mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
107 lines
2.7 KiB
C++
107 lines
2.7 KiB
C++
/*++
|
|
Copyright (c) 2011 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
euclidean_solver.h
|
|
|
|
Abstract:
|
|
|
|
Euclidean Solver with support for explanations.
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2011-07-08.
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#ifndef _EUCLIDEAN_SOLVER_H_
|
|
#define _EUCLIDEAN_SOLVER_H_
|
|
|
|
#include"mpq.h"
|
|
#include"vector.h"
|
|
|
|
class euclidean_solver {
|
|
struct imp;
|
|
imp * m_imp;
|
|
public:
|
|
typedef unsigned var;
|
|
typedef unsigned justification;
|
|
typedef unsynch_mpq_manager numeral_manager;
|
|
typedef svector<justification> justification_vector;
|
|
static const justification null_justification = UINT_MAX;
|
|
|
|
/**
|
|
\brief If m == 0, then the solver will create its own numeral manager.
|
|
*/
|
|
euclidean_solver(numeral_manager * m);
|
|
|
|
~euclidean_solver();
|
|
|
|
numeral_manager & m() const;
|
|
|
|
/**
|
|
\brief Reset the state of the euclidean solver.
|
|
*/
|
|
void reset();
|
|
|
|
/**
|
|
\brief Creates a integer variable.
|
|
*/
|
|
var mk_var();
|
|
|
|
/**
|
|
\brief Creates a fresh justification id.
|
|
*/
|
|
justification mk_justification();
|
|
|
|
/**
|
|
\brief Asserts an equation of the form as[0]*xs[0] + ... + as[num-1]*xs[num-1] + c = 0 with justification j.
|
|
|
|
The numerals must be created using the numeral_manager m().
|
|
*/
|
|
void assert_eq(unsigned num, mpz const * as, var const * xs, mpz const & c, justification j = null_justification);
|
|
|
|
/**
|
|
\brief Solve the current set of equations. Return false if it is inconsistent.
|
|
*/
|
|
bool solve();
|
|
|
|
/**
|
|
\brief Return a set of justifications (proof) for the inconsitency.
|
|
|
|
\pre inconsistent()
|
|
*/
|
|
justification_vector const & get_justification() const;
|
|
|
|
bool inconsistent() const;
|
|
|
|
/**
|
|
\brief Return true if the variable is a "parameter" created by the Euclidean solver.
|
|
*/
|
|
bool is_parameter(var x) const;
|
|
|
|
/**
|
|
Given a linear polynomial as[0]*xs[0] + ... + as[num-1]*xs[num-1] + c and the current solution set,
|
|
It applies the solution set to produce a polynomial of the for a_prime * p + c_prime, where
|
|
a_prime * p represents a linear polynomial where the coefficient of every monomial is a multiple of
|
|
a_prime.
|
|
|
|
The justification is stored in js.
|
|
Note that, this function does not return the actual p.
|
|
|
|
The numerals must be created using the numeral_manager m().
|
|
*/
|
|
void normalize(unsigned num, mpz const * as, var const * xs, mpz const & c, mpz & a_prime, mpz & c_prime, justification_vector & js);
|
|
|
|
/**
|
|
\brief Set/Reset the cancel flag.
|
|
*/
|
|
void set_cancel(bool f);
|
|
|
|
void display(std::ostream & out) const;
|
|
};
|
|
|
|
#endif
|