3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-12 20:18:18 +00:00
z3/lib/sat_integrity_checker.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

222 lines
8.5 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
sat_integrity_checker.cpp
Abstract:
Checker whether the SAT solver internal datastructures
are consistent or not.
Author:
Leonardo de Moura (leonardo) 2011-05-21.
Revision History:
--*/
#include"sat_integrity_checker.h"
#include"sat_solver.h"
#include"trace.h"
namespace sat {
integrity_checker::integrity_checker(solver const & _s):
s(_s) {
}
// for ternary clauses
static bool contains_watched(watch_list const & wlist, literal l1, literal l2) {
return wlist.contains(watched(l1, l2));
}
// for nary clauses
static bool contains_watched(watch_list const & wlist, clause const & c, clause_offset cls_off) {
watch_list::const_iterator it = wlist.begin();
watch_list::const_iterator end = wlist.end();
for (; it != end; ++it) {
if (it->is_clause()) {
if (it->get_clause_offset() == cls_off) {
// the blocked literal must be in the clause.
literal l = it->get_blocked_literal();
SASSERT(c.contains(l));
return true;
}
}
}
UNREACHABLE();
return false;
}
bool integrity_checker::check_clause(clause const & c) const {
SASSERT(!c.was_removed());
for (unsigned i = 0; i < c.size(); i++) {
SASSERT(c[i].var() <= s.num_vars());
CTRACE("sat_bug", s.was_eliminated(c[i].var()),
tout << "l: " << c[i].var() << "\n";
tout << "c: " << c << "\n";
s.display(tout););
SASSERT(!s.was_eliminated(c[i].var()));
}
SASSERT(c.check_approx());
if (c.frozen())
return true;
if (c.size() == 3) {
CTRACE("sat_ter_watch_bug", !contains_watched(s.get_wlist(~c[0]), c[1], c[2]), tout << c << "\n";
tout << "watch_list:\n";
sat::display(tout, s.m_cls_allocator, s.get_wlist(~c[0]));
tout << "\n";);
SASSERT(contains_watched(s.get_wlist(~c[0]), c[1], c[2]));
SASSERT(contains_watched(s.get_wlist(~c[1]), c[0], c[2]));
SASSERT(contains_watched(s.get_wlist(~c[2]), c[0], c[1]));
}
else {
if (s.value(c[0]) == l_false || s.value(c[1]) == l_false) {
bool on_prop_stack = false;
for (unsigned i = s.m_qhead; i < s.m_trail.size(); i++) {
if (s.m_trail[i].var() == c[0].var() ||
s.m_trail[i].var() == c[1].var()) {
on_prop_stack = true;
break;
}
}
// the clause has been satisfied or all other literals are assigned to false.
if (!on_prop_stack && s.status(c) != l_true) {
for (unsigned i = 2; i < c.size(); i++) {
CTRACE("sat_bug", s.value(c[i]) != l_false,
tout << c << " status: " << s.status(c) << "\n";
for (unsigned i = 0; i < c.size(); i++) tout << "val(" << i << "): " << s.value(c[i]) << "\n";);
SASSERT(s.value(c[i]) == l_false);
}
}
}
// the first two literals must be watched.
SASSERT(contains_watched(s.get_wlist(~c[0]), c, s.get_offset(c)));
SASSERT(contains_watched(s.get_wlist(~c[1]), c, s.get_offset(c)));
}
return true;
}
bool integrity_checker::check_clauses(clause * const * begin, clause * const * end) const {
for (clause * const * it = begin; it != end; ++it) {
SASSERT(check_clause(*(*it)));
}
return true;
}
bool integrity_checker::check_clauses() const {
return check_clauses(s.begin_clauses(), s.end_clauses());
}
bool integrity_checker::check_learned_clauses() const {
unsigned num_frozen = 0;
clause * const * end = s.end_clauses();
for (clause * const * it = s.begin_clauses(); it != end; ++it) {
clause & c = *(*it);
if (c.frozen())
num_frozen++;
}
SASSERT(num_frozen == s.m_num_frozen);
return check_clauses(s.begin_learned(), s.end_learned());
}
bool integrity_checker::check_assignment() const {
return true;
}
bool integrity_checker::check_bool_vars() const {
SASSERT(s.m_watches.size() == s.num_vars() * 2);
SASSERT(s.m_assignment.size() == s.num_vars() * 2);
SASSERT(s.m_lit_mark.size() == s.num_vars() * 2);
SASSERT(s.m_justification.size() == s.num_vars());
SASSERT(s.m_decision.size() == s.num_vars());
SASSERT(s.m_eliminated.size() == s.num_vars());
SASSERT(s.m_external.size() == s.num_vars());
SASSERT(s.m_level.size() == s.num_vars());
SASSERT(s.m_mark.size() == s.num_vars());
SASSERT(s.m_activity.size() == s.num_vars());
SASSERT(s.m_phase.size() == s.num_vars());
SASSERT(s.m_prev_phase.size() == s.num_vars());
SASSERT(s.m_assigned_since_gc.size() == s.num_vars());
for (bool_var v = 0; v < s.num_vars(); v++) {
if (s.was_eliminated(v)) {
SASSERT(s.get_wlist(literal(v, false)).empty());
SASSERT(s.get_wlist(literal(v, true)).empty());
}
}
return true;
}
bool integrity_checker::check_watches() const {
vector<watch_list>::const_iterator it = s.m_watches.begin();
vector<watch_list>::const_iterator end = s.m_watches.end();
for (unsigned l_idx = 0; it != end; ++it, ++l_idx) {
literal l = ~to_literal(l_idx);
watch_list const & wlist = *it;
CTRACE("sat_bug", s.was_eliminated(l.var()) && !wlist.empty(),
tout << "l: " << l << "\n";
s.display_watches(tout);
s.display(tout););
SASSERT(!s.was_eliminated(l.var()) || wlist.empty());
watch_list::const_iterator it2 = wlist.begin();
watch_list::const_iterator end2 = wlist.end();
for (; it2 != end2; ++it2) {
switch (it2->get_kind()) {
case watched::BINARY:
SASSERT(!s.was_eliminated(it2->get_literal().var()));
CTRACE("sat_watched_bug", !s.get_wlist(~(it2->get_literal())).contains(watched(l, it2->is_learned())),
tout << "l: " << l << " l2: " << it2->get_literal() << "\n";
tout << "was_eliminated1: " << s.was_eliminated(l.var());
tout << " was_eliminated2: " << s.was_eliminated(it2->get_literal().var());
tout << " learned: " << it2->is_learned() << "\n";
sat::display(tout, s.m_cls_allocator, wlist);
tout << "\n";
sat::display(tout, s.m_cls_allocator, s.get_wlist(~(it2->get_literal())));
tout << "\n";);
SASSERT(s.get_wlist(~(it2->get_literal())).contains(watched(l, it2->is_learned())));
break;
case watched::TERNARY:
SASSERT(!s.was_eliminated(it2->get_literal1().var()));
SASSERT(!s.was_eliminated(it2->get_literal2().var()));
SASSERT(it2->get_literal1().index() < it2->get_literal2().index());
break;
case watched::CLAUSE:
SASSERT(!s.m_cls_allocator.get_clause(it2->get_clause_offset())->was_removed());
break;
default:
break;
}
}
}
return true;
}
bool integrity_checker::check_reinit_stack() const {
clause_wrapper_vector::const_iterator it = s.m_clauses_to_reinit.begin();
clause_wrapper_vector::const_iterator end = s.m_clauses_to_reinit.end();
for (; it != end; ++it) {
if (it->is_binary())
continue;
SASSERT(it->get_clause()->on_reinit_stack());
}
return true;
}
bool integrity_checker::operator()() const {
if (s.inconsistent())
return true;
SASSERT(check_clauses());
SASSERT(check_learned_clauses());
SASSERT(check_watches());
SASSERT(check_bool_vars());
SASSERT(check_reinit_stack());
return true;
}
};