mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 05:18:44 +00:00
301 lines
7.7 KiB
C++
301 lines
7.7 KiB
C++
|
|
/*++
|
|
Copyright (c) 2015 Microsoft Corporation
|
|
|
|
--*/
|
|
|
|
#include "hilbert_basis.h"
|
|
|
|
/*
|
|
Test generation of linear congruences a la Karr.
|
|
|
|
*/
|
|
namespace karr {
|
|
|
|
struct matrix {
|
|
vector<vector<rational> > A;
|
|
vector<rational> b;
|
|
|
|
unsigned size() const { return A.size(); }
|
|
|
|
void reset() {
|
|
A.reset();
|
|
b.reset();
|
|
}
|
|
|
|
matrix& operator=(matrix const& other) {
|
|
reset();
|
|
append(other);
|
|
return *this;
|
|
}
|
|
|
|
void append(matrix const& other) {
|
|
A.append(other.A);
|
|
b.append(other.b);
|
|
}
|
|
|
|
void display(std::ostream& out) {
|
|
for (unsigned i = 0; i < A.size(); ++i) {
|
|
for (unsigned j = 0; j < A[i].size(); ++j) {
|
|
out << A[i][j] << " ";
|
|
}
|
|
out << " = " << -b[i] << "\n";
|
|
}
|
|
}
|
|
};
|
|
|
|
// treat src as a homogeneous matrix.
|
|
void dualizeH(matrix& dst, matrix const& src) {
|
|
hilbert_basis hb;
|
|
for (unsigned i = 0; i < src.size(); ++i) {
|
|
vector<rational> v(src.A[i]);
|
|
v.push_back(src.b[i]);
|
|
hb.add_eq(v, rational(0));
|
|
}
|
|
for (unsigned i = 0; i < 1 + src.A[0].size(); ++i) {
|
|
hb.set_is_int(i);
|
|
}
|
|
lbool is_sat = hb.saturate();
|
|
hb.display(std::cout);
|
|
SASSERT(is_sat == l_true);
|
|
dst.reset();
|
|
unsigned basis_size = hb.get_basis_size();
|
|
for (unsigned i = 0; i < basis_size; ++i) {
|
|
bool is_initial;
|
|
vector<rational> soln;
|
|
hb.get_basis_solution(i, soln, is_initial);
|
|
if (!is_initial) {
|
|
dst.b.push_back(soln.back());
|
|
soln.pop_back();
|
|
dst.A.push_back(soln);
|
|
}
|
|
}
|
|
}
|
|
|
|
// treat src as an inhomegeneous matrix.
|
|
void dualizeI(matrix& dst, matrix const& src) {
|
|
hilbert_basis hb;
|
|
for (unsigned i = 0; i < src.size(); ++i) {
|
|
hb.add_eq(src.A[i], -src.b[i]);
|
|
}
|
|
for (unsigned i = 0; i < src.A[0].size(); ++i) {
|
|
hb.set_is_int(i);
|
|
}
|
|
lbool is_sat = hb.saturate();
|
|
hb.display(std::cout);
|
|
SASSERT(is_sat == l_true);
|
|
dst.reset();
|
|
unsigned basis_size = hb.get_basis_size();
|
|
bool first_initial = true;
|
|
for (unsigned i = 0; i < basis_size; ++i) {
|
|
bool is_initial;
|
|
vector<rational> soln;
|
|
hb.get_basis_solution(i, soln, is_initial);
|
|
if (is_initial && first_initial) {
|
|
dst.A.push_back(soln);
|
|
dst.b.push_back(rational(1));
|
|
first_initial = false;
|
|
}
|
|
else if (!is_initial) {
|
|
dst.A.push_back(soln);
|
|
dst.b.push_back(rational(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
void juxtapose(matrix& dst, matrix const& M, matrix const& N) {
|
|
dst = M;
|
|
dst.append(N);
|
|
}
|
|
|
|
void join(matrix& dst, matrix const& M, matrix const& N) {
|
|
matrix MD, ND, dstD;
|
|
dualizeI(MD, M);
|
|
dualizeI(ND, N);
|
|
juxtapose(dstD, MD, ND);
|
|
dualizeH(dst, dstD);
|
|
}
|
|
|
|
void joinD(matrix& dst, matrix const& MD, matrix const& ND) {
|
|
matrix dstD;
|
|
juxtapose(dstD, MD, ND);
|
|
dualizeH(dst, dstD);
|
|
}
|
|
|
|
void transition(
|
|
matrix& dst,
|
|
matrix const& src,
|
|
matrix const& Ab) {
|
|
matrix T;
|
|
// length of rows in Ab are twice as long as
|
|
// length of rows in src.
|
|
SASSERT(2*src.A[0].size() == Ab.A[0].size());
|
|
vector<rational> zeros;
|
|
for (unsigned i = 0; i < src.A[0].size(); ++i) {
|
|
zeros.push_back(rational(0));
|
|
}
|
|
for (unsigned i = 0; i < src.size(); ++i) {
|
|
T.A.push_back(src.A[i]);
|
|
T.A.back().append(zeros);
|
|
}
|
|
T.b.append(src.b);
|
|
T.append(Ab);
|
|
|
|
T.display(std::cout << "T:\n");
|
|
matrix TD;
|
|
dualizeI(TD, T);
|
|
TD.display(std::cout << "TD:\n");
|
|
for (unsigned i = 0; i < TD.size(); ++i) {
|
|
vector<rational> v;
|
|
v.append(src.size(), TD.A[i].c_ptr() + src.size());
|
|
dst.A.push_back(v);
|
|
dst.b.push_back(TD.b[i]);
|
|
}
|
|
dst.display(std::cout << "dst\n");
|
|
}
|
|
|
|
static vector<rational> V(int i, int j) {
|
|
vector<rational> v;
|
|
v.push_back(rational(i));
|
|
v.push_back(rational(j));
|
|
return v;
|
|
}
|
|
|
|
static vector<rational> V(int i, int j, int k, int l) {
|
|
vector<rational> v;
|
|
v.push_back(rational(i));
|
|
v.push_back(rational(j));
|
|
v.push_back(rational(k));
|
|
v.push_back(rational(l));
|
|
return v;
|
|
}
|
|
|
|
#if 0
|
|
static vector<rational> V(int i, int j, int k, int l, int m) {
|
|
vector<rational> v;
|
|
v.push_back(rational(i));
|
|
v.push_back(rational(j));
|
|
v.push_back(rational(k));
|
|
v.push_back(rational(l));
|
|
v.push_back(rational(m));
|
|
return v;
|
|
}
|
|
#endif
|
|
|
|
static vector<rational> V(int i, int j, int k, int l, int x, int y, int z) {
|
|
vector<rational> v;
|
|
v.push_back(rational(i));
|
|
v.push_back(rational(j));
|
|
v.push_back(rational(k));
|
|
v.push_back(rational(l));
|
|
v.push_back(rational(x));
|
|
v.push_back(rational(y));
|
|
v.push_back(rational(z));
|
|
return v;
|
|
}
|
|
|
|
#define R(_x_) rational(_x_)
|
|
|
|
|
|
static void tst1() {
|
|
matrix Theta;
|
|
matrix Ab;
|
|
|
|
//
|
|
Theta.A.push_back(V(1, 0));
|
|
Theta.b.push_back(R(0));
|
|
Theta.A.push_back(V(0, 1));
|
|
Theta.b.push_back(R(-2));
|
|
|
|
Theta.display(std::cout << "Theta\n");
|
|
|
|
Ab.A.push_back(V(-1, 0, 1, 0));
|
|
Ab.b.push_back(R(1));
|
|
Ab.A.push_back(V(-1, -2, 0, 1));
|
|
Ab.b.push_back(R(1));
|
|
|
|
Ab.display(std::cout << "Ab\n");
|
|
|
|
matrix ThetaD;
|
|
dualizeI(ThetaD, Theta);
|
|
ThetaD.display(std::cout);
|
|
|
|
matrix t1D, e1;
|
|
transition(t1D, Theta, Ab);
|
|
joinD(e1, t1D, ThetaD);
|
|
|
|
t1D.display(std::cout << "t1D\n");
|
|
e1.display(std::cout << "e1\n");
|
|
|
|
matrix t2D, e2;
|
|
transition(t2D, e1, Ab);
|
|
joinD(e2, t2D, ThetaD);
|
|
|
|
t2D.display(std::cout << "t2D\n");
|
|
e2.display(std::cout << "e2\n");
|
|
}
|
|
|
|
void tst2() {
|
|
/**
|
|
0 0 0 0 0 0 0 = 0
|
|
0 0 0 0 0 0 0 = 0
|
|
0 0 0 0 0 0 0 = 0
|
|
0 0 0 0 0 0 0 = 0
|
|
0 0 0 0 1 0 0 = 0
|
|
0 0 0 0 -1 0 0 = 0
|
|
0 1 0 0 0 0 0 = 0
|
|
0 -1 0 0 0 0 0 = 0
|
|
0 0 0 2 0 0 0 = 0
|
|
0 0 0 -2 0 0 0 = 0
|
|
*/
|
|
|
|
matrix ND;
|
|
ND.A.push_back(V(0,0,0,0,1,0,0)); ND.b.push_back(R(0));
|
|
ND.A.push_back(V(0,0,0,0,-1,0,0)); ND.b.push_back(R(0));
|
|
ND.A.push_back(V(0,1,0,0,0,0,0)); ND.b.push_back(R(0));
|
|
ND.A.push_back(V(0,-1,0,0,0,0,0)); ND.b.push_back(R(0));
|
|
ND.A.push_back(V(0,0,0,2,0,0,0)); ND.b.push_back(R(0));
|
|
ND.A.push_back(V(0,0,0,-2,0,0,0)); ND.b.push_back(R(0));
|
|
|
|
ND.display(std::cout << "ND\n");
|
|
|
|
matrix N;
|
|
dualizeH(N, ND);
|
|
|
|
N.display(std::cout << "N\n");
|
|
|
|
|
|
}
|
|
|
|
void tst3() {
|
|
/**
|
|
0 0 0 0 1 0 0 = 0
|
|
0 0 0 0 -1 0 0 = 0
|
|
0 1 0 0 0 0 0 = 0
|
|
0 -1 0 0 0 0 0 = 0
|
|
0 0 0 2 0 0 0 = 0
|
|
0 0 0 -2 0 0 0 = 0
|
|
*/
|
|
|
|
matrix ND;
|
|
ND.A.push_back(V(1,0)); ND.b.push_back(R(0));
|
|
ND.A.push_back(V(0,2)); ND.b.push_back(R(0));
|
|
|
|
ND.display(std::cout << "ND\n");
|
|
|
|
matrix N;
|
|
dualizeH(N, ND);
|
|
|
|
N.display(std::cout << "N\n");
|
|
|
|
|
|
}
|
|
|
|
};
|
|
|
|
void tst_karr() {
|
|
karr::tst3();
|
|
return;
|
|
karr::tst1();
|
|
}
|