3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00
z3/src/sat/smt/arith_sls.cpp
Nikolaj Bjorner bb81bc5452 fix #6580
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2023-02-12 20:21:53 -08:00

524 lines
17 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
arith_local_search.cpp
Abstract:
Local search dispatch for SMT
Author:
Nikolaj Bjorner (nbjorner) 2023-02-07
--*/
#include "sat/sat_solver.h"
#include "sat/smt/arith_solver.h"
namespace arith {
sls::sls(solver& s):
s(s), m(s.m) {}
void sls::reset() {
m_literals.reset();
m_vars.reset();
m_clauses.reset();
m_terms.reset();
}
lbool sls::operator()(bool_vector& phase) {
unsigned num_steps = 0;
for (unsigned v = 0; v < s.s().num_vars(); ++v)
init_bool_var_assignment(v);
m_best_min_unsat = unsat().size();
verbose_stream() << "max arith steps " << m_max_arith_steps << "\n";
//m_max_arith_steps = 10000;
while (m.inc() && m_best_min_unsat > 0 && num_steps < m_max_arith_steps) {
if (!flip())
break;
++m_stats.m_num_flips;
++num_steps;
unsigned num_unsat = unsat().size();
if (num_unsat < m_best_min_unsat) {
m_best_min_unsat = num_unsat;
num_steps = 0;
save_best_values();
}
}
log();
return unsat().empty() ? l_true : l_undef;
}
void sls::log() {
IF_VERBOSE(2, verbose_stream() << "(sls :flips " << m_stats.m_num_flips << " :unsat " << unsat().size() << ")\n");
}
void sls::save_best_values() {
// first compute assignment to terms
// then update non-basic variables in tableau.
for (auto const& [t, v] : m_terms) {
int64_t val = 0;
lp::lar_term const& term = s.lp().get_term(t);
for (lp::lar_term::ival arg : term) {
auto t2 = s.lp().column2tv(arg.column());
auto w = s.lp().local_to_external(t2.id());
val += to_numeral(arg.coeff()) * value(w);
}
update(v, val);
}
for (unsigned v = 0; v < s.get_num_vars(); ++v) {
if (s.is_bool(v))
continue;
if (!s.lp().external_is_used(v))
continue;
int64_t old_value = 0;
if (s.is_registered_var(v))
old_value = to_numeral(s.get_ivalue(v).x);
int64_t new_value = value(v);
if (old_value == new_value)
continue;
s.ensure_column(v);
lp::column_index vj = s.lp().to_column_index(v);
SASSERT(!vj.is_null());
if (!s.lp().is_base(vj.index())) {
rational new_value_(new_value, rational::i64());
lp::impq val(new_value_, rational::zero());
s.lp().set_value_for_nbasic_column(vj.index(), val);
}
}
}
void sls::set(sat::ddfw* d) {
m_bool_search = d;
reset();
m_literals.reserve(s.s().num_vars() * 2);
add_vars();
m_clauses.resize(d->num_clauses());
for (unsigned i = 0; i < d->num_clauses(); ++i)
for (sat::literal lit : *d->get_clause_info(i).m_clause)
init_literal(lit);
}
void sls::set_bounds_begin() {
m_max_arith_steps = 0;
}
void sls::set_bounds(enode* n) {
++m_max_arith_steps;
}
void sls::set_bounds_end(unsigned num_literals) {
m_max_arith_steps = (m_config.L * m_max_arith_steps) / num_literals;
}
bool sls::flip() {
log();
return flip_unsat() || flip_clauses() || flip_dscore();
}
// distance to true
int64_t sls::dtt(int64_t args, ineq const& ineq) const {
switch (ineq.m_op) {
case ineq_kind::LE:
if (args <= ineq.m_bound)
return 0;
return args - ineq.m_bound;
case ineq_kind::EQ:
if (args == ineq.m_bound)
return 0;
return 1;
case ineq_kind::NE:
if (args == ineq.m_bound)
return 1;
return 0;
case ineq_kind::LT:
if (args < ineq.m_bound)
return 0;
return args - ineq.m_bound + 1;
default:
UNREACHABLE();
return 0;
}
}
int64_t sls::dtt(ineq const& ineq, var_t v, int64_t new_value) const {
auto new_args_value = ineq.m_args_value;
for (auto const& [coeff, w] : ineq.m_args) {
if (w == v) {
new_args_value += coeff * (new_value - m_vars[w].m_value);
break;
}
}
return dtt(new_args_value, ineq);
}
// critical move
bool sls::cm(ineq const& ineq, var_t v, int64_t& new_value) {
SASSERT(!ineq.is_true());
int64_t delta = ineq.m_args_value - ineq.m_bound;
if (ineq.m_op == ineq_kind::NE || ineq.m_op == ineq_kind::LT)
delta--;
for (auto const& [coeff, w] : ineq.m_args) {
if (w == v) {
if (coeff > 0)
new_value = value(v) - abs((delta + coeff - 1)/ coeff);
else
new_value = value(v) + abs(delta) / -coeff;
switch (ineq.m_op) {
case ineq_kind::LE:
SASSERT(delta + coeff * (new_value - value(v)) <= 0);
return true;
case ineq_kind::EQ:
return delta + coeff * (new_value - value(v)) == 0;
case ineq_kind::NE:
return delta + coeff * (new_value - value(v)) != 0;
case ineq_kind::LT:
return delta + coeff * (new_value - value(v)) < 0;
default:
UNREACHABLE();
break;
}
}
}
return false;
}
bool sls::flip_unsat() {
unsigned start = s.random();
unsigned sz = unsat().size();
for (unsigned i = sz; i-- > 0; )
if (flip(unsat().elem_at((i + start) % sz)))
return true;
return false;
}
bool sls::flip(unsigned cl) {
auto const& clause = get_clause(cl);
int64_t new_value;
for (literal lit : clause) {
if (is_true(lit))
continue;
auto const* ineq = atom(lit);
if (!ineq)
continue;
SASSERT(!ineq->is_true());
for (auto const& [coeff, v] : ineq->m_args) {
if (!cm(*ineq, v, new_value))
continue;
int score = cm_score(v, new_value);
if (score <= 0)
continue;
unsigned num_unsat = unsat().size();
update(v, new_value);
IF_VERBOSE(2,
verbose_stream() << "v" << v << " score " << score << " "
<< num_unsat << " -> " << unsat().size() << "\n");
SASSERT(num_unsat > unsat().size());
return true;
}
}
return false;
}
bool sls::flip_clauses() {
unsigned start = s.random();
unsigned sz = m_bool_search->num_clauses();
for (unsigned i = sz; i-- > 0; )
if (flip((i + start) % sz))
return true;
return false;
}
bool sls::flip_dscore() {
paws();
unsigned start = s.random();
unsigned sz = unsat().size();
for (unsigned i = sz; i-- > 0; )
if (flip_dscore(unsat().elem_at((i + start) % sz)))
return true;
return false;
}
bool sls::flip_dscore(unsigned cl) {
auto const& clause = get_clause(cl);
int64_t new_value, min_value, min_score(-1);
var_t min_var = UINT_MAX;
for (auto lit : clause) {
auto const* ineq = atom(lit);
if (!ineq || ineq->is_true())
continue;
for (auto const& [coeff, v] : ineq->m_args) {
if (cm(*ineq, v, new_value)) {
int64_t score = dscore(v, new_value);
if (UINT_MAX == min_var || score < min_score) {
min_var = v;
min_value = new_value;
min_score = score;
}
}
}
}
if (min_var != UINT_MAX) {
update(min_var, min_value);
return true;
}
return false;
}
/**
* redistribute weights of clauses.
* TODO - re-use ddfw weights instead.
*/
void sls::paws() {
for (unsigned cl = num_clauses(); cl-- > 0; ) {
auto& clause = get_clause_info(cl);
bool above = 10000 * m_config.sp <= (s.random() % 10000);
if (!above && clause.is_true() && get_weight(cl) > 1)
get_weight(cl) -= 1;
if (above && !clause.is_true())
get_weight(cl) += 1;
}
}
//
// dscore(op) = sum_c (dts(c,alpha) - dts(c,alpha_after)) * weight(c)
// TODO - use cached dts instead of computed dts
// cached dts has to be updated when the score of literals are updated.
//
int64_t sls::dscore(var_t v, int64_t new_value) const {
auto const& vi = m_vars[v];
int64_t score(0);
for (auto const& [coeff, lit] : vi.m_literals)
for (auto cl : m_bool_search->get_use_list(lit))
score += (compute_dts(cl) - dts(cl, v, new_value)) * int64_t(get_weight(cl));
return score;
}
int sls::cm_score(var_t v, int64_t new_value) {
int score = 0;
auto& vi = m_vars[v];
for (auto const& [coeff, lit] : vi.m_literals) {
auto const& ineq = *atom(lit);
int64_t dtt_old = dtt(ineq);
int64_t dtt_new = dtt(ineq, v, new_value);
for (auto cl : m_bool_search->get_use_list(lit)) {
auto const& clause = get_clause_info(cl);
if (!clause.is_true()) {
VERIFY(dtt_old != 0);
if (dtt_new == 0)
++score; // false -> true
}
else if (dtt_new == 0 || dtt_old > 0 || clause.m_num_trues > 1) // true -> true not really, same variable can be in multiple literals
continue;
else if (all_of(*clause.m_clause, [&](auto lit) { return !atom(lit) || dtt(*atom(lit), v, new_value) > 0; })) // ?? TODO
--score;
}
}
return score;
}
int64_t sls::compute_dts(unsigned cl) const {
int64_t d(1), d2;
bool first = true;
for (auto a : get_clause(cl)) {
auto const* ineq = atom(a);
if (!ineq)
continue;
d2 = dtt(*ineq);
if (first)
d = d2, first = false;
else
d = std::min(d, d2);
if (d == 0)
break;
}
return d;
}
int64_t sls::dts(unsigned cl, var_t v, int64_t new_value) const {
int64_t d(1), d2;
bool first = true;
for (auto lit : get_clause(cl)) {
auto const* ineq = atom(lit);
if (!ineq)
continue;
d2 = dtt(*ineq, v, new_value);
if (first)
d = d2, first = false;
else
d = std::min(d, d2);
if (d == 0)
break;
}
return d;
}
void sls::update(var_t v, int64_t new_value) {
auto& vi = m_vars[v];
auto const& old_value = vi.m_value;
for (auto const& [coeff, lit] : vi.m_literals) {
auto& ineq = *atom(lit);
ineq.m_args_value += coeff * (new_value - old_value);
int64_t dtt_new = dtt(ineq);
if ((dtt_new == 0) != is_true(lit))
m_bool_search->flip(lit.var());
SASSERT((dtt_new == 0) == is_true(lit));
}
vi.m_value = new_value;
}
void sls::add_vars() {
SASSERT(m_vars.empty());
for (unsigned v = 0; v < s.get_num_vars(); ++v) {
int64_t value = s.is_registered_var(v) ? to_numeral(s.get_ivalue(v).x) : 0;
auto k = s.is_int(v) ? sls::var_kind::INT : sls::var_kind::REAL;
m_vars.push_back({ value, value, k, {} });
}
}
sls::ineq& sls::new_ineq(ineq_kind op, int64_t const& bound) {
auto* i = alloc(ineq);
i->m_bound = bound;
i->m_op = op;
return *i;
}
void sls::add_arg(sat::literal lit, ineq& ineq, int64_t const& c, var_t v) {
ineq.m_args.push_back({ c, v });
ineq.m_args_value += c * value(v);
m_vars[v].m_literals.push_back({ c, lit });
}
void sls::add_bounds(sat::literal_vector& bounds) {
unsigned bvars = s.s().num_vars();
auto add_ineq = [&](sat::literal lit, ineq& i) {
m_literals.set(lit.index(), &i);
bounds.push_back(lit);
};
for (unsigned v = 0; v < s.get_num_vars(); ++v) {
rational lo, hi;
bool is_strict_lo = false, is_strict_hi = false;
lp::constraint_index ci;
if (!s.is_registered_var(v))
continue;
lp::column_index vi = s.lp().to_column_index(v);
if (vi.is_null())
continue;
bool has_lo = s.lp().has_lower_bound(vi.index(), ci, lo, is_strict_lo);
bool has_hi = s.lp().has_upper_bound(vi.index(), ci, hi, is_strict_hi);
if (has_lo && has_hi && lo == hi) {
auto& ineq = new_ineq(sls::ineq_kind::EQ, to_numeral(lo));
sat::literal lit(bvars++);
add_arg(lit, ineq, 1, v);
add_ineq(lit, ineq);
continue;
}
if (has_lo) {
auto& ineq = new_ineq(is_strict_lo ? sls::ineq_kind::LT : sls::ineq_kind::LE, to_numeral(-lo));
sat::literal lit(bvars++);
add_arg(lit, ineq, -1, v);
add_ineq(lit, ineq);
}
if (has_hi) {
auto& ineq = new_ineq(is_strict_hi ? sls::ineq_kind::LT : sls::ineq_kind::LE, to_numeral(hi));
sat::literal lit(bvars++);
add_arg(lit, ineq, 1, v);
add_ineq(lit, ineq);
}
}
}
int64_t sls::to_numeral(rational const& r) {
if (r.is_int64())
return r.get_int64();
return 0;
}
void sls::add_args(sat::literal lit, ineq& ineq, lp::tv t, theory_var v, int64_t sign) {
if (t.is_term()) {
lp::lar_term const& term = s.lp().get_term(t);
for (lp::lar_term::ival arg : term) {
auto t2 = s.lp().column2tv(arg.column());
auto w = s.lp().local_to_external(t2.id());
add_arg(lit, ineq, sign * to_numeral(arg.coeff()), w);
}
}
else
add_arg(lit, ineq, sign, s.lp().local_to_external(t.id()));
}
void sls::init_literal(sat::literal lit) {
if (m_literals.get(lit.index(), nullptr))
return;
api_bound* b = nullptr;
s.m_bool_var2bound.find(lit.var(), b);
if (b) {
auto t = b->tv();
rational bound = b->get_value();
bool should_minus = false;
sls::ineq_kind op;
if (!lit.sign()) {
should_minus = b->get_bound_kind() == lp_api::bound_kind::upper_t;
op = sls::ineq_kind::LE;
}
else {
should_minus = b->get_bound_kind() == lp_api::bound_kind::lower_t;
if (s.is_int(b->get_var())) {
bound -= 1;
op = sls::ineq_kind::LE;
}
else
op = sls::ineq_kind::LT;
}
if (should_minus)
bound.neg();
auto& ineq = new_ineq(op, to_numeral(bound));
add_args(lit, ineq, t, b->get_var(), should_minus ? -1 : 1);
m_literals.set(lit.index(), &ineq);
return;
}
expr* e = s.bool_var2expr(lit.var());
expr* l = nullptr, * r = nullptr;
if (e && m.is_eq(e, l, r) && s.a.is_int_real(l)) {
theory_var u = s.get_th_var(l);
theory_var v = s.get_th_var(r);
lp::tv tu = s.get_tv(u);
lp::tv tv = s.get_tv(v);
auto& ineq = new_ineq(lit.sign() ? sls::ineq_kind::NE : sls::ineq_kind::EQ, 0);
add_args(lit, ineq, tu, u, 1);
add_args(lit, ineq, tv, v, -1);
m_literals.set(lit.index(), &ineq);
return;
}
}
void sls::init_bool_var_assignment(sat::bool_var v) {
init_literal_assignment(literal(v, false));
init_literal_assignment(literal(v, true));
}
void sls::init_literal_assignment(sat::literal lit) {
auto* ineq = m_literals.get(lit.index(), nullptr);
if (ineq && is_true(lit) != (dtt(*ineq) == 0))
m_bool_search->flip(lit.var());
}
}