3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 18:05:21 +00:00
z3/src/sat/smt/q_solver.cpp
Nikolaj Bjorner bce903ae97 #5324
2021-06-04 15:52:38 -07:00

293 lines
9.1 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
q_solver.cpp
Abstract:
Quantifier solver plugin
Author:
Nikolaj Bjorner (nbjorner) 2020-09-29
--*/
#include "ast/ast_util.h"
#include "ast/well_sorted.h"
#include "ast/rewriter/var_subst.h"
#include "ast/normal_forms/pull_quant.h"
#include "sat/smt/q_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/sat_th.h"
namespace q {
solver::solver(euf::solver& ctx, family_id fid) :
th_euf_solver(ctx, ctx.get_manager().get_family_name(fid), fid),
m_mbqi(ctx, *this),
m_ematch(ctx, *this),
m_expanded(ctx.get_manager())
{
}
void solver::asserted(sat::literal l) {
expr* e = bool_var2expr(l.var());
if (!is_forall(e) && !is_exists(e))
return;
quantifier* q = to_quantifier(e);
auto const& exp = expand(q);
if (exp.size() > 1 && is_forall(q)) {
for (expr* e : exp) {
sat::literal lit = ctx.internalize(e, l.sign(), false, false);
add_clause(~l, lit);
if (ctx.relevancy_enabled())
ctx.add_root(~l, lit);
}
return;
}
if (exp.size() > 1 && is_exists(q)) {
sat::literal_vector lits;
lits.push_back(~l);
for (expr* e : exp)
lits.push_back(ctx.internalize(e, l.sign(), false, false));
add_clause(lits);
if (ctx.relevancy_enabled())
ctx.add_root(lits);
return;
}
if (l.sign() == is_forall(e))
add_clause(~l, skolemize(q));
else {
ctx.push_vec(m_universal, l);
if (ctx.get_config().m_ematching)
m_ematch.add(q);
}
m_stats.m_num_quantifier_asserts++;
}
sat::check_result solver::check() {
if (ctx.get_config().m_ematching && m_ematch())
return sat::check_result::CR_CONTINUE;
if (ctx.get_config().m_mbqi) {
switch (m_mbqi()) {
case l_true: return sat::check_result::CR_DONE;
case l_false: return sat::check_result::CR_CONTINUE;
case l_undef: break;
}
}
return sat::check_result::CR_GIVEUP;
}
std::ostream& solver::display(std::ostream& out) const {
m_ematch.display(out);
return out;
}
std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
return m_ematch.display_constraint(out, idx);
}
void solver::collect_statistics(statistics& st) const {
st.update("q asserts", m_stats.m_num_quantifier_asserts);
m_mbqi.collect_statistics(st);
m_ematch.collect_statistics(st);
}
euf::th_solver* solver::clone(euf::solver& ctx) {
family_id fid = ctx.get_manager().mk_family_id(symbol("quant"));
return alloc(solver, ctx, fid);
}
bool solver::unit_propagate() {
return ctx.get_config().m_ematching && m_ematch.propagate(false);
}
euf::theory_var solver::mk_var(euf::enode* n) {
auto v = euf::th_euf_solver::mk_var(n);
ctx.attach_th_var(n, this, v);
return v;
}
sat::literal solver::instantiate(quantifier* _q, bool negate, std::function<expr* (quantifier*, unsigned)>& mk_var) {
sat::literal sk;
expr_ref tmp(m);
quantifier_ref q(_q, m);
expr_ref_vector vars(m);
if (negate) {
q = m.mk_quantifier(
is_forall(q) ? quantifier_kind::exists_k : quantifier_kind::forall_k,
q->get_num_decls(), q->get_decl_sorts(), q->get_decl_names(), m.mk_not(q->get_expr()),
q->get_weight(), q->get_qid(), q->get_skid());
}
quantifier* q_flat = flatten(q);
unsigned sz = q_flat->get_num_decls();
vars.resize(sz, nullptr);
for (unsigned i = 0; i < sz; ++i)
vars[i] = mk_var(q_flat, i);
var_subst subst(m);
expr_ref body = subst(q_flat->get_expr(), vars);
rewrite(body);
return mk_literal(body);
}
sat::literal solver::skolemize(quantifier* q) {
std::function<expr* (quantifier*, unsigned)> mk_var = [&](quantifier* q, unsigned i) {
return m.mk_fresh_const(q->get_decl_name(i), q->get_decl_sort(i));
};
return instantiate(q, is_forall(q), mk_var);
}
/*
* Find initial values to instantiate quantifier with so to make it as hard as possible for solver
* to find values to free variables.
*/
sat::literal solver::specialize(quantifier* q) {
std::function<expr* (quantifier*, unsigned)> mk_var = [&](quantifier* q, unsigned i) {
return get_unit(q->get_decl_sort(i));
};
return instantiate(q, is_exists(q), mk_var);
}
void solver::init_search() {
m_mbqi.init_search();
}
sat::literal solver::internalize(expr* e, bool sign, bool root, bool learned) {
SASSERT(is_forall(e) || is_exists(e));
sat::bool_var v = ctx.get_si().add_bool_var(e);
sat::literal lit = ctx.attach_lit(sat::literal(v, false), e);
mk_var(ctx.get_egraph().find(e));
if (sign)
lit.neg();
return lit;
}
void solver::finalize_model(model& mdl) {
m_mbqi.finalize_model(mdl);
}
quantifier* solver::flatten(quantifier* q) {
quantifier* q_flat = nullptr;
if (!has_quantifiers(q->get_expr()))
return q;
if (m_flat.find(q, q_flat))
return q_flat;
proof_ref pr(m);
expr_ref new_q(m);
if (is_forall(q)) {
pull_quant pull(m);
pull(q, new_q, pr);
SASSERT(is_well_sorted(m, new_q));
}
else {
new_q = q;
}
q_flat = to_quantifier(new_q);
m.inc_ref(q_flat);
m.inc_ref(q);
m_flat.insert(q, q_flat);
ctx.push(insert_ref2_map<ast_manager, quantifier, quantifier>(m, m_flat, q, q_flat));
return q_flat;
}
void solver::init_units() {
if (!m_unit_table.empty())
return;
for (euf::enode* n : ctx.get_egraph().nodes()) {
if (!n->interpreted() && !m.is_uninterp(n->get_expr()->get_sort()))
continue;
expr* e = n->get_expr();
sort* s = e->get_sort();
if (m_unit_table.contains(s))
continue;
m_unit_table.insert(s, e);
ctx.push(insert_map<obj_map<sort, expr*>, sort*>(m_unit_table, s));
}
}
expr* solver::get_unit(sort* s) {
expr* u = nullptr;
if (m_unit_table.find(s, u))
return u;
init_units();
if (m_unit_table.find(s, u))
return u;
model mdl(m);
expr* val = mdl.get_some_value(s);
m.inc_ref(val);
m.inc_ref(s);
ctx.push(insert_ref2_map<ast_manager, sort, expr>(m, m_unit_table, s, val));
return val;
}
expr_ref_vector const& solver::expand(quantifier* q) {
m_expanded.reset();
if (is_forall(q))
flatten_and(q->get_expr(), m_expanded);
else if (is_exists(q))
flatten_or(q->get_expr(), m_expanded);
else
UNREACHABLE();
if (m_expanded.size() > 1) {
for (unsigned i = m_expanded.size(); i-- > 0; ) {
expr_ref tmp(m.update_quantifier(q, m_expanded.get(i)), m);
ctx.get_rewriter()(tmp);
m_expanded[i] = tmp;
}
return m_expanded;
}
#if 0
m_expanded.reset();
m_expanded2.reset();
if (is_forall(q))
flatten_or(q->get_expr(), m_expanded2);
else if (is_exists(q))
flatten_and(q->get_expr(), m_expanded2);
else
UNREACHABLE();
for (unsigned i = m_expanded2.size(); i-- > 0; ) {
expr* lit = m_expanded2.get(i);
if (!is_ground(lit) && is_and(lit) && is_forall(q)) {
// get free vars of lit
// create fresh predicate over free vars
// replace in expanded, pack and push on m_expanded
expr_ref p(m);
// TODO introduce fresh p.
flatten_and(lit, m_expanded);
for (unsigned i = m_expanded.size(); i-- > 0; ) {
tmp = m.mk_or(m.mk_not(p), m_expanded.get(i));
expr_ref tmp(m.update_quantifier(q, tmp), m);
ctx.get_rewriter()(tmp);
m_expanded[i] = tmp;
}
m_expanded2[i] = p;
tmp = m.mk_or(m_expanded2);
expr_ref tmp(m.update_quantifier(q, tmp), m);
ctx.get_rewriter()(tmp);
m_expanded.push_back(tmp);
return m_expanded;
}
}
#endif
m_expanded.reset();
m_expanded.push_back(q);
return m_expanded;
}
void solver::get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) {
m_ematch.get_antecedents(l, idx, r, probing);
}
}