3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-14 04:48:45 +00:00
z3/src/tactic/portfolio/parallel_tactic.cpp
Nikolaj Bjorner bee4716a85 lia2card simplifications, move up before elim01 (which could be deprecated)
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2018-02-07 12:56:30 -08:00

625 lines
20 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
parallel_tactic.cpp
Abstract:
Parallel tactic based on cubing.
Author:
Nikolaj Bjorner (nbjorner) 2017-10-9
Miguel Neves
Notes:
A task comprises of a non-empty sequence of cubes, a type and parameters
If in the cube state, the solver performs the following:
1. Clone the state with the remaining cubes if there is more than one cube. Re-enqueue the remaining cubes.
2. Apply simplifications and pre-processing according to configuration.
3. Cube using the parameter settings prescribed in m_params.
4. Create a conquer state with the produced cubes.
If in the conquer state, the solver performs the following
1. Pass the cubes as assumptions and solve each sub-cube with a prescribed resource bound.
2. Assemble cubes that could not be solved and create a cube state.
--*/
#include <thread>
#include <mutex>
#include <condition_variable>
#include "util/scoped_ptr_vector.h"
#include "ast/ast_util.h"
#include "ast/ast_translation.h"
#include "solver/solver.h"
#include "solver/solver2tactic.h"
#include "tactic/tactic.h"
#include "tactic/portfolio/fd_solver.h"
class parallel_tactic : public tactic {
enum task_type { cube_task, conquer_task };
class solver_state;
class task_queue {
std::mutex m_mutex;
std::condition_variable m_cond;
ptr_vector<solver_state> m_tasks;
ptr_vector<solver_state> m_active;
unsigned m_num_waiters;
volatile bool m_shutdown;
void inc_wait() {
std::lock_guard<std::mutex> lock(m_mutex);
++m_num_waiters;
}
void dec_wait() {
std::lock_guard<std::mutex> lock(m_mutex);
--m_num_waiters;
}
solver_state* try_get_task() {
solver_state* st = nullptr;
std::lock_guard<std::mutex> lock(m_mutex);
if (!m_tasks.empty()) {
st = m_tasks.back();
m_tasks.pop_back();
m_active.push_back(st);
}
return st;
}
public:
task_queue():
m_num_waiters(0),
m_shutdown(false) {}
~task_queue() { reset(); }
void shutdown() {
if (!m_shutdown) {
m_shutdown = true;
m_cond.notify_all();
std::lock_guard<std::mutex> lock(m_mutex);
for (solver_state* st : m_active) {
st->m().limit().cancel();
}
}
}
void add_task(solver_state* task) {
std::lock_guard<std::mutex> lock(m_mutex);
m_tasks.push_back(task);
if (m_num_waiters > 0) {
m_cond.notify_one();
}
}
solver_state* get_task() {
while (!m_shutdown) {
inc_wait();
solver_state* st = try_get_task();
if (st) {
dec_wait();
return st;
}
{
std::unique_lock<std::mutex> lock(m_mutex);
m_cond.wait(lock);
}
dec_wait();
}
return nullptr;
}
void task_done(solver_state* st) {
std::lock_guard<std::mutex> lock(m_mutex);
m_active.erase(st);
if (m_tasks.empty() && m_active.empty()) {
m_shutdown = true;
m_cond.notify_all();
}
}
void reset() {
for (auto* t : m_tasks) dealloc(t);
for (auto* t : m_active) dealloc(t);
m_tasks.reset();
m_active.reset();
}
std::ostream& display(std::ostream& out) {
std::lock_guard<std::mutex> lock(m_mutex);
out << "num_tasks " << m_tasks.size() << " active: " << m_active.size() << "\n";
for (solver_state* st : m_tasks) {
st->display(out);
}
return out;
}
};
class solver_state {
task_type m_type; // current work role of the task
scoped_ptr<ast_manager> m_manager; // ownership handle to ast_manager
expr_ref_vector m_cubes; // set of cubes to process by task
expr_ref_vector m_asserted_cubes; // set of cubes asserted on the current solver
params_ref m_params; // configuration parameters
ref<solver> m_solver; // solver state
unsigned m_depth; // number of nested calls to cubing
double m_width; // estimate of fraction of problem handled by state
unsigned m_cube_cutoff; // saved configuration value
double m_cube_fraction; // saved configuration value
unsigned m_restart_max; // saved configuration value
expr_ref_vector cube_literals(expr* cube) {
expr_ref_vector literals(m());
if (m().is_and(cube)) {
literals.append(to_app(cube)->get_num_args(), to_app(cube)->get_args());
}
else {
literals.push_back(cube);
}
return literals;
}
public:
solver_state(ast_manager* m, solver* s, params_ref const& p, task_type t):
m_type(t),
m_manager(m),
m_cubes(s->get_manager()),
m_asserted_cubes(s->get_manager()),
m_params(p),
m_solver(s),
m_depth(0),
m_width(1.0)
{
m_cube_cutoff = p.get_uint("sat.lookahead.cube.cutoff", 8);
m_cube_fraction = p.get_double("sat.lookahead.cube.fraction", 0.4);
m_restart_max = p.get_uint("sat.restart.max", 10);
}
ast_manager& m() { return m_solver->get_manager(); }
solver& get_solver() { return *m_solver; }
solver const& get_solver() const { return *m_solver; }
solver_state* clone() {
SASSERT(!m_cubes.empty());
ast_manager& m = m_solver->get_manager();
ast_manager* new_m = alloc(ast_manager, m, !m.proof_mode());
ast_translation tr(m, *new_m);
solver* s = m_solver->translate(*new_m, m_params);
solver_state* st = alloc(solver_state, new_m, s, m_params, m_type);
for (expr* c : m_cubes) st->m_cubes.push_back(tr(c));
for (expr* c : m_asserted_cubes) st->m_asserted_cubes.push_back(tr(c));
st->m_depth = m_depth;
st->m_width = m_width;
return st;
}
task_type type() const { return m_type; }
void set_type(task_type t) { m_type = t; }
expr_ref_vector const& cubes() const { SASSERT(m_type == conquer_task); return m_cubes; }
// remove up to n cubes from list of cubes.
expr_ref_vector split_cubes(unsigned n) {
expr_ref_vector result(m());
while (n-- > 0 && !m_cubes.empty()) {
result.push_back(m_cubes.back());
m_cubes.pop_back();
}
return result;
}
void set_cubes(expr_ref_vector const& c) {
m_cubes.reset();
m_cubes.append(c);
}
void inc_depth(unsigned inc) { m_depth += inc; }
void inc_width(unsigned w) { m_width *= w; }
double get_width() const { return m_width; }
unsigned get_depth() const { return m_depth; }
lbool simplify() {
lbool r = l_undef;
if (m_depth == 1) {
IF_VERBOSE(2, verbose_stream() << "(parallel.tactic simplify-1)\n";);
set_simplify_params(true, true); // retain PB, retain blocked
r = get_solver().check_sat(0,0);
if (r != l_undef) return r;
// copy over the resulting clauses with a configuration that blasts PB constraints
set_simplify_params(false, true);
expr_ref_vector fmls(m());
get_solver().get_assertions(fmls);
model_converter_ref mc = get_solver().get_model_converter();
m_solver = mk_fd_solver(m(), m_params);
m_solver->set_model_converter(mc.get());
m_solver->assert_expr(fmls);
}
IF_VERBOSE(2, verbose_stream() << "(parallel.tactic simplify-2)\n";);
set_simplify_params(false, true); // remove PB, retain blocked
r = get_solver().check_sat(0,0);
if (r != l_undef) return r;
IF_VERBOSE(2, verbose_stream() << "(parallel.tactic simplify-3)\n";);
set_simplify_params(false, false); // remove any PB, remove blocked
r = get_solver().check_sat(0,0);
return r;
}
void assert_cube(expr* cube) {
get_solver().assert_expr(cube);
m_asserted_cubes.append(cube_literals(cube));
}
lbool solve(expr* cube) {
set_conquer_params();
expr_ref_vector literals = cube_literals(cube);
return get_solver().check_sat(literals);
}
void set_cube_params() {
unsigned cutoff = m_cube_cutoff;
double fraction = m_cube_fraction;
if (m_depth == 1 && cutoff > 0) {
fraction = 0; // use fixed cubing at depth 1.
}
else {
cutoff = 0; // use dynamic cubing beyond depth 1
}
m_params.set_uint ("lookahead.cube.cutoff", cutoff);
m_params.set_double("lookahead.cube.fraction", fraction);
get_solver().updt_params(m_params);
}
void set_conquer_params() {
m_params.set_bool("lookahead_simplify", false);
m_params.set_uint("restart.max", m_restart_max);
get_solver().updt_params(m_params);
}
void set_simplify_params(bool pb_simp, bool retain_blocked) {
m_params.set_bool("cardinality.solver", pb_simp);
m_params.set_sym ("pb.solver", pb_simp ? symbol("solver") : symbol("circuit"));
if (m_params.get_uint("inprocess.max", UINT_MAX) == UINT_MAX)
m_params.set_uint("inprocess.max", 2);
m_params.set_bool("lookahead_simplify", true);
m_params.set_uint("restart.max", UINT_MAX);
m_params.set_bool("retain_blocked_clauses", retain_blocked);
get_solver().updt_params(m_params);
}
bool canceled() {
return m().canceled();
}
std::ostream& display(std::ostream& out) {
out << ":depth " << m_depth << " :width " << m_width << "\n";
out << ":asserted " << m_asserted_cubes.size() << "\n";
return out;
}
};
private:
ast_manager& m_manager;
params_ref m_params;
sref_vector<model> m_models;
unsigned m_num_threads;
statistics m_stats;
task_queue m_queue;
std::mutex m_mutex;
double m_progress;
bool m_has_undef;
bool m_allsat;
unsigned m_num_unsat;
int m_exn_code;
std::string m_exn_msg;
void init() {
m_num_threads = omp_get_num_procs(); // TBD adjust by possible threads used inside each solver.
m_progress = 0;
m_has_undef = false;
m_allsat = false;
m_num_unsat = 0;
m_exn_code = 0;
m_params.set_bool("override_incremental", true);
}
void close_branch(solver_state& s, lbool status) {
double f = 100.0 / s.get_width();
{
std::lock_guard<std::mutex> lock(m_mutex);
m_progress += f;
}
IF_VERBOSE(1, verbose_stream() << "(tactic.parallel :progress " << m_progress << "% ";
if (status == l_true) verbose_stream() << ":status sat ";
if (status == l_undef) verbose_stream() << ":status unknown ";
verbose_stream() << ":unsat " << m_num_unsat << ")\n";);
}
void report_sat(solver_state& s) {
close_branch(s, l_true);
model_ref mdl;
s.get_solver().get_model(mdl);
if (mdl) {
std::lock_guard<std::mutex> lock(m_mutex);
if (&s.m() != &m_manager) {
ast_translation tr(s.m(), m_manager);
mdl = mdl->translate(tr);
}
m_models.push_back(mdl.get());
}
if (!m_allsat) {
m_queue.shutdown();
}
}
void report_unsat(solver_state& s) {
close_branch(s, l_false);
std::lock_guard<std::mutex> lock(m_mutex);
++m_num_unsat;
}
void report_undef(solver_state& s) {
m_has_undef = true;
close_branch(s, l_undef);
}
void cube_and_conquer(solver_state& s) {
ast_manager& m = s.m();
expr_ref_vector cubes(m), cube(m), hard_cubes(m);
switch (s.type()) {
case cube_task: goto cube;
case conquer_task: goto conquer;
}
cube:
SASSERT(s.type() == cube_task);
// extract up to one cube and add it.
cube.reset();
cube.append(s.split_cubes(1));
SASSERT(cube.size() <= 1);
IF_VERBOSE(2, verbose_stream() << "(sat.parallel :split-cube " << cube.size() << ")\n";);
if (!s.cubes().empty()) m_queue.add_task(s.clone());
if (!cube.empty()) s.assert_cube(cube.get(0));
s.inc_depth(1);
// simplify
switch (s.simplify()) {
case l_undef: break;
case l_true: report_sat(s); return;
case l_false: report_unsat(s); return;
}
if (canceled(s)) return;
// extract cubes.
cubes.reset();
s.set_cube_params();
while (true) {
expr_ref_vector vars(m);
expr_ref_vector c = s.get_solver().cube(vars, UINT_MAX); // TBD tune this
if (c.empty()) {
report_undef(s);
return;
}
if (m.is_false(c.back())) {
break;
}
cubes.push_back(mk_and(c));
}
IF_VERBOSE(1, verbose_stream() << "(parallel_tactic :cubes " << cubes.size() << ")\n";);
IF_VERBOSE(10, verbose_stream() << "(parallel_tactic :cubes " << cubes << ")\n";);
if (cubes.empty()) {
report_unsat(s);
return;
}
else {
s.inc_width(cubes.size());
s.set_cubes(cubes);
s.set_type(conquer_task);
goto conquer;
}
conquer:
SASSERT(s.type() == conquer_task);
// extract a batch of cubes
cubes.reset();
cubes.append(s.split_cubes(conquer_batch_size()));
if (!s.cubes().empty()) m_queue.add_task(s.clone());
s.set_conquer_params();
hard_cubes.reset();
for (expr * c : cubes) {
switch (s.solve(c)) {
case l_undef: hard_cubes.push_back(c); break;
case l_true: report_sat(s); break;
case l_false: report_unsat(s); break;
}
if (canceled(s)) return;
}
IF_VERBOSE(1, verbose_stream() << "(parallel_tactic :cubes " << cubes.size() << " :hard-cubes " << hard_cubes.size() << ")\n";);
if (hard_cubes.empty()) return;
s.set_cubes(hard_cubes);
s.set_type(cube_task);
goto cube;
}
bool canceled(solver_state& s) {
if (s.canceled()) {
m_has_undef = true;
return true;
}
else {
return false;
}
}
void run_solver() {
try {
while (solver_state* st = m_queue.get_task()) {
cube_and_conquer(*st);
collect_statistics(*st);
m_queue.task_done(st);
if (st->m().canceled()) m_queue.shutdown();
IF_VERBOSE(1, display(verbose_stream()););
dealloc(st);
}
}
catch (z3_exception& ex) {
IF_VERBOSE(1, verbose_stream() << ex.msg() << "\n";);
m_queue.shutdown();
std::lock_guard<std::mutex> lock(m_mutex);
if (ex.has_error_code()) {
m_exn_code = ex.error_code();
}
else {
m_exn_msg = ex.msg();
m_exn_code = -1;
}
}
}
void collect_statistics(solver_state& s) {
std::lock_guard<std::mutex> lock(m_mutex);
s.get_solver().collect_statistics(m_stats);
}
lbool solve(model_ref& mdl) {
vector<std::thread> threads;
for (unsigned i = 0; i < m_num_threads; ++i)
threads.push_back(std::thread([this]() { run_solver(); }));
for (std::thread& t : threads)
t.join();
m_manager.limit().reset_cancel();
if (m_exn_code == -1)
throw default_exception(m_exn_msg);
if (m_exn_code != 0)
throw z3_error(m_exn_code);
if (!m_models.empty()) {
mdl = m_models.back();
return l_true;
}
if (m_has_undef)
return l_undef;
return l_false;
}
std::ostream& display(std::ostream& out) {
m_stats.display(out);
m_queue.display(out);
std::lock_guard<std::mutex> lock(m_mutex);
out << "(parallel_tactic :unsat " << m_num_unsat << " :progress " << m_progress << "% :models " << m_models.size() << ")\n";
return out;
}
public:
parallel_tactic(ast_manager& m, params_ref const& p) :
m_manager(m),
m_params(p) {
init();
}
void operator ()(const goal_ref & g,goal_ref_buffer & result) {
ast_manager& m = g->m();
solver* s = mk_fd_solver(m, m_params);
solver_state* st = alloc(solver_state, 0, s, m_params, cube_task);
m_queue.add_task(st);
expr_ref_vector clauses(m);
ptr_vector<expr> assumptions;
obj_map<expr, expr*> bool2dep;
ref<generic_model_converter> fmc;
extract_clauses_and_dependencies(g, clauses, assumptions, bool2dep, fmc);
for (expr * clause : clauses) {
s->assert_expr(clause);
}
SASSERT(assumptions.empty());
model_ref mdl;
lbool is_sat = solve(mdl);
switch (is_sat) {
case l_true:
if (g->models_enabled()) {
g->add(concat(fmc.get(), model2model_converter(mdl.get())));
}
g->reset();
break;
case l_false:
SASSERT(!g->proofs_enabled());
SASSERT(!g->unsat_core_enabled());
g->assert_expr(m.mk_false(), nullptr, nullptr);
break;
case l_undef:
if (m.canceled()) {
throw tactic_exception(Z3_CANCELED_MSG);
}
break;
}
result.push_back(g.get());
}
void cleanup() {
m_queue.reset();
init();
}
tactic* translate(ast_manager& m) {
return alloc(parallel_tactic, m, m_params);
}
virtual void updt_params(params_ref const & p) {
m_params.copy(p);
}
virtual void collect_param_descrs(param_descrs & r) {
r.insert("conquer_batch_size", CPK_UINT, "(default: 1000) batch size of cubes to conquer");
}
unsigned conquer_batch_size() const {
return m_params.get_uint("conquer_batch_size", 1000);
}
virtual void collect_statistics(statistics & st) const {
st.copy(m_stats);
st.update("par unsat", m_num_unsat);
st.update("par models", m_models.size());
st.update("par progress", m_progress);
}
virtual void reset_statistics() {
m_stats.reset();
}
};
tactic * mk_parallel_tactic(ast_manager& m, params_ref const& p) {
return alloc(parallel_tactic, m, p);
}