3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00
z3/lib/dl_sparse_table.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

1250 lines
47 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
dl_sparse_table.cpp
Abstract:
<abstract>
Author:
Krystof Hoder (t-khoder) 2010-09-24.
Revision History:
--*/
#include<utility>
#include"dl_context.h"
#include"dl_util.h"
#include"dl_sparse_table.h"
namespace datalog {
// -----------------------------------
//
// entry_storage
//
// -----------------------------------
entry_storage::store_offset entry_storage::insert_or_get_reserve_content() {
SASSERT(has_reserve());
store_offset entry_ofs = m_data_indexer.insert_if_not_there(m_reserve);
if(m_reserve==entry_ofs) {
//entry inserted, so reserve is no longer a reserve
m_reserve = NO_RESERVE;
}
return entry_ofs;
}
bool entry_storage::insert_reserve_content() {
SASSERT(has_reserve());
store_offset entry_ofs = m_data_indexer.insert_if_not_there(m_reserve);
if(m_reserve==entry_ofs) {
//entry inserted, so reserve is no longer a reserve
m_reserve = NO_RESERVE;
return true;
}
return false;
}
bool entry_storage::remove_reserve_content() {
SASSERT(has_reserve());
store_offset entry_ofs;
if(!find_reserve_content(entry_ofs)) {
//the fact was not in the table
return false;
}
remove_offset(entry_ofs);
return true;
}
void entry_storage::remove_offset(store_offset ofs) {
m_data_indexer.remove(ofs);
store_offset last_ofs = after_last_offset() - m_entry_size;
if(ofs!=last_ofs) {
SASSERT(ofs+m_entry_size<=last_ofs);
//we don't want any holes, so we put the last element at the place
//of the removed one
m_data_indexer.remove(last_ofs);
char * base = &m_data.get(0);
memcpy(base+ofs, base+last_ofs, m_entry_size);
m_data_indexer.insert(ofs);
}
if(has_reserve()) {
//we already have a reserve, so we need to shrink a little to keep having just one
resize_data(m_data_size-m_entry_size);
}
m_reserve=last_ofs;
}
unsigned entry_storage::get_size_estimate_bytes() const {
unsigned sz = m_data.capacity();
sz += m_data_indexer.capacity()*sizeof(storage_indexer::entry);
return sz;
}
// -----------------------------------
//
// sparse_table::column_layout
//
// -----------------------------------
unsigned get_domain_length(uint64 dom_size) {
SASSERT(dom_size>0);
unsigned length = 0;
unsigned dom_size_sm;
if(dom_size>UINT_MAX) {
dom_size_sm = static_cast<unsigned>(dom_size>>32);
length += 32;
if( (dom_size&UINT_MAX)!=0 && dom_size_sm!=UINT_MAX ) {
dom_size_sm++;
}
}
else {
dom_size_sm=static_cast<unsigned>(dom_size);
}
if(dom_size_sm==1) {
length += 1; //unary domains
}
else if(dom_size_sm>0x80000000u) {
length += 32;
}
else {
length += get_num_1bits(next_power_of_two(dom_size_sm)-1); //ceil(log2(dom_size))
}
return length;
}
sparse_table::column_layout::column_layout(const table_signature & sig)
: m_functional_col_cnt(sig.functional_columns()) {
SASSERT(sig.size()>0);
unsigned ofs = 0;
unsigned sig_sz = sig.size();
unsigned first_functional = sig_sz-m_functional_col_cnt;
for(unsigned i=0; i<sig_sz; i++) {
uint64 dom_size = sig[i];
unsigned length = get_domain_length(dom_size);
SASSERT(length>0);
SASSERT(length<=64);
if(size()>0 && (length>54 || i==first_functional)) {
//large domains must start byte-aligned, as well as functional columns
make_byte_aligned_end(size()-1);
ofs = back().next_ofs();
}
push_back(column_info(ofs, length));
ofs+=length;
}
make_byte_aligned_end(size()-1);
SASSERT(back().next_ofs()%8==0);//the entries must be aligned to whole bytes
m_entry_size = back().next_ofs()/8;
if(m_functional_col_cnt) {
SASSERT((*this)[first_functional].m_offset%8==0);
m_functional_part_size = m_entry_size - (*this)[first_functional].m_offset/8;
}
else {
m_functional_part_size = 0;
}
}
void sparse_table::column_layout::make_byte_aligned_end(unsigned col_index0) {
unsigned ofs = (*this)[col_index0].next_ofs();
unsigned ofs_bit_part = ofs%8;
unsigned rounded_ofs = (ofs_bit_part==0) ? ofs : (ofs+8-ofs_bit_part);
if(rounded_ofs!=ofs) {
SASSERT(rounded_ofs>ofs);
int diff = rounded_ofs-ofs;
unsigned col_idx = col_index0+1;
while(diff!=0) {
//we should always be able to fix the alignment by the time we reach zero
SASSERT(col_idx>0);
col_idx--;
column_info & ci = (*this)[col_idx];
unsigned new_length = ci.m_length;
if(ci.m_length<64) {
unsigned swallowed = std::min(64-static_cast<int>(ci.m_length), diff);
diff-=swallowed;
new_length+=swallowed;
}
unsigned new_ofs = ci.m_offset+diff;
ci = column_info(new_ofs, new_length);
}
}
SASSERT(rounded_ofs%8==0);
SASSERT((*this)[col_index0].next_ofs()%8==0);
}
// -----------------------------------
//
// sparse_table
//
// -----------------------------------
class sparse_table::our_iterator_core : public iterator_core {
class our_row : public row_interface {
const our_iterator_core & m_parent;
public:
our_row(const sparse_table & t, const our_iterator_core & parent) :
row_interface(t),
m_parent(parent) {}
virtual table_element operator[](unsigned col) const {
return m_parent.m_layout.get(m_parent.m_ptr, col);
}
};
const char * m_end;
const char * m_ptr;
unsigned m_fact_size;
our_row m_row_obj;
const column_layout & m_layout;
public:
our_iterator_core(const sparse_table & t, bool finished) :
m_end(t.m_data.after_last()),
m_ptr(finished ? m_end : t.m_data.begin()),
m_fact_size(t.m_fact_size),
m_row_obj(t, *this),
m_layout(t.m_column_layout) {}
virtual bool is_finished() const {
return m_ptr==m_end;
}
virtual row_interface & operator*() {
SASSERT(!is_finished());
return m_row_obj;
}
virtual void operator++() {
SASSERT(!is_finished());
m_ptr+=m_fact_size;
}
};
class sparse_table::key_indexer {
protected:
unsigned_vector m_key_cols;
public:
typedef const store_offset * offset_iterator;
/**
Iterators returned by \c begin() and \c end() are valid only as long as the \c query_result
object that returned them exists.
*/
struct query_result {
private:
bool m_singleton;
union {
store_offset m_single_result;
struct {
offset_iterator begin;
offset_iterator end;
} m_many;
};
public:
/**
\brief Empty result.
*/
query_result() : m_singleton(false) {
m_many.begin = 0;
m_many.end = 0;
}
query_result(offset_iterator begin, offset_iterator end) : m_singleton(false) {
m_many.begin = begin;
m_many.end = end;
}
query_result(store_offset single_result) : m_singleton(true), m_single_result(single_result) {}
offset_iterator begin() const { return m_singleton ? &m_single_result : m_many.begin; }
offset_iterator end() const { return m_singleton ? (&m_single_result+1) : m_many.end; }
bool empty() const { return begin()==end(); }
};
key_indexer(unsigned key_len, const unsigned * key_cols)
: m_key_cols(key_len, key_cols) {}
virtual ~key_indexer() {}
virtual void update(const sparse_table & t) {}
virtual query_result get_matching_offsets(const key_value & key) const = 0;
};
class sparse_table::general_key_indexer : public key_indexer {
typedef svector<store_offset> offset_vector;
typedef u_map<offset_vector> index_map;
index_map m_map;
mutable entry_storage m_keys;
store_offset m_first_nonindexed;
void key_to_reserve(const key_value & key) const {
m_keys.ensure_reserve();
m_keys.write_into_reserve(reinterpret_cast<char *>(key.c_ptr()));
}
offset_vector & get_matching_offset_vector(const key_value & key) {
key_to_reserve(key);
store_offset ofs = m_keys.insert_or_get_reserve_content();
index_map::entry * e = m_map.find_core(ofs);
if(!e) {
TRACE("dl_table_relation", tout << "inserting\n";);
e = m_map.insert_if_not_there2(ofs, offset_vector());
}
return e->get_data().m_value;
}
public:
general_key_indexer(unsigned key_len, const unsigned * key_cols)
: key_indexer(key_len, key_cols),
m_keys(key_len*sizeof(table_element)),
m_first_nonindexed(0) {}
virtual void update(const sparse_table & t) {
if(m_first_nonindexed==t.m_data.after_last_offset()) {
return;
}
SASSERT(m_first_nonindexed<t.m_data.after_last_offset());
//we need to add new facts into the index
unsigned key_len = m_key_cols.size();
store_offset ofs = m_first_nonindexed;
store_offset after_last = t.m_data.after_last_offset();
key_value key;
key.resize(key_len);
offset_vector * index_entry;
DEBUG_CODE( index_entry = 0; );
bool key_modified = true;
for(; ofs!=after_last; ofs+=t.m_fact_size) {
for(unsigned i=0; i<key_len; i++) {
table_element col_val = t.get_cell(ofs, m_key_cols[i]);
if(key[i]!=col_val) {
key[i] = col_val;
key_modified = true;
}
}
if(key_modified) {
index_entry = &get_matching_offset_vector(key);
key_modified = false;
}
SASSERT(index_entry);
//here we insert the offset of the fact in m_data vector into the indexer
index_entry->insert(ofs);
}
m_first_nonindexed = t.m_data.after_last_offset();
}
virtual query_result get_matching_offsets(const key_value & key) const {
key_to_reserve(key);
store_offset ofs;
if(!m_keys.find_reserve_content(ofs)) {
return query_result();
}
index_map::entry * e = m_map.find_core(ofs);
if(!e) {
return query_result();
}
const offset_vector & res = e->get_data().m_value;
return query_result(res.begin(), res.end());
}
};
/**
When doing lookup using this index, the content of the reserve in sparse_table::m_data changes.
*/
class sparse_table::full_signature_key_indexer : public key_indexer {
const sparse_table & m_table;
/**
Permutation of key columns to make it into table facts. If empty, no permutation is necessary.
*/
unsigned_vector m_permutation;
mutable table_fact m_key_fact;
public:
static bool can_handle(unsigned key_len, const unsigned * key_cols, const sparse_table & t) {
unsigned non_func_cols = t.get_signature().first_functional();
if(key_len!=non_func_cols) {
return false;
}
counter ctr;
ctr.count(key_len, key_cols);
if(ctr.get_max_counter_value()!=1 || ctr.get_max_positive()!=non_func_cols-1) {
return false;
}
SASSERT(ctr.get_positive_count()==non_func_cols);
return true;
}
full_signature_key_indexer(unsigned key_len, const unsigned * key_cols, const sparse_table & t)
: key_indexer(key_len, key_cols),
m_table(t) {
SASSERT(can_handle(key_len, key_cols, t));
m_permutation.resize(key_len);
for(unsigned i=0; i<key_len; i++) {
//m_permutation[m_key_cols[i]] = i;
m_permutation[i] = m_key_cols[i];
}
m_key_fact.resize(t.get_signature().size());
}
virtual ~full_signature_key_indexer() {}
virtual query_result get_matching_offsets(const key_value & key) const {
unsigned key_len = m_key_cols.size();
for(unsigned i=0; i<key_len; i++) {
m_key_fact[m_permutation[i]] = key[i];
}
//We will change the content of the reserve; which does not change the 'high-level'
//content of the table.
sparse_table & t = const_cast<sparse_table &>(m_table);
t.write_into_reserve(m_key_fact.c_ptr());
store_offset res;
if(!t.m_data.find_reserve_content(res)) {
return query_result();
}
return query_result(res);
}
};
sparse_table::sparse_table(sparse_table_plugin & p, const table_signature & sig, unsigned init_capacity)
: table_base(p, sig),
m_column_layout(sig),
m_fact_size(m_column_layout.m_entry_size),
m_data(m_fact_size, m_column_layout.m_functional_part_size, init_capacity) {}
sparse_table::sparse_table(const sparse_table & t)
: table_base(t.get_plugin(), t.get_signature()),
m_column_layout(t.m_column_layout),
m_fact_size(t.m_fact_size),
m_data(t.m_data) {}
table_base * sparse_table::clone() const {
return get_plugin().mk_clone(*this);
}
sparse_table::~sparse_table() {
reset_indexes();
}
void sparse_table::reset() {
reset_indexes();
m_data.reset();
}
table_base::iterator sparse_table::begin() const {
return mk_iterator(alloc(our_iterator_core, *this, false));
}
table_base::iterator sparse_table::end() const {
return mk_iterator(alloc(our_iterator_core, *this, true));
}
sparse_table::key_indexer& sparse_table::get_key_indexer(unsigned key_len,
const unsigned * key_cols) const {
#if Z3DEBUG
//We allow indexes only on non-functional columns because we want to be able to modify them
//without having to worry about updating indexes.
//Maybe we might keep a list of indexes that contain functional columns and on an update reset
//only those.
SASSERT(key_len==0 ||
counter().count(key_len, key_cols).get_max_positive()<get_signature().first_functional());
#endif
key_spec kspec;
kspec.append(key_len, key_cols);
key_index_map::entry * key_map_entry = m_key_indexes.insert_if_not_there2(kspec, 0);
if(!key_map_entry->get_data().m_value) {
if(full_signature_key_indexer::can_handle(key_len, key_cols, *this)) {
key_map_entry->get_data().m_value = alloc(full_signature_key_indexer, key_len, key_cols, *this);
}
else {
key_map_entry->get_data().m_value = alloc(general_key_indexer, key_len, key_cols);
}
}
key_indexer & indexer = *key_map_entry->get_data().m_value;
indexer.update(*this);
return indexer;
}
void sparse_table::reset_indexes() {
key_index_map::iterator kmit = m_key_indexes.begin();
key_index_map::iterator kmend = m_key_indexes.end();
for(; kmit!=kmend; ++kmit) {
dealloc((*kmit).m_value);
}
m_key_indexes.reset();
}
void sparse_table::write_into_reserve(const table_element* f) {
TRACE("dl_table_relation", tout << "\n";);
m_data.ensure_reserve();
char * reserve = m_data.get_reserve_ptr();
unsigned col_cnt = m_column_layout.size();
for(unsigned i=0; i<col_cnt; i++) {
SASSERT(f[i]<get_signature()[i]); //the value fits into the table signature
m_column_layout.set(reserve, i, f[i]);
}
}
bool sparse_table::add_fact(const char * data) {
m_data.write_into_reserve(data);
return add_reserve_content();
}
void sparse_table::add_fact(const table_fact & f) {
write_into_reserve(f.c_ptr());
add_reserve_content();
}
bool sparse_table::add_reserve_content() {
return m_data.insert_reserve_content();
}
bool sparse_table::contains_fact(const table_fact & f) const {
sparse_table & t = const_cast<sparse_table &>(*this);
t.write_into_reserve(f.c_ptr());
unsigned func_col_cnt = get_signature().functional_columns();
if(func_col_cnt==0) {
return t.m_data.reserve_content_already_present();
}
else {
store_offset ofs;
if(!t.m_data.find_reserve_content(ofs)) {
return false;
}
unsigned sz = get_signature().size();
for(unsigned i=func_col_cnt; i<sz; i++) {
if(t.get_cell(ofs, i)!=f[i]) {
return false;
}
}
return true;
}
}
bool sparse_table::fetch_fact(table_fact & f) const {
const table_signature & sig = get_signature();
SASSERT(f.size()==sig.size());
if(sig.functional_columns()==0) {
return contains_fact(f);
}
else {
sparse_table & t = const_cast<sparse_table &>(*this);
t.write_into_reserve(f.c_ptr());
store_offset ofs;
if(!t.m_data.find_reserve_content(ofs)) {
return false;
}
unsigned sz = sig.size();
for(unsigned i=sig.first_functional(); i<sz; i++) {
f[i] = t.get_cell(ofs, i);
}
return true;
}
}
/**
In this function we modify the content of table functional columns without reseting indexes.
This is ok as long as we do not allow indexing on functional columns.
*/
void sparse_table::ensure_fact(const table_fact & f) {
const table_signature & sig = get_signature();
if(sig.functional_columns()==0) {
add_fact(f);
}
else {
write_into_reserve(f.c_ptr());
store_offset ofs;
if(!m_data.find_reserve_content(ofs)) {
add_fact(f);
return;
}
unsigned sz = sig.size();
for(unsigned i=sig.first_functional(); i<sz; i++) {
set_cell(ofs, i, f[i]);
}
}
}
void sparse_table::remove_fact(const table_element* f) {
//first insert the fact so that we find it's original location and remove it
write_into_reserve(f);
if(!m_data.remove_reserve_content()) {
//the fact was not in the table
return;
}
reset_indexes();
}
void sparse_table::copy_columns(const column_layout & src_layout, const column_layout & dest_layout,
unsigned start_index, unsigned after_last, const char * src, char * dest,
unsigned & dest_idx, unsigned & pre_projection_idx, const unsigned * & next_removed) {
for(unsigned i=start_index; i<after_last; i++, pre_projection_idx++) {
if(*next_removed==pre_projection_idx) {
next_removed++;
continue;
}
SASSERT(*next_removed>pre_projection_idx);
dest_layout.set(dest, dest_idx++, src_layout.get(src, i));
}
}
void sparse_table::concatenate_rows(const column_layout & layout1, const column_layout & layout2,
const column_layout & layout_res, const char * ptr1, const char * ptr2, char * res,
const unsigned * removed_cols) {
unsigned t1non_func = layout1.size()-layout1.m_functional_col_cnt;
unsigned t2non_func = layout2.size()-layout2.m_functional_col_cnt;
unsigned t1cols = layout1.size();
unsigned t2cols = layout2.size();
unsigned orig_i = 0;
unsigned res_i = 0;
const unsigned * next_removed = removed_cols;
copy_columns(layout1, layout_res, 0, t1non_func, ptr1, res, res_i, orig_i, next_removed);
copy_columns(layout2, layout_res, 0, t2non_func, ptr2, res, res_i, orig_i, next_removed);
copy_columns(layout1, layout_res, t1non_func, t1cols, ptr1, res, res_i, orig_i, next_removed);
copy_columns(layout2, layout_res, t2non_func, t2cols, ptr2, res, res_i, orig_i, next_removed);
}
void sparse_table::garbage_collect() {
if (memory::above_high_watermark()) {
get_plugin().garbage_collect();
}
if (memory::above_high_watermark()) {
IF_VERBOSE(1, verbose_stream() << "Ran out of memory while filling table of size: " << get_size_estimate_rows() << " rows " << get_size_estimate_bytes() << " bytes\n";);
throw out_of_memory_error();
}
}
void sparse_table::self_agnostic_join_project(const sparse_table & t1, const sparse_table & t2,
unsigned joined_col_cnt, const unsigned * t1_joined_cols, const unsigned * t2_joined_cols,
const unsigned * removed_cols, bool tables_swapped, sparse_table & result) {
unsigned t1_entry_size = t1.m_fact_size;
unsigned t2_entry_size = t2.m_fact_size;
unsigned t1idx = 0;
unsigned t1end = t1.m_data.after_last_offset();
TRACE("dl_table_relation",
tout << "joined_col_cnt: " << joined_col_cnt << "\n";
tout << "t1_entry_size: " << t1_entry_size << "\n";
tout << "t2_entry_size: " << t2_entry_size << "\n";
t1.display(tout);
t2.display(tout);
tout << (&t1) << " " << (&t2) << " " << (&result) << "\n";
);
if(joined_col_cnt==0) {
unsigned t2idx = 0;
unsigned t2end = t2.m_data.after_last_offset();
for(; t1idx!=t1end; t1idx+=t1_entry_size) {
for(t2idx = 0; t2idx != t2end; t2idx += t2_entry_size) {
result.m_data.ensure_reserve();
result.garbage_collect();
char * res_reserve = result.m_data.get_reserve_ptr();
char const* t1ptr = t1.get_at_offset(t1idx);
char const* t2ptr = t2.get_at_offset(t2idx);
if(tables_swapped) {
concatenate_rows(t2.m_column_layout, t1.m_column_layout, result.m_column_layout,
t2ptr, t1ptr, res_reserve, removed_cols);
} else {
concatenate_rows(t1.m_column_layout, t2.m_column_layout, result.m_column_layout,
t1ptr, t2ptr, res_reserve, removed_cols);
}
result.add_reserve_content();
}
}
return;
}
key_value t1_key;
t1_key.resize(joined_col_cnt);
key_indexer& t2_indexer = t2.get_key_indexer(joined_col_cnt, t2_joined_cols);
bool key_modified = true;
key_indexer::query_result t2_offsets;
for(; t1idx != t1end; t1idx += t1_entry_size) {
for(unsigned i = 0; i < joined_col_cnt; i++) {
table_element val = t1.m_column_layout.get(t1.get_at_offset(t1idx), t1_joined_cols[i]);
TRACE("dl_table_relation", tout << "val: " << val << " " << t1idx << " " << t1_joined_cols[i] << "\n";);
if(t1_key[i] != val) {
t1_key[i] = val;
key_modified = true;
}
}
if(key_modified) {
t2_offsets = t2_indexer.get_matching_offsets(t1_key);
key_modified = false;
}
if(t2_offsets.empty()) {
continue;
}
key_indexer::offset_iterator t2ofs_it = t2_offsets.begin();
key_indexer::offset_iterator t2ofs_end = t2_offsets.end();
for(; t2ofs_it != t2ofs_end; ++t2ofs_it) {
store_offset t2ofs = *t2ofs_it;
result.m_data.ensure_reserve();
result.garbage_collect();
char * res_reserve = result.m_data.get_reserve_ptr();
char const * t1ptr = t1.get_at_offset(t1idx);
char const * t2ptr = t2.get_at_offset(t2ofs);
if(tables_swapped) {
concatenate_rows(t2.m_column_layout, t1.m_column_layout, result.m_column_layout,
t2ptr, t1ptr, res_reserve, removed_cols);
} else {
concatenate_rows(t1.m_column_layout, t2.m_column_layout, result.m_column_layout,
t1ptr, t2ptr, res_reserve, removed_cols);
}
result.add_reserve_content();
}
}
}
// -----------------------------------
//
// sparse_table_plugin
//
// -----------------------------------
sparse_table_plugin::sparse_table_plugin(relation_manager & manager)
: table_plugin(symbol("sparse"), manager) {}
sparse_table_plugin::~sparse_table_plugin() {
reset();
}
void sparse_table_plugin::reset() {
table_pool::iterator it = m_pool.begin();
table_pool::iterator end = m_pool.end();
for(; it!=end; ++it) {
sp_table_vector * vect = it->m_value;
sp_table_vector::iterator it = vect->begin();
sp_table_vector::iterator end = vect->end();
for(; it!=end; ++it) {
(*it)->destroy(); //calling deallocate() would only put the table back into the pool
}
dealloc(vect);
}
m_pool.reset();
}
void sparse_table_plugin::garbage_collect() {
IF_VERBOSE(2, verbose_stream() << "garbage collecting "<< memory::get_allocation_size() << " bytes down to ";);
reset();
IF_VERBOSE(2, verbose_stream() << memory::get_allocation_size() << " bytes\n";);
}
void sparse_table_plugin::recycle(sparse_table * t) {
const table_signature & sig = t->get_signature();
t->reset();
table_pool::entry * e = m_pool.insert_if_not_there2(sig, 0);
sp_table_vector * & vect = e->get_data().m_value;
if(vect==0) {
vect = alloc(sp_table_vector);
}
IF_VERBOSE(12, verbose_stream() << "Recycle: " << t->get_size_estimate_bytes() << "\n";);
vect->push_back(t);
}
table_base * sparse_table_plugin::mk_empty(const table_signature & s) {
SASSERT(can_handle_signature(s));
sp_table_vector * vect;
if(!m_pool.find(s, vect) || vect->empty()) {
return alloc(sparse_table, *this, s);
}
sparse_table * res = vect->back();
vect->pop_back();
return res;
}
sparse_table * sparse_table_plugin::mk_clone(const sparse_table & t) {
sparse_table * res = static_cast<sparse_table *>(mk_empty(t.get_signature()));
res->m_data = t.m_data;
return res;
}
bool sparse_table_plugin::join_involves_functional(const table_signature & s1, const table_signature & s2,
unsigned col_cnt, const unsigned * cols1, const unsigned * cols2) {
if(col_cnt==0) {
return false;
}
return counter().count(col_cnt, cols1).get_max_positive()>=s1.first_functional()
|| counter().count(col_cnt, cols2).get_max_positive()>=s2.first_functional();
}
class sparse_table_plugin::join_project_fn : public convenient_table_join_project_fn {
public:
join_project_fn(const table_signature & t1_sig, const table_signature & t2_sig, unsigned col_cnt,
const unsigned * cols1, const unsigned * cols2, unsigned removed_col_cnt,
const unsigned * removed_cols)
: convenient_table_join_project_fn(t1_sig, t2_sig, col_cnt, cols1, cols2,
removed_col_cnt, removed_cols) {
m_removed_cols.push_back(UINT_MAX);
}
virtual table_base * operator()(const table_base & tb1, const table_base & tb2) {
const sparse_table & t1 = static_cast<const sparse_table &>(tb1);
const sparse_table & t2 = static_cast<const sparse_table &>(tb2);
sparse_table_plugin & plugin = t1.get_plugin();
sparse_table * res = static_cast<sparse_table *>(plugin.mk_empty(get_result_signature()));
//If we join with some intersection, want to iterate over the smaller table and
//do indexing into the bigger one. If we simply do a product, we want the bigger
//one to be at the outer iteration (then the small one will hopefully fit into
//the cache)
if( (t1.row_count() > t2.row_count()) == (!m_cols1.empty()) ) {
sparse_table::self_agnostic_join_project(t2, t1, m_cols1.size(), m_cols2.c_ptr(),
m_cols1.c_ptr(), m_removed_cols.c_ptr(), true, *res);
}
else {
sparse_table::self_agnostic_join_project(t1, t2, m_cols1.size(), m_cols1.c_ptr(),
m_cols2.c_ptr(), m_removed_cols.c_ptr(), false, *res);
}
TRACE("dl_table_relation", tb1.display(tout); tb2.display(tout); res->display(tout); );
return res;
}
};
table_join_fn * sparse_table_plugin::mk_join_fn(const table_base & t1, const table_base & t2,
unsigned col_cnt, const unsigned * cols1, const unsigned * cols2) {
const table_signature & sig1 = t1.get_signature();
const table_signature & sig2 = t2.get_signature();
if(t1.get_kind()!=get_kind() || t2.get_kind()!=get_kind()
|| join_involves_functional(sig1, sig2, col_cnt, cols1, cols2)) {
//We also don't allow indexes on functional columns (and they are needed for joins)
return 0;
}
return mk_join_project_fn(t1, t2, col_cnt, cols1, cols2, 0, static_cast<unsigned*>(0));
}
table_join_fn * sparse_table_plugin::mk_join_project_fn(const table_base & t1, const table_base & t2,
unsigned col_cnt, const unsigned * cols1, const unsigned * cols2, unsigned removed_col_cnt,
const unsigned * removed_cols) {
const table_signature & sig1 = t1.get_signature();
const table_signature & sig2 = t2.get_signature();
if(t1.get_kind()!=get_kind() || t2.get_kind()!=get_kind()
|| removed_col_cnt==t1.get_signature().size()+t2.get_signature().size()
|| join_involves_functional(sig1, sig2, col_cnt, cols1, cols2)) {
//We don't allow sparse tables with zero signatures (and project on all columns leads to such)
//We also don't allow indexes on functional columns.
return 0;
}
return alloc(join_project_fn, t1.get_signature(), t2.get_signature(), col_cnt, cols1, cols2,
removed_col_cnt, removed_cols);
}
class sparse_table_plugin::union_fn : public table_union_fn {
public:
virtual void operator()(table_base & tgt0, const table_base & src0, table_base * delta0) {
sparse_table & tgt = static_cast<sparse_table &>(tgt0);
const sparse_table & src = static_cast<const sparse_table &>(src0);
sparse_table * delta = static_cast<sparse_table *>(delta0);
unsigned fact_size = tgt.m_fact_size;
const char* ptr = src.m_data.begin();
const char* after_last=src.m_data.after_last();
for(; ptr<after_last; ptr+=fact_size) {
if(tgt.add_fact(ptr) && delta) {
delta->add_fact(ptr);
}
}
}
};
table_union_fn * sparse_table_plugin::mk_union_fn(const table_base & tgt, const table_base & src,
const table_base * delta) {
if(tgt.get_kind()!=get_kind() || src.get_kind()!=get_kind()
|| (delta && delta->get_kind()!=get_kind())
|| tgt.get_signature()!=src.get_signature()
|| (delta && delta->get_signature()!=tgt.get_signature())) {
return 0;
}
return alloc(union_fn);
}
class sparse_table_plugin::project_fn : public convenient_table_project_fn {
const unsigned m_inp_col_cnt;
const unsigned m_removed_col_cnt;
const unsigned m_result_col_cnt;
public:
project_fn(const table_signature & orig_sig, unsigned removed_col_cnt, const unsigned * removed_cols)
: convenient_table_project_fn(orig_sig, removed_col_cnt, removed_cols),
m_inp_col_cnt(orig_sig.size()),
m_removed_col_cnt(removed_col_cnt),
m_result_col_cnt(orig_sig.size()-removed_col_cnt) {
SASSERT(removed_col_cnt>0);
}
virtual void transform_row(const char * src, char * tgt,
const sparse_table::column_layout & src_layout,
const sparse_table::column_layout & tgt_layout) {
unsigned r_idx=0;
unsigned tgt_i=0;
for(unsigned i=0; i<m_inp_col_cnt; i++) {
if(r_idx!=m_removed_col_cnt && i==m_removed_cols[r_idx]) {
SASSERT(r_idx<m_removed_col_cnt);
r_idx++;
continue;
}
tgt_layout.set(tgt, tgt_i, src_layout.get(src, i));
tgt_i++;
}
SASSERT(tgt_i==m_result_col_cnt);
SASSERT(r_idx==m_removed_col_cnt);
}
virtual table_base * operator()(const table_base & tb) {
const sparse_table & t = static_cast<const sparse_table &>(tb);
unsigned t_fact_size = t.m_fact_size;
sparse_table_plugin & plugin = t.get_plugin();
sparse_table * res = static_cast<sparse_table *>(plugin.mk_empty(get_result_signature()));
const sparse_table::column_layout & src_layout = t.m_column_layout;
const sparse_table::column_layout & tgt_layout = res->m_column_layout;
const char* t_ptr = t.m_data.begin();
const char* t_end = t.m_data.after_last();
for(; t_ptr!=t_end; t_ptr+=t_fact_size) {
SASSERT(t_ptr<t_end);
res->m_data.ensure_reserve();
char * res_ptr = res->m_data.get_reserve_ptr();
transform_row(t_ptr, res_ptr, src_layout, tgt_layout);
res->m_data.insert_reserve_content();
}
return res;
}
};
table_transformer_fn * sparse_table_plugin::mk_project_fn(const table_base & t, unsigned col_cnt,
const unsigned * removed_cols) {
if(col_cnt==t.get_signature().size()) {
return 0;
}
return alloc(project_fn, t.get_signature(), col_cnt, removed_cols);
}
class sparse_table_plugin::select_equal_and_project_fn : public convenient_table_transformer_fn {
const unsigned m_col;
sparse_table::key_value m_key;
public:
select_equal_and_project_fn(const table_signature & orig_sig, table_element val, unsigned col)
: m_col(col) {
table_signature::from_project(orig_sig, 1, &col, get_result_signature());
m_key.push_back(val);
}
virtual table_base * operator()(const table_base & tb) {
const sparse_table & t = static_cast<const sparse_table &>(tb);
sparse_table_plugin & plugin = t.get_plugin();
sparse_table * res = static_cast<sparse_table *>(plugin.mk_empty(get_result_signature()));
const sparse_table::column_layout & t_layout = t.m_column_layout;
const sparse_table::column_layout & res_layout = res->m_column_layout;
unsigned t_cols = t_layout.size();
sparse_table::key_indexer & indexer = t.get_key_indexer(1, &m_col);
sparse_table::key_indexer::query_result t_offsets = indexer.get_matching_offsets(m_key);
if(t_offsets.empty()) {
//no matches
return res;
}
sparse_table::key_indexer::offset_iterator ofs_it=t_offsets.begin();
sparse_table::key_indexer::offset_iterator ofs_end=t_offsets.end();
for(; ofs_it!=ofs_end; ++ofs_it) {
sparse_table::store_offset t_ofs = *ofs_it;
const char * t_ptr = t.get_at_offset(t_ofs);
res->m_data.ensure_reserve();
char * res_reserve = res->m_data.get_reserve_ptr();
unsigned res_i = 0;
for(unsigned i=0; i<t_cols; i++) {
if(i==m_col) {
continue;
}
res_layout.set(res_reserve, res_i++, t_layout.get(t_ptr, i));
}
res->add_reserve_content();
}
return res;
}
};
table_transformer_fn * sparse_table_plugin::mk_select_equal_and_project_fn(const table_base & t,
const table_element & value, unsigned col) {
if(t.get_kind()!=get_kind() || t.get_signature().size()==1 || col>=t.get_signature().first_functional()) {
//We don't allow sparse tables with zero signatures (and project on a single
//column table produces one).
//We also don't allow indexes on functional columns. And our implementation of
//select_equal_and_project uses index on \c col.
return 0;
}
return alloc(select_equal_and_project_fn, t.get_signature(), value, col);
}
class sparse_table_plugin::rename_fn : public convenient_table_rename_fn {
const unsigned m_cycle_len;
const unsigned m_col_cnt;
unsigned_vector m_out_of_cycle;
public:
rename_fn(const table_signature & orig_sig, unsigned permutation_cycle_len, const unsigned * permutation_cycle)
: convenient_table_rename_fn(orig_sig, permutation_cycle_len, permutation_cycle),
m_cycle_len(permutation_cycle_len), m_col_cnt(orig_sig.size()) {
SASSERT(permutation_cycle_len>=2);
idx_set cycle_cols;
for(unsigned i=0; i<m_cycle_len; i++) {
cycle_cols.insert(permutation_cycle[i]);
}
for(unsigned i=0; i<m_col_cnt; i++) {
if(!cycle_cols.contains(i)) {
m_out_of_cycle.push_back(i);
}
}
}
void transform_row(const char * src, char * tgt,
const sparse_table::column_layout & src_layout,
const sparse_table::column_layout & tgt_layout) {
for(unsigned i=1; i<m_cycle_len; i++) {
tgt_layout.set(tgt, m_cycle[i-1], src_layout.get(src, m_cycle[i]));
}
tgt_layout.set(tgt, m_cycle[m_cycle_len-1], src_layout.get(src, m_cycle[0]));
unsigned_vector::const_iterator it = m_out_of_cycle.begin();
unsigned_vector::const_iterator end = m_out_of_cycle.end();
for(; it!=end; ++it) {
unsigned col = *it;
tgt_layout.set(tgt, col, src_layout.get(src, col));
}
}
virtual table_base * operator()(const table_base & tb) {
const sparse_table & t = static_cast<const sparse_table &>(tb);
unsigned t_fact_size = t.m_fact_size;
sparse_table_plugin & plugin = t.get_plugin();
sparse_table * res = static_cast<sparse_table *>(plugin.mk_empty(get_result_signature()));
unsigned res_fact_size = res->m_fact_size;
unsigned res_data_size = res_fact_size*t.row_count();
res->m_data.resize_data(res_data_size);
//here we can separate data creatin and insertion into hashmap, since we know
//that no row will become duplicit
//create the data
const char* t_ptr = t.m_data.begin();
char* res_ptr = res->m_data.begin();
char* res_end = res_ptr+res_data_size;
for(; res_ptr!=res_end; t_ptr+=t_fact_size, res_ptr+=res_fact_size) {
transform_row(t_ptr, res_ptr, t.m_column_layout, res->m_column_layout);
}
//and insert them into the hash-map
for(unsigned i=0; i!=res_data_size; i+=res_fact_size) {
TRUSTME(res->m_data.insert_offset(i));
}
return res;
}
};
table_transformer_fn * sparse_table_plugin::mk_rename_fn(const table_base & t, unsigned permutation_cycle_len,
const unsigned * permutation_cycle) {
if(t.get_kind()!=get_kind()) {
return 0;
}
return alloc(rename_fn, t.get_signature(), permutation_cycle_len, permutation_cycle);
}
class sparse_table_plugin::negation_filter_fn : public convenient_table_negation_filter_fn {
typedef sparse_table::store_offset store_offset;
typedef sparse_table::key_value key_value;
typedef sparse_table::key_indexer key_indexer;
bool m_joining_neg_non_functional;
/**
Used by \c collect_intersection_offsets function.
If tgt_is_first is false, contains the same items as \c res.
*/
idx_set m_intersection_content;
public:
negation_filter_fn(const table_base & tgt, const table_base & neg,
unsigned joined_col_cnt, const unsigned * t_cols, const unsigned * negated_cols)
: convenient_table_negation_filter_fn(tgt, neg, joined_col_cnt, t_cols, negated_cols) {
unsigned neg_fisrt_func = neg.get_signature().first_functional();
counter ctr;
ctr.count(m_cols2);
m_joining_neg_non_functional = ctr.get_max_counter_value()==1
&& ctr.get_positive_count()==neg_fisrt_func
&& (neg_fisrt_func==0 || ctr.get_max_positive()==neg_fisrt_func-1);
}
/**
Collect offsets of rows in \c t1 or \c t2 (depends on whether \c tgt_is_first is true or false)
that have a match in the other table into \c res. Offsets in \c res are in ascending order.
*/
void collect_intersection_offsets(const sparse_table & t1, const sparse_table & t2,
bool tgt_is_first, svector<store_offset> & res) {
SASSERT(res.empty());
if(!tgt_is_first) {
m_intersection_content.reset();
}
unsigned joined_col_cnt = m_cols1.size();
unsigned t1_entry_size = t1.m_data.entry_size();
const unsigned * cols1 = tgt_is_first ? m_cols1.c_ptr() : m_cols2.c_ptr();
const unsigned * cols2 = tgt_is_first ? m_cols2.c_ptr() : m_cols1.c_ptr();
key_value t1_key;
t1_key.resize(joined_col_cnt);
key_indexer & t2_indexer = t2.get_key_indexer(joined_col_cnt, cols2);
bool key_modified=true;
key_indexer::query_result t2_offsets;
store_offset t1_after_last = t1.m_data.after_last_offset();
for(store_offset t1_ofs=0; t1_ofs<t1_after_last; t1_ofs+=t1_entry_size) {
for(unsigned i=0; i<joined_col_cnt; i++) {
table_element val = t1.get_cell(t1_ofs, cols1[i]);
if(t1_key[i]!=val) {
t1_key[i]=val;
key_modified=true;
}
}
if(key_modified) {
t2_offsets = t2_indexer.get_matching_offsets(t1_key);
key_modified=false;
}
if(t2_offsets.empty()) {
continue;
}
if(tgt_is_first) {
res.push_back(t1_ofs);
}
else {
key_indexer::offset_iterator it = t2_offsets.begin();
key_indexer::offset_iterator end = t2_offsets.end();
for(; it!=end; ++it) {
store_offset ofs = *it;
if(!m_intersection_content.contains(ofs)) {
m_intersection_content.insert(ofs);
res.push_back(ofs);
}
}
}
}
if(!tgt_is_first) {
//in this case \c res now may be in arbitrary order
std::sort(res.begin(), res.end());
}
}
virtual void operator()(table_base & tgt0, const table_base & neg0) {
sparse_table & tgt = static_cast<sparse_table &>(tgt0);
const sparse_table & neg = static_cast<const sparse_table &>(neg0);
if(m_cols1.size()==0) {
if(!neg.empty()) {
tgt.reset();
}
return;
}
svector<store_offset> to_remove; //offsets here are in increasing order
//We don't do just the simple tgt.row_count()>neg.row_count() because the swapped case is
//more expensive. The constant 4 is, however, just my guess what the ratio might be.
if(tgt.row_count()/4>neg.row_count()) {
collect_intersection_offsets(neg, tgt, false, to_remove);
}
else {
collect_intersection_offsets(tgt, neg, true, to_remove);
}
if(to_remove.empty()) {
return;
}
//the largest offsets are at the end, so we can remove them one by one
while(!to_remove.empty()) {
store_offset removed_ofs = to_remove.back();
to_remove.pop_back();
tgt.m_data.remove_offset(removed_ofs);
}
tgt.reset_indexes();
}
};
table_intersection_filter_fn * sparse_table_plugin::mk_filter_by_negation_fn(const table_base & t,
const table_base & negated_obj, unsigned joined_col_cnt,
const unsigned * t_cols, const unsigned * negated_cols) {
if(!check_kind(t) || !check_kind(negated_obj)
|| join_involves_functional(t.get_signature(), negated_obj.get_signature(), joined_col_cnt,
t_cols, negated_cols) ) {
return 0;
}
return alloc(negation_filter_fn, t, negated_obj, joined_col_cnt, t_cols, negated_cols);
}
unsigned sparse_table::get_size_estimate_bytes() const {
unsigned sz = 0;
sz += m_data.get_size_estimate_bytes();
sz += m_key_indexes.capacity()*8; // TBD
return sz;
}
};