr_ref_vector & exprs);
void add_theory_aware_branching_info(expr * term, double priority, lbool phase);
bool new_eq_check(expr * lhs, expr * rhs);
void group_terms_by_eqc(expr * n, std::set<expr*> & concats, std::set<expr*> & vars, std::set<expr*> & consts);
int ctx_dep_analysis(std::map<expr*, int> & strVarMap, std::map<expr*, int> & freeVarMap,
std::map<expr*, std::set<expr*> > & unrollGroupMap, std::map<expr*, std::map<expr*, int> > & var_eq_concat_map);
void trace_ctx_dep(std::ofstream & tout,
std::map<expr*, expr*> & aliasIndexMap,
std::map<expr*, expr*> & var_eq_constStr_map,
std::map<expr*, std::map<expr*, int> > & var_eq_concat_map,
std::map<expr*, std::map<expr*, int> > & var_eq_unroll_map,
std::map<expr*, expr*> & concat_eq_constStr_map,
std::map<expr*, std::map<expr*, int> > & concat_eq_concat_map,
std::map<expr*, std::set<expr*> > & unrollGroupMap);
void classify_ast_by_type(expr * node, std::map<expr*, int> & varMap,
std::map<expr*, int> & concatMap, std::map<expr*, int> & unrollMap);
void classify_ast_by_type_in_positive_context(std::map<expr*, int> & varMap,
std::map<expr*, int> & concatMap, std::map<expr*, int> & unrollMap);
expr * mk_internal_lenTest_var(expr * node, int lTries);
expr * gen_len_val_options_for_free_var(expr * freeVar, expr * lenTesterInCbEq, zstring lenTesterValue);
void process_free_var(std::map<expr*, int> & freeVar_map);
expr * gen_len_test_options(expr * freeVar, expr * indicator, int tries);
expr * gen_free_var_options(expr * freeVar, expr * len_indicator,
zstring len_valueStr, expr * valTesterInCbEq, zstring valTesterValueStr);
expr * gen_val_options(expr * freeVar, expr * len_indicator, expr * val_indicator,
zstring lenStr, int tries);
void print_value_tester_list(svector<std::pair<int, expr*> > & testerList);
bool get_next_val_encode(int_vector & base, int_vector & next);
zstring gen_val_string(int len, int_vector & encoding);
// binary search heuristic
expr * binary_search_length_test(expr * freeVar, expr * previousLenTester, zstring previousLenTesterValue);
expr_ref binary_search_case_split(expr * freeVar, expr * tester, binary_search_info & bounds, literal_vector & case_split_lits);
bool free_var_attempt(expr * nn1, expr * nn2);
void more_len_tests(expr * lenTester, zstring lenTesterValue);
void more_value_tests(expr * valTester, zstring valTesterValue);
expr * get_alias_index_ast(std::map<expr*, expr*> & aliasIndexMap, expr * node);
expr * getMostLeftNodeInConcat(expr * node);
expr * getMostRightNodeInConcat(expr * node);
void get_var_in_eqc(expr * n, std::set<expr*> & varSet);
void get_concats_in_eqc(expr * n, std::set<expr*> & concats);
void get_const_str_asts_in_node(expr * node, expr_ref_vector & constList);
expr * eval_concat(expr * n1, expr * n2);
bool finalcheck_str2int(app * a);
bool finalcheck_int2str(app * a);
// strRegex
void get_eqc_allUnroll(expr * n, expr * &constStr, std::set<expr*> & unrollFuncSet);
void get_eqc_simpleUnroll(expr * n, expr * &constStr, std::set<expr*> & unrollFuncSet);
void gen_assign_unroll_reg(std::set<expr*> & unrolls);
expr * gen_assign_unroll_Str2Reg(expr * n, std::set<expr*> & unrolls);
expr * gen_unroll_conditional_options(expr * var, std::set<expr*> & unrolls, zstring lcmStr);
expr * gen_unroll_assign(expr * var, zstring lcmStr, expr * testerVar, int l, int h);
void reduce_virtual_regex_in(expr * var, expr * regex, expr_ref_vector & items);
void check_regex_in(expr * nn1, expr * nn2);
zstring get_std_regex_str(expr * r);
void dump_assignments();
void initialize_charset();
void check_variable_scope();
void recursive_check_variable_scope(expr * ex);
void collect_var_concat(expr * node, std::set<expr*> & varSet, std::set<expr*> & concatSet);
bool propagate_length(std::set<expr*> & varSet, std::set<expr*> & concatSet, std::map<expr*, int> & exprLenMap);
void get_unique_non_concat_nodes(expr * node, std::set<expr*> & argSet);
bool propagate_length_within_eqc(expr * var);
// TESTING
void refresh_theory_var(expr * e);
expr_ref set_up_finite_model_test(expr * lhs, expr * rhs);
void finite_model_test(expr * v, expr * c);
public:
theory_str(ast_manager & m, theory_str_params const & params);
virtual ~theory_str();
virtual char const * get_name() const { return "seq"; }
virtual void display(std::ostream & out) const;
bool overlapping_variables_detected() const { return loopDetected; }
th_trail_stack& get_trail_stack() { return m_trail_stack; }
void merge_eh(theory_var, theory_var, theory_var v1, theory_var v2) {}
void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) { }
void unmerge_eh(theory_var v1, theory_var v2) {}
protected:
virtual bool internalize_atom(app * atom, bool gate_ctx);
virtual bool internalize_term(app * term);
virtual enode* ensure_enode(expr* e);
virtual theory_var mk_var(enode * n);
virtual void new_eq_eh(theory_var, theory_var);
virtual void new_diseq_eh(theory_var, theory_var);
virtual theory* mk_fresh(context*) { return alloc(theory_str, get_manager(), m_params); }
virtual void init_search_eh();
virtual void add_theory_assumptions(expr_ref_vector & assumptions);
virtual lbool validate_unsat_core(expr_ref_vector & unsat_core);
virtual void relevant_eh(app * n);
virtual void assign_eh(bool_var v, bool is_true);
virtual void push_scope_eh();
virtual void pop_scope_eh(unsigned num_scopes);
virtual void reset_eh();
virtual bool can_propagate();
virtual void propagate();
virtual final_check_status final_check_eh();
virtual void attach_new_th_var(enode * n);
virtual void init_model(model_generator & m);
virtual model_value_proc * mk_value(enode * n, model_generator & mg);
virtual void finalize_model(model_generator & mg);
};
};
#endif /* _THEORY_STR_H_ */