3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00
z3/lib/euclidean_solver.h
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

107 lines
2.7 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
euclidean_solver.h
Abstract:
Euclidean Solver with support for explanations.
Author:
Leonardo de Moura (leonardo) 2011-07-08.
Revision History:
--*/
#ifndef _EUCLIDEAN_SOLVER_H_
#define _EUCLIDEAN_SOLVER_H_
#include"mpq.h"
#include"vector.h"
class euclidean_solver {
struct imp;
imp * m_imp;
public:
typedef unsigned var;
typedef unsigned justification;
typedef unsynch_mpq_manager numeral_manager;
typedef svector<justification> justification_vector;
static const justification null_justification = UINT_MAX;
/**
\brief If m == 0, then the solver will create its own numeral manager.
*/
euclidean_solver(numeral_manager * m);
~euclidean_solver();
numeral_manager & m() const;
/**
\brief Reset the state of the euclidean solver.
*/
void reset();
/**
\brief Creates a integer variable.
*/
var mk_var();
/**
\brief Creates a fresh justification id.
*/
justification mk_justification();
/**
\brief Asserts an equation of the form as[0]*xs[0] + ... + as[num-1]*xs[num-1] + c = 0 with justification j.
The numerals must be created using the numeral_manager m().
*/
void assert_eq(unsigned num, mpz const * as, var const * xs, mpz const & c, justification j = null_justification);
/**
\brief Solve the current set of equations. Return false if it is inconsistent.
*/
bool solve();
/**
\brief Return a set of justifications (proof) for the inconsitency.
\pre inconsistent()
*/
justification_vector const & get_justification() const;
bool inconsistent() const;
/**
\brief Return true if the variable is a "parameter" created by the Euclidean solver.
*/
bool is_parameter(var x) const;
/**
Given a linear polynomial as[0]*xs[0] + ... + as[num-1]*xs[num-1] + c and the current solution set,
It applies the solution set to produce a polynomial of the for a_prime * p + c_prime, where
a_prime * p represents a linear polynomial where the coefficient of every monomial is a multiple of
a_prime.
The justification is stored in js.
Note that, this function does not return the actual p.
The numerals must be created using the numeral_manager m().
*/
void normalize(unsigned num, mpz const * as, var const * xs, mpz const & c, mpz & a_prime, mpz & c_prime, justification_vector & js);
/**
\brief Set/Reset the cancel flag.
*/
void set_cancel(bool f);
void display(std::ostream & out) const;
};
#endif