3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-12 17:11:15 +00:00
z3/src/muz/spacer/spacer_qe_project.cpp
Lev Nachmanson ba83ec929a passing with open ai codex on some non-deterministic param eval
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2025-10-29 06:25:03 -07:00

2235 lines
77 KiB
C++

/*++
Copyright (c) 2010 Microsoft Corporation and Arie Gurfinkel
Module Name:
spacer_qe_project.cpp
Abstract:
Simple projection function for real arithmetic based on Loos-W.
Projection functions for arrays based on MBP
Author:
Nikolaj Bjorner (nbjorner) 2013-09-12
Anvesh Komuravelli
Arie Gurfinkel
--*/
#include "ast/arith_decl_plugin.h"
#include "ast/ast_pp.h"
#include "ast/ast_util.h"
#include "ast/expr_functors.h"
#include "ast/expr_substitution.h"
#include "ast/is_variable_test.h"
#include "ast/rewriter/expr_replacer.h"
#include "ast/rewriter/expr_safe_replace.h"
#include "ast/rewriter/th_rewriter.h"
#include "model/model_evaluator.h"
#include "model/model_pp.h"
#include "qe/lite/qe_lite_tactic.h"
#include "qe/qe.h"
#include "muz/spacer/spacer_mev_array.h"
#include "muz/spacer/spacer_qe_project.h"
namespace spacer_qe {
bool is_partial_eq(app *a);
/**
* \brief utility class for partial equalities
*
* A partial equality (a ==I b), for two arrays a,b and a finite set of indices
* I holds iff (Forall i. i \not\in I => a[i] == b[i]); in other words, it is a
* restricted form of the extensionality axiom
*
* using this class, we denote (a =I b) as f(a,b,i0,i1,...)
* where f is an uninterpreted predicate with name PARTIAL_EQ and
* I = {i0,i1,...}
*/
class peq {
ast_manager &m;
expr_ref m_lhs;
expr_ref m_rhs;
unsigned m_num_indices;
expr_ref_vector m_diff_indices;
func_decl_ref m_decl; // the partial equality declaration
app_ref m_peq; // partial equality application
app_ref m_eq; // equivalent std equality using def. of partial eq
array_util m_arr_u;
public:
static const char *PARTIAL_EQ;
peq(app *p, ast_manager &m);
peq(expr *lhs, expr *rhs, unsigned num_indices, expr *const *diff_indices,
ast_manager &m);
void lhs(expr_ref &result);
void rhs(expr_ref &result);
void get_diff_indices(expr_ref_vector &result);
void mk_peq(app_ref &result);
void mk_eq(app_ref_vector &aux_consts, app_ref &result,
bool stores_on_rhs = true);
};
const char *peq::PARTIAL_EQ = "partial_eq";
peq::peq(app *p, ast_manager &m)
: m(m), m_lhs(p->get_arg(0), m), m_rhs(p->get_arg(1), m),
m_num_indices(p->get_num_args() - 2), m_diff_indices(m),
m_decl(p->get_decl(), m), m_peq(p, m), m_eq(m), m_arr_u(m) {
VERIFY(is_partial_eq(p));
SASSERT(m_arr_u.is_array(m_lhs) && m_arr_u.is_array(m_rhs) &&
ast_eq_proc()(m_lhs->get_sort(), m_rhs->get_sort()));
for (unsigned i = 2; i < p->get_num_args(); i++) {
m_diff_indices.push_back(p->get_arg(i));
}
}
peq::peq(expr *lhs, expr *rhs, unsigned num_indices, expr *const *diff_indices,
ast_manager &m)
: m(m), m_lhs(lhs, m), m_rhs(rhs, m), m_num_indices(num_indices),
m_diff_indices(m), m_decl(m), m_peq(m), m_eq(m), m_arr_u(m) {
SASSERT(m_arr_u.is_array(lhs) && m_arr_u.is_array(rhs) &&
ast_eq_proc()(lhs->get_sort(), rhs->get_sort()));
ptr_vector<sort> sorts;
sorts.push_back(m_lhs->get_sort());
sorts.push_back(m_rhs->get_sort());
for (unsigned i = 0; i < num_indices; i++) {
sorts.push_back(diff_indices[i]->get_sort());
m_diff_indices.push_back(diff_indices[i]);
}
m_decl = m.mk_func_decl(symbol(PARTIAL_EQ), sorts.size(), sorts.data(),
m.mk_bool_sort());
}
void peq::lhs(expr_ref &result) { result = m_lhs; }
void peq::rhs(expr_ref &result) { result = m_rhs; }
void peq::get_diff_indices(expr_ref_vector &result) {
for (unsigned i = 0; i < m_diff_indices.size(); i++) {
result.push_back(m_diff_indices.get(i));
}
}
void peq::mk_peq(app_ref &result) {
if (!m_peq) {
ptr_vector<expr> args;
args.push_back(m_lhs);
args.push_back(m_rhs);
for (auto idx : m_diff_indices)
args.push_back(idx);
m_peq = m.mk_app(m_decl, args.size(), args.data());
}
result = m_peq;
}
void peq::mk_eq(app_ref_vector &aux_consts, app_ref &result,
bool stores_on_rhs) {
if (!m_eq) {
expr_ref lhs(m_lhs, m), rhs(m_rhs, m);
if (!stores_on_rhs) { std::swap(lhs, rhs); }
// lhs = (...(store (store rhs i0 v0) i1 v1)...)
sort *val_sort = get_array_range(lhs->get_sort());
for (auto it : m_diff_indices) {
app *val = m.mk_fresh_const("diff", val_sort);
ptr_vector<expr> store_args;
store_args.push_back(rhs);
store_args.push_back(it);
store_args.push_back(val);
rhs = m_arr_u.mk_store(store_args);
aux_consts.push_back(val);
}
m_eq = m.mk_eq(lhs, rhs);
}
result = m_eq;
}
bool is_partial_eq(app *a) {
return a->get_decl()->get_name() == peq::PARTIAL_EQ;
}
} // namespace spacer_qe
namespace spacer_qe {
class is_relevant_default : public i_expr_pred {
public:
bool operator()(expr *e) override { return true; }
};
class mk_atom_default : public qe::i_nnf_atom {
public:
void operator()(expr *e, bool pol, expr_ref &result) override {
if (pol)
result = e;
else
result = result.get_manager().mk_not(e);
}
};
class arith_project_util {
ast_manager &m;
arith_util a;
th_rewriter m_rw;
expr_ref_vector m_lits;
expr_ref_vector m_terms;
vector<rational> m_coeffs;
vector<rational> m_divs;
bool_vector m_strict;
bool_vector m_eq;
scoped_ptr<contains_app> m_var;
bool is_linear(rational const &mul, expr *t, rational &c,
expr_ref_vector &ts) {
expr *t1, *t2;
rational mul1;
bool res = true;
if (t == m_var->x()) {
c += mul;
}
else if (a.is_mul(t, t1, t2) && a.is_numeral(t1, mul1)) {
res = is_linear(mul * mul1, t2, c, ts);
}
else if (a.is_mul(t, t1, t2) && a.is_numeral(t2, mul1)) {
res = is_linear(mul * mul1, t1, c, ts);
}
else if (a.is_add(t)) {
app *ap = to_app(t);
for (unsigned i = 0; res && i < ap->get_num_args(); ++i) {
res = is_linear(mul, ap->get_arg(i), c, ts);
}
}
else if (a.is_sub(t, t1, t2)) {
res = is_linear(mul, t1, c, ts) && is_linear(-mul, t2, c, ts);
}
else if (a.is_uminus(t, t1)) {
res = is_linear(-mul, t1, c, ts);
}
else if (a.is_numeral(t, mul1)) {
ts.push_back(a.mk_numeral(mul * mul1, t->get_sort()));
}
else if ((*m_var)(t)) {
IF_VERBOSE(2, verbose_stream()
<< "can't project:" << mk_pp(t, m) << "\n";);
TRACE(qe, tout << "Failed to project: " << mk_pp(t, m) << "\n";);
res = false;
}
else if (mul.is_one()) {
ts.push_back(t);
}
else {
ts.push_back(a.mk_mul(a.mk_numeral(mul, t->get_sort()), t));
}
return res;
}
// either an equality (cx + t = 0) or an inequality (cx + t <= 0) or a
// divisibility literal (d | cx + t)
bool is_linear(expr *lit, rational &c, expr_ref &t, rational &d,
bool &is_strict, bool &is_eq, bool &is_diseq) {
SASSERT((*m_var)(lit));
expr *e1, *e2;
c.reset();
sort *s;
expr_ref_vector ts(m);
bool is_not = m.is_not(lit, lit);
rational mul(1);
if (is_not) { mul.neg(); }
SASSERT(!m.is_not(lit));
if (a.is_le(lit, e1, e2) || a.is_ge(lit, e2, e1)) {
if (!is_linear(mul, e1, c, ts) || !is_linear(-mul, e2, c, ts))
return false;
s = e1->get_sort();
is_strict = is_not;
}
else if (a.is_lt(lit, e1, e2) || a.is_gt(lit, e2, e1)) {
if (!is_linear(mul, e1, c, ts) || !is_linear(-mul, e2, c, ts))
return false;
s = e1->get_sort();
is_strict = !is_not;
}
else if (m.is_eq(lit, e1, e2) && a.is_int_real(e1)) {
expr *t, *num;
rational num_val, d_val, z;
bool is_int;
if (a.is_mod(e1, t, num) && a.is_numeral(num, num_val, is_int) &&
is_int && a.is_numeral(e2, z) && z.is_zero()) {
// divsibility constraint: t % num == 0 <=> num | t
if (num_val.is_zero()) {
IF_VERBOSE(1, verbose_stream() << "div by zero"
<< mk_pp(lit, m) << "\n";);
return false;
}
d = num_val;
if (!is_linear(mul, t, c, ts))
return false;
}
else if (a.is_mod(e2, t, num) &&
a.is_numeral(num, num_val, is_int) && is_int &&
a.is_numeral(e1, z) && z.is_zero()) {
// divsibility constraint: 0 == t % num <=> num | t
if (num_val.is_zero()) {
IF_VERBOSE(1, verbose_stream() << "div by zero"
<< mk_pp(lit, m) << "\n";);
return false;
}
d = num_val;
if (!is_linear(mul, t, c, ts)) return false;
}
else {
// equality or disequality
if (!is_linear(mul, e1, c, ts) || !is_linear(-mul, e2, c, ts))
return false;
if (is_not)
is_diseq = true;
else
is_eq = true;
}
s = e1->get_sort();
} else {
IF_VERBOSE(2, verbose_stream()
<< "can't project:" << mk_pp(lit, m) << "\n";);
TRACE(qe,
tout << "Failed to project: " << mk_pp(lit, m) << "\n";);
return false;
}
if (ts.empty())
t = a.mk_numeral(rational(0), s);
else if (ts.size() == 1)
t = ts.get(0);
else
t = a.mk_add(ts.size(), ts.data());
return true;
}
bool project(model &mdl, expr_ref_vector &lits) {
unsigned num_pos = 0;
unsigned num_neg = 0;
bool use_eq = false;
expr_ref_vector new_lits(m);
expr_ref eq_term(m);
m_lits.reset();
m_terms.reset();
m_coeffs.reset();
m_strict.reset();
m_eq.reset();
for (auto lit : lits) {
rational c(0), d(0);
expr_ref t(m);
bool is_strict = false;
bool is_eq = false;
bool is_diseq = false;
if (!(*m_var)(lit)) {
new_lits.push_back(lit);
continue;
}
if (is_linear(lit, c, t, d, is_strict, is_eq, is_diseq)) {
if (c.is_zero()) {
m_rw(lit, t);
new_lits.push_back(t);
}
else if (is_eq) {
if (!use_eq) {
// c*x + t = 0 <=> x = -t/c
eq_term = mk_mul(-(rational::one() / c), t);
use_eq = true;
}
m_lits.push_back(lit);
m_coeffs.push_back(c);
m_terms.push_back(t);
m_strict.push_back(false);
m_eq.push_back(true);
}
else {
if (is_diseq) {
// c*x + t != 0
// find out whether c*x + t < 0, or c*x + t > 0
expr_ref cx(m), cxt(m), val(m);
rational r;
cx = mk_mul(c, m_var->x());
cxt = mk_add(cx, t);
val = mdl(cxt);
VERIFY(a.is_numeral(val, r));
SASSERT(r > rational::zero() || r < rational::zero());
if (r > rational::zero()) {
c = -c;
t = mk_mul(-(rational::one()), t);
}
is_strict = true;
}
m_lits.push_back(lit);
m_coeffs.push_back(c);
m_terms.push_back(t);
m_strict.push_back(is_strict);
m_eq.push_back(false);
if (c.is_pos()) {
++num_pos;
} else {
++num_neg;
}
}
}
else
return false;
}
if (use_eq) {
TRACE(qe, tout << "Using equality term: " << mk_pp(eq_term, m)
<< "\n";);
// substitute eq_term for x everywhere
for (unsigned i = 0; i < m_lits.size(); ++i) {
expr_ref cx(m), cxt(m), z(m), result(m);
cx = mk_mul(m_coeffs[i], eq_term);
cxt = mk_add(cx, m_terms.get(i));
z = a.mk_numeral(rational(0), eq_term->get_sort());
if (m_eq[i]) {
// c*x + t = 0
result = a.mk_eq(cxt, z);
} else if (m_strict[i]) {
// c*x + t < 0
result = a.mk_lt(cxt, z);
} else {
// c*x + t <= 0
result = a.mk_le(cxt, z);
}
m_rw(result);
new_lits.push_back(result);
}
}
lits.reset();
lits.append(new_lits);
if (use_eq || num_pos == 0 || num_neg == 0) { return true; }
bool use_pos = num_pos < num_neg;
unsigned max_t = find_max(mdl, use_pos);
expr_ref new_lit(m);
for (unsigned i = 0; i < m_lits.size(); ++i) {
if (i != max_t) {
if (m_coeffs[i].is_pos() == use_pos) {
new_lit = mk_le(i, max_t);
} else {
new_lit = mk_lt(i, max_t);
}
lits.push_back(new_lit);
TRACE(qe, tout << "Old literal: " << mk_pp(m_lits.get(i), m)
<< "\n";
tout << "New literal: " << mk_pp(new_lit, m) << "\n";);
}
}
return true;
}
bool project(model &mdl, app_ref_vector const &lits, expr_map &map,
app_ref &div_lit) {
unsigned num_pos = 0; // number of positive literals true in the model
unsigned num_neg = 0; // number of negative literals true in the model
m_lits.reset();
m_terms.reset();
m_coeffs.reset();
m_divs.reset();
m_strict.reset();
m_eq.reset();
expr_ref var_val = mdl(m_var->x());
unsigned eq_idx = lits.size();
for (unsigned i = 0; i < lits.size(); ++i) {
rational c(0), d(0);
expr_ref t(m);
bool is_strict = false;
bool is_eq = false;
bool is_diseq = false;
if (!(*m_var)(lits.get(i))) continue;
if (is_linear(lits.get(i), c, t, d, is_strict, is_eq, is_diseq)) {
TRACE(qe,
tout << "Literal: " << mk_pp(lits.get(i), m) << "\n";);
if (c.is_zero()) {
TRACE(qe, tout << "independent of variable\n";);
continue;
}
// evaluate c*x + t in the model
expr_ref cx(m), cxt(m), val(m);
rational r;
cx = mk_mul(c, m_var->x());
cxt = mk_add(cx, t);
val = mdl(cxt);
VERIFY(a.is_numeral(val, r));
if (is_eq) {
TRACE(qe, tout << "equality term\n";);
// check if the equality is true in the mdl
if (eq_idx == lits.size() && r == rational::zero()) {
eq_idx = m_lits.size();
}
m_lits.push_back(lits.get(i));
m_coeffs.push_back(c);
m_terms.push_back(t);
m_strict.push_back(false);
m_eq.push_back(true);
m_divs.push_back(d);
}
else {
TRACE(qe, tout << "not an equality term\n";);
if (is_diseq) {
// c*x + t != 0
// find out whether c*x + t < 0, or c*x + t > 0
if (r > rational::zero()) {
c = -c;
t = mk_mul(-(rational::one()), t);
r = -r;
}
// note: if the disequality is false in the model,
// r==0 and we end up choosing c*x + t < 0
is_strict = true;
}
m_lits.push_back(lits.get(i));
m_coeffs.push_back(c);
m_terms.push_back(t);
m_strict.push_back(is_strict);
m_eq.push_back(false);
m_divs.push_back(d);
if (d.is_zero()) { // not a div term
if ((is_strict && r < rational::zero()) ||
(!is_strict &&
r <= rational::zero())) { // literal true in the
// model
if (c.is_pos())
++num_pos;
else
++num_neg;
}
}
}
TRACE(qe, tout << "c: " << c << "\n";
tout << "t: " << mk_pp(t, m) << "\n";
tout << "d: " << d << "\n";);
}
else
return false;
}
rational lcm_coeffs(1), lcm_divs(1);
if (a.is_int(m_var->x())) {
// lcm of (absolute values of) coeffs
for (unsigned i = 0; i < m_lits.size(); i++) {
lcm_coeffs = lcm(lcm_coeffs, abs(m_coeffs[i]));
}
// normalize coeffs of x to +/-lcm_coeffs and scale terms and divs
// appropriately; find lcm of scaled-up divs
for (unsigned i = 0; i < m_lits.size(); i++) {
rational factor(lcm_coeffs / abs(m_coeffs[i]));
if (!factor.is_one() && !a.is_zero(m_terms.get(i)))
m_terms[i] = a.mk_mul(a.mk_numeral(factor, a.mk_int()),
m_terms.get(i));
m_coeffs[i] = (m_coeffs[i].is_pos() ? lcm_coeffs : -lcm_coeffs);
if (!m_divs[i].is_zero()) {
m_divs[i] *= factor;
lcm_divs = lcm(lcm_divs, m_divs[i]);
}
TRACE(qe, tout << "normalized coeff: " << m_coeffs[i] << "\n";
tout << "normalized term: " << mk_pp(m_terms.get(i), m)
<< "\n";
tout << "normalized div: " << m_divs[i] << "\n";);
}
// consider new divisibility literal (lcm_coeffs | (lcm_coeffs * x))
lcm_divs = lcm(lcm_divs, lcm_coeffs);
TRACE(qe, tout << "lcm of coeffs: " << lcm_coeffs << "\n";
tout << "lcm of divs: " << lcm_divs << "\n";);
}
expr_ref z(a.mk_numeral(rational::zero(), true), m);
expr_ref x_term_val(m);
// use equality term
if (eq_idx < lits.size()) {
if (a.is_real(m_var->x())) {
// c*x + t = 0 <=> x = -t/c
expr_ref eq_term(mk_mul(-(rational::one() / m_coeffs[eq_idx]),
m_terms.get(eq_idx)),
m);
m_rw(eq_term);
map.insert(m_var->x(), eq_term, nullptr);
TRACE(qe, tout << "Using equality term: " << mk_pp(eq_term, m)
<< "\n";);
}
else {
// find substitution term for (lcm_coeffs * x)
if (m_coeffs[eq_idx].is_pos())
x_term_val = a.mk_uminus(m_terms.get(eq_idx));
else
x_term_val = m_terms.get(eq_idx);
m_rw(x_term_val);
TRACE(qe, tout << "Using equality literal: "
<< mk_pp(m_lits.get(eq_idx), m) << "\n";
tout << "substitution for (lcm_coeffs * x): "
<< mk_pp(x_term_val, m) << "\n";);
// can't simply substitute for x; need to explicitly substitute
// the lits
mk_lit_substitutes(x_term_val, map, eq_idx);
if (!lcm_coeffs.is_one()) {
// new div constraint: lcm_coeffs | x_term_val
div_lit =
m.mk_eq(a.mk_mod(x_term_val,
a.mk_numeral(lcm_coeffs, a.mk_int())),
z);
}
}
return true;
}
expr_ref new_lit(m);
if (num_pos == 0 || num_neg == 0) {
TRACE(
qe,
if (num_pos == 0) {
tout << "virtual substitution with +infinity\n";
} else { tout << "virtual substitution with -infinity\n"; });
/**
* make all equalities false;
* if num_pos = 0 (num_neg = 0), make all positive (negative)
* inequalities false; make the rest inequalities true; substitute
* value of x under given model for the rest (div terms)
*/
if (a.is_int(m_var->x())) {
// to substitute for (lcm_coeffs * x), it suffices to pick
// some element in the congruence class of (lcm_coeffs * x) mod
// lcm_divs; simply substituting var_val for x in the literals
// does this job; but to keep constants small, we use
// (lcm_coeffs * var_val) % lcm_divs instead
rational var_val_num;
VERIFY(a.is_numeral(var_val, var_val_num));
rational mod_val = mod(lcm_coeffs * var_val_num, lcm_divs);
x_term_val = a.mk_numeral(mod_val, true);
std::cout << "t";
TRACE(qe, tout << "Substitution for (lcm_coeffs * x): "
<< mk_pp(x_term_val, m) << "\n";);
}
for (unsigned i = 0; i < m_lits.size(); i++) {
if (!m_divs[i].is_zero()) {
// m_divs[i] | (x_term_val + m_terms[i])
// -- x_term_val is the absolute value, negate it if needed
if (m_coeffs.get(i).is_pos())
new_lit = a.mk_add(m_terms.get(i), x_term_val);
else
new_lit =
a.mk_add(m_terms.get(i), a.mk_uminus(x_term_val));
// XXX Our handling of divisibility constraints is very
// fragile.
// XXX Rewrite before applying divisibility to preserve
// syntactic structure
m_rw(new_lit);
expr* mod_val = a.mk_numeral(m_divs[i], true);
expr* mod_expr = a.mk_mod(new_lit, mod_val);
new_lit = m.mk_eq(mod_expr, z);
} else if (m_eq[i] || (num_pos == 0 && m_coeffs[i].is_pos()) ||
(num_neg == 0 && m_coeffs[i].is_neg())) {
new_lit = m.mk_false();
} else {
new_lit = m.mk_true();
}
map.insert(m_lits.get(i), new_lit, nullptr);
TRACE(qe, tout << "Old literal: " << mk_pp(m_lits.get(i), m)
<< "\n";
tout << "New literal: " << mk_pp(new_lit, m) << "\n";);
}
return true;
}
bool use_pos = num_pos < num_neg; // pick a side; both are sound
unsigned max_t = find_max(mdl, use_pos);
TRACE(
qe,
if (use_pos) {
tout << "virtual substitution with upper bound:\n";
} else { tout << "virtual substitution with lower bound:\n"; } tout
<< "test point: " << mk_pp(m_lits.get(max_t), m) << "\n";
tout << "coeff: " << m_coeffs[max_t] << "\n";
tout << "term: " << mk_pp(m_terms.get(max_t), m) << "\n";
tout << "is_strict: " << m_strict[max_t] << "\n";);
if (a.is_real(m_var->x())) {
for (unsigned i = 0; i < m_lits.size(); ++i) {
if (i != max_t) {
if (m_eq[i]) {
if (!m_strict[max_t]) {
new_lit = mk_eq(i, max_t);
} else {
new_lit = m.mk_false();
}
} else if (m_coeffs[i].is_pos() == use_pos) {
new_lit = mk_le(i, max_t);
} else {
new_lit = mk_lt(i, max_t);
}
} else {
new_lit = m.mk_true();
}
map.insert(m_lits.get(i), new_lit, nullptr);
TRACE(qe, tout << "Old literal: " << mk_pp(m_lits.get(i), m)
<< "\n";
tout << "New literal: " << mk_pp(new_lit, m) << "\n";);
}
} else {
SASSERT(a.is_int(m_var->x()));
// mk substitution term for (lcm_coeffs * x)
// evaluate c*x + t for the literal at max_t
expr_ref cx(m), cxt(m), val(m);
rational r;
cx = mk_mul(m_coeffs[max_t], m_var->x());
cxt = mk_add(cx, m_terms.get(max_t));
val = mdl(cxt);
VERIFY(a.is_numeral(val, r));
// get the offset from the smallest/largest possible value for x
// literal smallest/largest val of x
// ------- --------------------------
// l < x l+1
// l <= x l
// x < u u-1
// x <= u u
rational offset;
if (m_strict[max_t]) {
offset = abs(r) - rational::one();
} else {
offset = abs(r);
}
// obtain the offset modulo lcm_divs
offset %= lcm_divs;
// for strict negative literal (i.e. strict lower bound),
// substitution term is (t+1+offset); for non-strict, it's
// (t+offset)
//
// for positive term, subtract from 0
expr* offset_expr = a.mk_numeral(offset, true);
x_term_val = mk_add(m_terms.get(max_t), offset_expr);
if (m_strict[max_t]) {
expr* one = a.mk_numeral(rational::one(), true);
x_term_val = a.mk_add(x_term_val, one);
}
if (m_coeffs[max_t].is_pos()) {
x_term_val = a.mk_uminus(x_term_val);
}
m_rw(x_term_val);
TRACE(qe, tout << "substitution for (lcm_coeffs * x): "
<< mk_pp(x_term_val, m) << "\n";);
// obtain substitutions for all literals in map
mk_lit_substitutes(x_term_val, map, max_t);
if (!lcm_coeffs.is_one()) {
// new div constraint: lcm_coeffs | x_term_val
expr* mod_val = a.mk_numeral(lcm_coeffs, true);
expr* mod_expr = a.mk_mod(x_term_val, mod_val);
div_lit = m.mk_eq(mod_expr, z);
}
}
return true;
}
unsigned find_max(model &mdl, bool do_pos) {
unsigned result = UINT_MAX;
bool found = false;
bool found_strict = false;
rational found_val(0), r, r_plus_x, found_c;
expr_ref val(m);
// evaluate x in mdl
rational r_x;
val = mdl(m_var->x());
VERIFY(a.is_numeral(val, r_x));
for (unsigned i = 0; i < m_terms.size(); ++i) {
rational const &ac = m_coeffs[i];
if (!m_eq[i] && ac.is_pos() == do_pos) {
val = mdl(m_terms.get(i));
VERIFY(a.is_numeral(val, r));
r /= abs(ac);
// skip the literal if false in the model
if (do_pos) {
r_plus_x = r + r_x;
} else {
r_plus_x = r - r_x;
}
if (!((m_strict[i] && r_plus_x < rational::zero()) ||
(!m_strict[i] && r_plus_x <= rational::zero()))) {
continue;
}
IF_VERBOSE(
2, verbose_stream()
<< "max: " << mk_pp(m_terms.get(i), m) << " " << r
<< " "
<< (!found || r > found_val ||
(r == found_val && !found_strict && m_strict[i]))
<< "\n";);
if (!found || r > found_val ||
(r == found_val && !found_strict && m_strict[i])) {
result = i;
found_val = r;
found_c = ac;
found = true;
found_strict = m_strict[i];
}
}
}
SASSERT(found);
return result;
}
// ax + t <= 0
// bx + s <= 0
// a and b have different signs.
// Infer: a|b|x + |b|t + |a|bx + |a|s <= 0
// e.g. |b|t + |a|s <= 0
expr_ref mk_lt(unsigned i, unsigned j) {
rational const &ac = m_coeffs[i];
rational const &bc = m_coeffs[j];
SASSERT(ac.is_pos() != bc.is_pos());
SASSERT(ac.is_neg() != bc.is_neg());
expr_ref bt(m), as(m), ts(m), z(m);
expr *t = m_terms.get(i);
expr *s = m_terms.get(j);
bt = mk_mul(abs(bc), t);
as = mk_mul(abs(ac), s);
ts = mk_add(bt, as);
z = a.mk_numeral(rational(0), t->get_sort());
expr_ref result1(m), result2(m);
if (m_strict[i] || m_strict[j]) {
result1 = a.mk_lt(ts, z);
} else {
result1 = a.mk_le(ts, z);
}
m_rw(result1, result2);
return result2;
}
// ax + t <= 0
// bx + s <= 0
// a and b have same signs.
// encode:// t/|a| <= s/|b|
// e.g. |b|t <= |a|s
expr_ref mk_le(unsigned i, unsigned j) {
rational const &ac = m_coeffs[i];
rational const &bc = m_coeffs[j];
SASSERT(ac.is_pos() == bc.is_pos());
SASSERT(ac.is_neg() == bc.is_neg());
expr_ref bt(m), as(m);
expr *t = m_terms.get(i);
expr *s = m_terms.get(j);
bt = mk_mul(abs(bc), t);
as = mk_mul(abs(ac), s);
expr_ref result1(m), result2(m);
if (!m_strict[j] && m_strict[i]) {
result1 = a.mk_lt(bt, as);
} else {
result1 = a.mk_le(bt, as);
}
m_rw(result1, result2);
return result2;
}
// ax + t = 0
// bx + s <= 0
// replace equality by (-t/a == -s/b), or, as = bt
expr_ref mk_eq(unsigned i, unsigned j) {
expr_ref as(m), bt(m);
as = mk_mul(m_coeffs[i], m_terms.get(j));
bt = mk_mul(m_coeffs[j], m_terms.get(i));
expr_ref result(m);
result = m.mk_eq(as, bt);
m_rw(result);
return result;
}
expr *mk_add(expr *t1, expr *t2) { return a.mk_add(t1, t2); }
expr *mk_mul(rational const &r, expr *t2) {
expr *t1 = a.mk_numeral(r, t2->get_sort());
return a.mk_mul(t1, t2);
}
/**
* walk the ast of fml and introduce a fresh variable for every mod term
* (updating the mdl accordingly)
*/
void factor_mod_terms(expr_ref &fml, app_ref_vector &vars, model &mdl) {
expr_ref_vector todo(m), eqs(m);
expr_map factored_terms(m);
ast_mark done;
todo.push_back(fml);
while (!todo.empty()) {
expr *e = todo.back();
if (!is_app(e) || done.is_marked(e)) {
todo.pop_back();
continue;
}
app *ap = to_app(e);
bool all_done = true, changed = false;
expr_ref_vector args(m);
for (expr *old_arg : *ap) {
if (!done.is_marked(old_arg)) {
todo.push_back(old_arg);
all_done = false;
}
if (!all_done) continue;
// all args so far have been processed
// get the correct arg to use
proof *pr = nullptr;
expr *new_arg = nullptr;
factored_terms.get(old_arg, new_arg, pr);
if (new_arg) {
// changed
args.push_back(new_arg);
changed = true;
} else {
// not changed
args.push_back(old_arg);
}
}
if (all_done) {
// all args processed; make new term
func_decl *d = ap->get_decl();
expr_ref new_term(m);
new_term = m.mk_app(d, args.size(), args.data());
// check for mod and introduce new var
if (a.is_mod(ap)) {
app_ref new_var(m);
new_var = m.mk_fresh_const("mod_var", d->get_range());
eqs.push_back(m.mk_eq(new_var, new_term));
// obtain value of new_term in mdl
expr_ref val = mdl(new_term);
// use the variable from now on
new_term = new_var;
changed = true;
// update vars and mdl
vars.push_back(new_var);
mdl.register_decl(new_var->get_decl(), val);
}
if (changed) { factored_terms.insert(e, new_term, nullptr); }
done.mark(e, true);
todo.pop_back();
}
}
// mk new fml
proof *pr = nullptr;
expr *new_fml = nullptr;
factored_terms.get(fml, new_fml, pr);
if (new_fml) {
fml = new_fml;
// add in eqs
fml = m.mk_and(fml, m.mk_and(eqs.size(), eqs.data()));
} else {
// unchanged
SASSERT(eqs.empty());
}
}
/**
* factor out mod terms by using divisibility terms;
*
* for now, only handle mod equalities of the form (t1 % num == t2),
* replacing it by the equivalent (num | (t1-t2)) /\ (0 <= t2 < abs(num));
* the divisibility atom is a special mod term ((t1-t2) % num == 0)
*/
void mod2div(expr_ref &fml, expr_map &map) {
expr *new_fml = nullptr;
proof *pr = nullptr;
map.get(fml, new_fml, pr);
if (new_fml) {
fml = new_fml;
return;
}
expr_ref z(a.mk_numeral(rational::zero(), true), m);
bool is_mod_eq = false;
expr *e1, *e2, *num;
expr_ref t1(m), t2(m);
rational num_val;
bool is_int;
// check if fml is a mod equality (t1 % num) == t2
if (m.is_eq(fml, e1, e2)) {
expr *t;
if (a.is_mod(e1, t, num) && a.is_numeral(num, num_val, is_int) &&
is_int) {
t1 = t;
t2 = e2;
is_mod_eq = true;
} else if (a.is_mod(e2, t, num) &&
a.is_numeral(num, num_val, is_int) && is_int) {
t1 = t;
t2 = e1;
is_mod_eq = true;
}
}
if (is_mod_eq) {
// recursively mod2div for t1 and t2
mod2div(t1, map);
mod2div(t2, map);
rational t2_num;
if (a.is_numeral(t2, t2_num) && t2_num.is_zero()) {
// already in the desired form;
// new_fml is (num_val | t1)
expr* mod_val = a.mk_numeral(num_val, true);
expr* mod_expr = a.mk_mod(t1, mod_val);
new_fml = m.mk_eq(mod_expr, z);
} else {
expr_ref_vector lits(m);
// num_val | (t1 - t2)
lits.push_back(
m.mk_eq(a.mk_mod(a.mk_sub(t1, t2),
a.mk_numeral(num_val, true)),
z));
// 0 <= t2
lits.push_back(a.mk_le(z, t2));
// t2 < abs (num_val)
expr* abs_val = a.mk_numeral(abs(num_val), true);
lits.push_back(a.mk_lt(t2, abs_val));
new_fml = m.mk_and(lits.size(), lits.data());
}
} else if (!is_app(fml)) {
new_fml = fml;
} else {
app *a = to_app(fml);
expr_ref_vector children(m);
expr_ref ch(m);
for (unsigned i = 0; i < a->get_num_args(); i++) {
ch = a->get_arg(i);
mod2div(ch, map);
children.push_back(ch);
}
new_fml = m.mk_app(a->get_decl(), children.size(), children.data());
}
map.insert(fml, new_fml, nullptr);
fml = new_fml;
}
void collect_lits(expr *fml, app_ref_vector &lits) {
expr_ref_vector todo(m);
ast_mark visited;
todo.push_back(fml);
while (!todo.empty()) {
expr *e = todo.back();
todo.pop_back();
if (visited.is_marked(e)) { continue; }
visited.mark(e, true);
if (!is_app(e)) { continue; }
app *a = to_app(e);
if (m.is_and(a) || m.is_or(a)) {
for (unsigned i = 0; i < a->get_num_args(); ++i) {
todo.push_back(a->get_arg(i));
}
} else {
lits.push_back(a);
}
}
SASSERT(todo.empty());
visited.reset();
}
/**
* assume that all coeffs of x are the same, say c
* substitute x_term_val for (c*x) in all lits and update map
* make the literal at idx true
*/
void mk_lit_substitutes(expr_ref const &x_term_val, expr_map &map,
unsigned idx) {
expr_ref z(a.mk_numeral(rational::zero(), true), m);
expr_ref cxt(m), new_lit(m);
for (unsigned i = 0; i < m_lits.size(); ++i) {
if (i == idx) {
new_lit = m.mk_true();
} else {
// cxt
if (m_coeffs[i].is_neg()) {
cxt = a.mk_sub(m_terms.get(i), x_term_val);
} else {
cxt = a.mk_add(m_terms.get(i), x_term_val);
}
if (m_divs[i].is_zero()) {
if (m_eq[i]) {
new_lit = m.mk_eq(cxt, z);
} else if (m_strict[i]) {
new_lit = a.mk_lt(cxt, z);
} else {
new_lit = a.mk_le(cxt, z);
}
m_rw(new_lit);
} else {
// div term
// XXX rewrite before applying mod to ensure mod is the
// top-level operator
m_rw(cxt);
expr* mod_val = a.mk_numeral(m_divs[i], true);
expr* mod_expr = a.mk_mod(cxt, mod_val);
new_lit = m.mk_eq(mod_expr, z);
}
}
map.insert(m_lits.get(i), new_lit, nullptr);
TRACE(qe,
tout << "Old literal: " << mk_pp(m_lits.get(i), m) << "\n";
tout << "New literal: " << mk_pp(new_lit, m) << "\n";);
}
}
void substitute(expr_ref &fml, app_ref_vector &lits, expr_map &map) {
expr_substitution sub(m);
// literals
for (unsigned i = 0; i < lits.size(); i++) {
expr *new_lit = nullptr;
proof *pr = nullptr;
app *old_lit = lits.get(i);
map.get(old_lit, new_lit, pr);
if (new_lit) {
sub.insert(old_lit, new_lit);
TRACE(qe, tout << "old lit " << mk_pp(old_lit, m) << "\n";
tout << "new lit " << mk_pp(new_lit, m) << "\n";);
}
}
// substitute for x, if any
expr *x_term = nullptr;
proof *pr = nullptr;
map.get(m_var->x(), x_term, pr);
if (x_term) {
sub.insert(m_var->x(), x_term);
TRACE(qe, tout << "substituting " << mk_pp(m_var->x(), m)
<< " by " << mk_pp(x_term, m) << "\n";);
}
scoped_ptr<expr_replacer> rep = mk_default_expr_replacer(m, false);
rep->set_substitution(&sub);
(*rep)(fml);
}
public:
arith_project_util(ast_manager &m)
: m(m), a(m), m_rw(m), m_lits(m), m_terms(m) {}
// OLD AND UNUSED INTERFACE
expr_ref operator()(model &mdl, app_ref_vector &vars,
expr_ref_vector const &lits) {
app_ref_vector new_vars(m);
expr_ref_vector result(lits);
for (unsigned i = 0; i < vars.size(); ++i) {
app *v = vars.get(i);
m_var = alloc(contains_app, m, v);
bool fail = a.is_int(v) || !project(mdl, result);
if (fail) new_vars.push_back(v);
IF_VERBOSE(
2, if (fail) {
verbose_stream() << "can't project:" << mk_pp(v, m) << "\n";
});
TRACE(
qe,
if (!fail) {
tout << "projected: " << mk_pp(v, m) << "\n";
for (unsigned i = 0; i < result.size(); ++i) {
tout << mk_pp(result.get(i), m) << "\n";
}
} else {
tout << "Failed to project: " << mk_pp(v, m) << "\n";
});
}
vars.reset();
vars.append(new_vars);
return mk_and(result);
}
void operator()(model &mdl, app_ref_vector &vars, expr_ref &fml) {
expr_map map(m);
operator()(mdl, vars, fml, map);
}
void operator()(model &mdl, app_ref_vector &vars, expr_ref &fml,
expr_map &map) {
app_ref_vector new_vars(m);
// factor out mod terms by introducing new variables
TRACE(qe, tout << "before factoring out mod terms:" << "\n";
tout << mk_pp(fml, m) << "\n"; tout << "mdl:\n";
model_pp(tout, mdl); tout << "\n";);
factor_mod_terms(fml, vars, mdl);
TRACE(qe, tout << "after factoring out mod terms:" << "\n";
tout << mk_pp(fml, m) << "\n"; tout << "updated mdl:\n";
model_pp(tout, mdl); tout << "\n";);
app_ref_vector lits(m);
// expr_map map (m);
for (unsigned i = 0; i < vars.size(); ++i) {
app *v = vars.get(i);
TRACE(qe,
tout << "projecting variable: " << mk_pp(v, m) << "\n";);
m_var = alloc(contains_app, m, v);
map.reset();
lits.reset();
if (a.is_int(v)) {
// factor out mod terms using div terms
expr_map mod_map(m);
mod2div(fml, mod_map);
TRACE(qe, tout << "after mod2div:" << "\n";
tout << mk_pp(fml, m) << "\n";);
}
collect_lits(fml, lits);
app_ref div_lit(m);
if (project(mdl, lits, map, div_lit)) {
substitute(fml, lits, map);
if (div_lit) { fml = m.mk_and(fml, div_lit); }
TRACE(qe, tout << "projected: " << mk_pp(v, m) << " "
<< mk_pp(fml, m) << "\n";);
} else {
IF_VERBOSE(2, verbose_stream()
<< "can't project:" << mk_pp(v, m) << "\n";);
TRACE(qe,
tout << "Failed to project: " << mk_pp(v, m) << "\n";);
new_vars.push_back(v);
}
}
vars.reset();
vars.append(new_vars);
m_rw(fml);
}
};
class array_project_eqs_util {
ast_manager &m;
array_util m_arr_u;
model_ref M;
app_ref m_v; // array var to eliminate
ast_mark m_has_stores_v; // has stores for m_v
expr_ref m_subst_term_v; // subst term for m_v
expr_safe_replace m_true_sub_v; // subst for true equalities
expr_safe_replace m_false_sub_v; // subst for false equalities
expr_ref_vector m_aux_lits_v;
expr_ref_vector m_idx_lits_v;
app_ref_vector m_aux_vars;
model_evaluator_array_util m_mev;
void reset_v() {
m_v = nullptr;
m_has_stores_v.reset();
m_subst_term_v = nullptr;
m_true_sub_v.reset();
m_false_sub_v.reset();
m_aux_lits_v.reset();
m_idx_lits_v.reset();
}
void reset() {
M = nullptr;
reset_v();
m_aux_vars.reset();
}
/**
* find all array equalities on m_v or containing stores on/of m_v
*
* also mark terms containing stores on/of m_v
*/
void find_arr_eqs(expr_ref const &fml, expr_ref_vector &eqs) {
if (!is_app(fml)) return;
ast_mark done;
ptr_vector<app> todo;
todo.push_back(to_app(fml));
while (!todo.empty()) {
app *a = todo.back();
if (done.is_marked(a)) {
todo.pop_back();
continue;
}
bool all_done = true;
bool args_have_stores = false;
for (expr *arg : *a) {
if (!is_app(arg)) continue;
if (!done.is_marked(arg)) {
all_done = false;
todo.push_back(to_app(arg));
} else if (!args_have_stores && m_has_stores_v.is_marked(arg)) {
args_have_stores = true;
}
}
if (!all_done) continue;
todo.pop_back();
// mark if a has stores
if ((!m_arr_u.is_select(a) && args_have_stores) ||
(m_arr_u.is_store(a) && (a->get_arg(0) == m_v))) {
m_has_stores_v.mark(a, true);
TRACE(qe, tout << "has stores:\n" << mk_pp(a, m) << "\n");
}
// check if a is a relevant array equality
if (m.is_eq(a)) {
expr *a0 = to_app(a)->get_arg(0);
expr *a1 = to_app(a)->get_arg(1);
if (a0 == m_v || a1 == m_v ||
(m_arr_u.is_array(a0) && m_has_stores_v.is_marked(a))) {
eqs.push_back(a);
}
}
// else, we can check for disequalities and handle them using
// extensionality, but it's not necessary
done.mark(a, true);
}
}
/**
* factor out select terms on m_v using fresh consts
*/
void factor_selects(app_ref &fml) {
expr_map sel_cache(m);
ast_mark done;
ptr_vector<app> todo;
expr_ref_vector pinned(m); // to ensure a reference
todo.push_back(fml);
while (!todo.empty()) {
app *a = todo.back();
if (done.is_marked(a)) {
todo.pop_back();
continue;
}
expr_ref_vector args(m);
bool all_done = true;
for (expr *arg : *a) {
if (!is_app(arg)) continue;
if (!done.is_marked(arg)) {
all_done = false;
todo.push_back(to_app(arg));
} else if (all_done) { // all done so far..
expr *arg_new = nullptr;
proof *pr;
sel_cache.get(arg, arg_new, pr);
if (!arg_new) { arg_new = arg; }
args.push_back(arg_new);
}
}
if (!all_done) continue;
todo.pop_back();
expr_ref a_new(m.mk_app(a->get_decl(), args.size(), args.data()),
m);
// if a_new is select on m_v, introduce new constant
if (m_arr_u.is_select(a) &&
(args.get(0) == m_v || m_has_stores_v.is_marked(args.get(0)))) {
sort *val_sort = get_array_range(m_v->get_sort());
app_ref val_const(m.mk_fresh_const("sel", val_sort), m);
m_aux_vars.push_back(val_const);
// extend M to include val_const
expr_ref val(m);
m_mev.eval(*M, a_new, val);
M->register_decl(val_const->get_decl(), val);
// add equality
m_aux_lits_v.push_back(m.mk_eq(val_const, a_new));
// replace select by const
a_new = val_const;
}
if (a != a_new) {
sel_cache.insert(a, a_new, nullptr);
pinned.push_back(a_new);
}
done.mark(a, true);
}
expr *res = nullptr;
proof *pr;
sel_cache.get(fml, res, pr);
if (res) { fml = to_app(res); }
}
/**
* convert partial equality expression p_exp to an equality by
* recursively adding stores on diff indices
*
* add stores on lhs or rhs depending on whether stores_on_rhs is false/true
*/
void convert_peq_to_eq(expr *p_exp, app_ref &eq,
bool stores_on_rhs = true) {
peq p(to_app(p_exp), m);
app_ref_vector diff_val_consts(m);
p.mk_eq(diff_val_consts, eq, stores_on_rhs);
m_aux_vars.append(diff_val_consts);
// extend M to include diff_val_consts
expr_ref arr(m);
expr_ref_vector I(m);
p.lhs(arr);
p.get_diff_indices(I);
expr_ref val(m);
unsigned num_diff = diff_val_consts.size();
SASSERT(num_diff == I.size());
for (unsigned i = 0; i < num_diff; i++) {
// mk val term
ptr_vector<expr> sel_args;
sel_args.push_back(arr);
sel_args.push_back(I.get(i));
expr_ref val_term(
m_arr_u.mk_select(sel_args.size(), sel_args.data()), m);
// evaluate and assign to ith diff_val_const
m_mev.eval(*M, val_term, val);
M->register_decl(diff_val_consts.get(i)->get_decl(), val);
}
}
/**
* mk (e0 ==indices e1)
*
* result has stores if either e0 or e1 or an index term has stores
*/
void mk_peq(expr *e0, expr *e1, unsigned num_indices, expr *const *indices,
app_ref &result) {
peq p(e0, e1, num_indices, indices, m);
p.mk_peq(result);
}
void find_subst_term(app *eq) {
app_ref p_exp(m);
mk_peq(eq->get_arg(0), eq->get_arg(1), 0, nullptr, p_exp);
bool subst_eq_found = false;
while (true) {
TRACE(qe, tout << "processing peq:\n";
tout << mk_pp(p_exp, m) << "\n";);
peq p(p_exp, m);
expr_ref lhs(m), rhs(m);
p.lhs(lhs);
p.rhs(rhs);
if (!m_has_stores_v.is_marked(lhs)) { std::swap(lhs, rhs); }
if (m_has_stores_v.is_marked(lhs)) {
/** project using the equivalence:
*
* (store(arr0,idx,x) ==I arr1) <->
*
* (idx \in I => (arr0 ==I arr1)) /\
* (idx \not\in I => (arr0 ==I+idx arr1) /\ (arr1[idx] == x)))
*/
expr_ref_vector I(m);
p.get_diff_indices(I);
app *a_lhs = to_app(lhs);
expr *arr0 = a_lhs->get_arg(0);
expr *idx = a_lhs->get_arg(1);
expr *x = a_lhs->get_arg(2);
expr *arr1 = rhs;
// check if (idx \in I) in M
bool idx_in_I = false;
expr_ref_vector idx_diseq(m);
if (!I.empty()) {
expr_ref val(m);
m_mev.eval(*M, idx, val);
for (unsigned i = 0; i < I.size() && !idx_in_I; i++) {
if (idx == I.get(i)) {
idx_in_I = true;
} else {
expr_ref val1(m);
expr *idx1 = I.get(i);
expr_ref idx_eq(m.mk_eq(idx, idx1), m);
m_mev.eval(*M, idx1, val1);
if (val == val1) {
idx_in_I = true;
m_idx_lits_v.push_back(idx_eq);
} else {
idx_diseq.push_back(m.mk_not(idx_eq));
}
}
}
}
if (idx_in_I) {
TRACE(qe, tout << "store index in diff indices:\n";
tout << mk_pp(m_idx_lits_v.back(), m) << "\n";);
// arr0 ==I arr1
mk_peq(arr0, arr1, I.size(), I.data(), p_exp);
TRACE(qe, tout << "new peq:\n";
tout << mk_pp(p_exp, m) << "\n";);
} else {
m_idx_lits_v.append(idx_diseq);
// arr0 ==I+idx arr1
I.push_back(idx);
mk_peq(arr0, arr1, I.size(), I.data(), p_exp);
TRACE(qe, tout << "new peq:\n";
tout << mk_pp(p_exp, m) << "\n";);
// arr1[idx] == x
ptr_vector<expr> sel_args;
sel_args.push_back(arr1);
sel_args.push_back(idx);
expr_ref arr1_idx(
m_arr_u.mk_select(sel_args.size(), sel_args.data()), m);
expr_ref eq(m.mk_eq(arr1_idx, x), m);
m_aux_lits_v.push_back(eq);
TRACE(qe, tout << "new eq:\n";
tout << mk_pp(eq, m) << "\n";);
}
} else if (lhs == rhs) { // trivial peq (a ==I a)
break;
} else if (lhs == m_v || rhs == m_v) {
subst_eq_found = true;
TRACE(qe, tout << "subst eq found!\n";);
break;
} else {
UNREACHABLE();
}
}
// factor out select terms on m_v from p_exp using fresh constants
if (subst_eq_found) {
factor_selects(p_exp);
TRACE(
qe, tout << "after factoring selects:\n";
tout << mk_pp(p_exp, m) << "\n";
for (unsigned i = m_aux_lits_v.size() - m_aux_vars.size();
i < m_aux_lits_v.size();
i++) { tout << mk_pp(m_aux_lits_v.get(i), m) << "\n"; });
// find subst_term
bool stores_on_rhs = true;
app *a = to_app(p_exp);
if (a->get_arg(1) == m_v) { stores_on_rhs = false; }
app_ref eq(m);
convert_peq_to_eq(p_exp, eq, stores_on_rhs);
m_subst_term_v = eq->get_arg(1);
TRACE(qe, tout << "subst term found:\n";
tout << mk_pp(m_subst_term_v, m) << "\n";);
}
}
/**
* try to substitute for m_v, using array equalities
*
* compute substitution term and aux lits
*/
bool project(expr_ref const &fml) {
expr_ref_vector eqs(m);
ptr_vector<app> true_eqs; // subset of eqs; eqs ensures references
find_arr_eqs(fml, eqs);
TRACE(
qe, tout << "array equalities:\n";
for (unsigned i = 0; i < eqs.size();
i++) { tout << mk_pp(eqs.get(i), m) << "\n"; });
// evaluate eqs in M
for (unsigned i = 0; i < eqs.size(); i++) {
TRACE(qe, tout << "array equality:\n";
tout << mk_pp(eqs.get(i), m) << "\n";);
expr *eq = eqs.get(i);
// evaluate eq in M
app *a = to_app(eq);
expr_ref val(m);
m_mev.eval_array_eq(*M, a, a->get_arg(0), a->get_arg(1), val);
if (!val) {
// XXX HACK: unable to evaluate. set to true?
val = m.mk_true();
}
SASSERT(m.is_true(val) || m.is_false(val));
if (m.is_false(val)) {
m_false_sub_v.insert(eq, m.mk_false());
} else {
true_eqs.push_back(to_app(eq));
}
}
// compute nesting depths of stores on m_v in true_eqs, as follows:
// 0 if m_v appears on both sides of equality
// 1 if equality is (m_v=t)
// 2 if equality is (store(m_v,i,v)=t)
// ...
unsigned num_true_eqs = true_eqs.size();
vector<unsigned> nds(num_true_eqs);
for (unsigned i = 0; i < num_true_eqs; i++) {
app *eq = true_eqs.get(i);
expr *lhs = eq->get_arg(0);
expr *rhs = eq->get_arg(1);
bool lhs_has_v = (lhs == m_v || m_has_stores_v.is_marked(lhs));
bool rhs_has_v = (rhs == m_v || m_has_stores_v.is_marked(rhs));
app *store = nullptr;
SASSERT(lhs_has_v || rhs_has_v);
if (!lhs_has_v) {
store = to_app(rhs);
} else if (!rhs_has_v) {
store = to_app(lhs);
}
// else v appears on both sides -- trivial equality
// put it in the beginning to simplify it away
unsigned nd = 0; // nesting depth
if (store) {
for (nd = 1; m_arr_u.is_store(store);
nd++, store = to_app(store->get_arg(0)))
/* empty */;
SASSERT(store == m_v);
}
nds[i] = nd;
}
SASSERT(true_eqs.size() == nds.size());
// sort true_eqs according to nesting depth
// use insertion sort
for (unsigned i = 1; i < num_true_eqs; i++) {
app_ref eq(m);
eq = true_eqs.get(i);
unsigned nd = nds.get(i);
unsigned j = i;
for (; j >= 1 && nds.get(j - 1) > nd; j--) {
true_eqs.set(j, true_eqs.get(j - 1));
nds.set(j, nds.get(j - 1));
}
if (j < i) {
true_eqs.set(j, eq);
nds.set(j, nd);
TRACE(qe, tout << "changing eq order!\n";);
}
}
// search for subst term
for (unsigned i = 0; !m_subst_term_v && i < num_true_eqs; i++) {
app *eq = true_eqs.get(i);
m_true_sub_v.insert(eq, m.mk_true());
// try to find subst term
find_subst_term(eq);
}
return true;
}
void mk_result(expr_ref &fml) {
th_rewriter rw(m);
rw(fml);
// add in aux_lits and idx_lits
expr_ref_vector lits(m);
// TODO: eliminate possible duplicates, especially in idx_lits
// theory rewriting is a possibility, but not sure if it
// introduces unwanted terms such as ite's
lits.append(m_idx_lits_v);
lits.append(m_aux_lits_v);
lits.push_back(fml);
fml = m.mk_and(lits.size(), lits.data());
if (m_subst_term_v) {
m_true_sub_v.insert(m_v, m_subst_term_v);
m_true_sub_v(fml);
} else {
m_true_sub_v(fml);
m_false_sub_v(fml);
}
rw(fml);
SASSERT(!m.is_false(fml));
}
public:
array_project_eqs_util(ast_manager &m)
: m(m), m_arr_u(m), m_v(m), m_subst_term_v(m), m_true_sub_v(m),
m_false_sub_v(m), m_aux_lits_v(m), m_idx_lits_v(m), m_aux_vars(m),
m_mev(m) {}
void operator()(model &mdl, app_ref_vector &arr_vars, expr_ref &fml,
app_ref_vector &aux_vars) {
reset();
app_ref_vector rem_arr_vars(m); // remaining arr vars
M = &mdl;
for (unsigned i = 0; i < arr_vars.size(); i++) {
reset_v();
m_v = arr_vars.get(i);
if (!m_arr_u.is_array(m_v)) {
TRACE(qe, tout << "not an array variable: " << mk_pp(m_v, m)
<< "\n";);
aux_vars.push_back(m_v);
continue;
}
TRACE(qe, tout << "projecting equalities on variable: "
<< mk_pp(m_v, m) << "\n";);
if (project(fml)) {
mk_result(fml);
contains_app contains_v(m, m_v);
if (!m_subst_term_v || contains_v(m_subst_term_v)) {
rem_arr_vars.push_back(m_v);
}
TRACE(qe, tout << "after projection: \n";
tout << mk_pp(fml, m) << "\n";);
} else {
IF_VERBOSE(2, verbose_stream() << "can't project:"
<< mk_pp(m_v, m) << "\n";);
TRACE(qe,
tout << "Failed to project: " << mk_pp(m_v, m) << "\n";);
rem_arr_vars.push_back(m_v);
}
}
arr_vars.reset();
arr_vars.append(rem_arr_vars);
aux_vars.append(m_aux_vars);
}
};
class array_select_reducer {
ast_manager &m;
array_util m_arr_u;
obj_map<expr, expr *> m_cache;
expr_ref_vector m_pinned; // to ensure a reference
expr_ref_vector m_idx_lits;
model_ref M;
model_evaluator_array_util m_mev;
th_rewriter m_rw;
ast_mark m_arr_test;
ast_mark m_has_stores;
bool m_reduce_all_selects;
void reset() {
m_cache.reset();
m_pinned.reset();
m_idx_lits.reset();
M = nullptr;
m_arr_test.reset();
m_has_stores.reset();
m_reduce_all_selects = false;
}
bool is_equals(expr *e1, expr *e2) {
if (e1 == e2) return true;
expr_ref val1(m), val2(m);
m_mev.eval(*M, e1, val1);
m_mev.eval(*M, e2, val2);
return (val1 == val2);
}
void add_idx_cond(expr_ref &cond) {
m_rw(cond);
if (!m.is_true(cond)) m_idx_lits.push_back(cond);
}
bool has_stores(expr *e) {
if (m_reduce_all_selects) return true;
return m_has_stores.is_marked(e);
}
void mark_stores(app *a, bool args_have_stores) {
if (m_reduce_all_selects) return;
if (args_have_stores ||
(m_arr_u.is_store(a) && m_arr_test.is_marked(a->get_arg(0)))) {
m_has_stores.mark(a, true);
}
}
bool reduce(expr_ref &e) {
if (!is_app(e)) return true;
expr *r = nullptr;
if (m_cache.find(e, r)) {
e = r;
return true;
}
ptr_vector<app> todo;
todo.push_back(to_app(e));
while (!todo.empty()) {
app *a = todo.back();
unsigned sz = todo.size();
expr_ref_vector args(m);
bool dirty = false;
bool args_have_stores = false;
for (unsigned i = 0; i < a->get_num_args(); ++i) {
expr *arg = a->get_arg(i);
expr *narg = nullptr;
if (!is_app(arg))
args.push_back(arg);
else if (m_cache.find(arg, narg)) {
args.push_back(narg);
dirty |= (arg != narg);
if (!args_have_stores && has_stores(narg)) {
args_have_stores = true;
}
} else {
todo.push_back(to_app(arg));
}
}
if (todo.size() > sz) continue;
todo.pop_back();
if (dirty) {
r = m.mk_app(a->get_decl(), args.size(), args.data());
m_pinned.push_back(r);
} else
r = a;
if (m_arr_u.is_select(r) && has_stores(to_app(r)->get_arg(0))) {
r = reduce_core(to_app(r));
} else {
mark_stores(to_app(r), args_have_stores);
}
m_cache.insert(a, r);
}
SASSERT(r);
e = r;
return true;
}
expr *reduce_core(app *a) {
if (!m_arr_u.is_store(a->get_arg(0))) return a;
SASSERT(a->get_num_args() == 2 &&
"Multi-dimensional arrays are not supported");
expr *array = a->get_arg(0);
expr *j = a->get_arg(1);
while (m_arr_u.is_store(array)) {
a = to_app(array);
expr *idx = a->get_arg(1);
expr_ref cond(m);
if (is_equals(idx, j)) {
cond = m.mk_eq(idx, j);
add_idx_cond(cond);
return a->get_arg(2);
} else {
cond = m.mk_not(m.mk_eq(idx, j));
add_idx_cond(cond);
array = a->get_arg(0);
}
}
expr *args[2] = {array, j};
expr *r = m_arr_u.mk_select(2, args);
m_pinned.push_back(r);
return r;
}
void mk_result(expr_ref &fml) {
// conjoin idx lits
expr_ref_vector lits(m);
lits.append(m_idx_lits);
lits.push_back(fml);
fml = m.mk_and(lits.size(), lits.data());
// simplify all trivial expressions introduced
m_rw(fml);
TRACE(qe, tout << "after reducing selects:\n";
tout << mk_pp(fml, m) << "\n";);
}
public:
array_select_reducer(ast_manager &m)
: m(m), m_arr_u(m), m_pinned(m), m_idx_lits(m), m_mev(m), m_rw(m),
m_reduce_all_selects(false) {}
void operator()(model &mdl, app_ref_vector const &arr_vars, expr_ref &fml,
bool reduce_all_selects = false) {
if (!reduce_all_selects && arr_vars.empty()) return;
reset();
M = &mdl;
m_reduce_all_selects = reduce_all_selects;
// mark vars to eliminate
for (unsigned i = 0; i < arr_vars.size(); i++) {
m_arr_test.mark(arr_vars.get(i), true);
}
// assume all arr_vars are of array sort
// and assume no store equalities on arr_vars
if (reduce(fml)) {
mk_result(fml);
} else {
IF_VERBOSE(2, verbose_stream() << "can't project arrays:" << "\n";);
TRACE(qe, tout << "Failed to project arrays\n";);
}
}
};
class array_project_selects_util {
typedef obj_map<app, ptr_vector<app> *> sel_map;
ast_manager &m;
array_util m_arr_u;
arith_util m_ari_u;
sel_map m_sel_terms;
// representative indices for eliminating selects
vector<expr_ref_vector> m_idx_reprs;
vector<expr_ref_vector> m_idx_vals;
app_ref_vector m_sel_consts;
expr_ref_vector m_idx_lits;
model_ref M;
model_evaluator_array_util m_mev;
expr_safe_replace m_sub;
ast_mark m_arr_test;
void reset() {
m_sel_terms.reset();
m_idx_reprs.reset();
m_idx_vals.reset();
m_sel_consts.reset();
m_idx_lits.reset();
M = nullptr;
m_sub.reset();
m_arr_test.reset();
}
/**
* collect sel terms on array vars as given by m_arr_test
*/
void collect_selects(expr *fml) {
if (!is_app(fml)) return;
ast_mark done;
ptr_vector<app> todo;
todo.push_back(to_app(fml));
while (!todo.empty()) {
app *a = todo.back();
if (done.is_marked(a)) {
todo.pop_back();
continue;
}
bool all_done = true;
for (auto arg : *a) {
if (!done.is_marked(arg) && is_app(arg)) {
todo.push_back(to_app(arg));
all_done = false;
}
}
if (!all_done)
continue;
todo.pop_back();
if (m_arr_u.is_select(a)) {
expr *arr = a->get_arg(0);
if (m_arr_test.is_marked(arr)) {
ptr_vector<app> *lst = m_sel_terms.find(to_app(arr));
lst->push_back(a);
}
}
done.mark(a, true);
}
}
expr_ref mk_eqs(expr_ref_vector const &a, expr_ref_vector const &b) {
expr_ref r(m);
expr_ref_vector args(m);
SASSERT(a.size() == b.size());
for (unsigned i = 0; i < a.size(); ++i)
args.push_back(m.mk_eq(a.get(i), b.get(i)));
r = mk_and(args);
return r;
}
/**
* model based ackermannization for sel terms of some array
*
* update sub with val consts for sel terms
*/
void ackermann(ptr_vector<app> const &sel_terms) {
if (sel_terms.empty())
return;
expr *v = sel_terms.get(0)->get_arg(0); // array variable
sort *v_sort = v->get_sort();
sort *val_sort = get_array_range(v_sort);
unsigned sz = get_array_arity(v_sort);
unsigned start = m_idx_reprs.size(); // append at the end
expr_ref_vector vals(m), idxs(m);
expr_ref val(m);
for (app *a : sel_terms) {
vals.reset();
idxs.reset();
for (unsigned i = 0; i < sz; i++) {
expr *idx = a->get_arg(i + 1);
m_mev.eval(*M, idx, val);
vals.push_back(val);
idxs.push_back(idx);
}
bool is_new = true;
for (unsigned j = start; j < m_idx_vals.size(); j++) {
if (m_idx_vals.get(j) == vals) {
// idx belongs to the jth equivalence class;
// substitute sel term with ith sel const
expr *c = m_sel_consts.get(j);
m_sub.insert(a, c);
// add equality (idx == repr)
auto &repr = m_idx_reprs.get(j);
m_idx_lits.push_back(mk_eqs(idxs, repr));
is_new = false;
break;
}
}
if (is_new) {
// new repr, val, and sel const
m_idx_reprs.push_back(idxs);
m_idx_vals.push_back(vals);
app_ref c(m.mk_fresh_const("sel", val_sort), m);
m_sel_consts.push_back(c);
// substitute sel term with new const
m_sub.insert(a, c);
// extend M to include c
m_mev.eval(*M, a, val);
M->register_decl(c->get_decl(), val);
}
}
// sort reprs by their value and add a chain of strict inequalities
unsigned num_reprs = m_idx_reprs.size() - start;
if (num_reprs == 0)
return;
auto idx_sort = get_array_domain(v_sort, 0);
if (sz == 1 &&
(m_ari_u.is_real(idx_sort) || m_ari_u.is_int(idx_sort))) {
// using insertion sort
unsigned end = start + num_reprs;
for (unsigned i = start + 1; i < end; i++) {
auto repr = m_idx_reprs.get(i).get(0);
auto val = m_idx_vals.get(i).get(0);
unsigned j = i;
for (; j > start; j--) {
rational j_val, jm1_val;
VERIFY(m_ari_u.is_numeral(val, j_val));
VERIFY(m_ari_u.is_numeral(m_idx_vals.get(j - 1).get(0),
jm1_val));
if (j_val >= jm1_val) break;
m_idx_reprs[j][0] = m_idx_reprs.get(j - 1).get(0);
m_idx_vals[j][0] = m_idx_vals.get(j - 1).get(0);
}
m_idx_reprs[j][0] = repr;
m_idx_vals[j][0] = val;
}
for (unsigned i = start; i < end - 1; i++) {
m_idx_lits.push_back(m_ari_u.mk_lt(m_idx_reprs[i].get(0),
m_idx_reprs[i + 1].get(0)));
}
return;
}
vector<expr_ref_vector> args;
for (unsigned i = start; i < m_idx_reprs.size(); ++i)
args.push_back(m_idx_reprs.get(i));
for (unsigned i = 0; i < args.size(); ++i)
for (unsigned j = i + 1; j < args.size(); ++j)
m_idx_lits.push_back(
m.mk_not(mk_eqs(args.get(i), args.get(j))));
}
void mk_result(expr_ref &fml) {
// conjoin idx lits
expr_ref_vector lits(m);
lits.append(m_idx_lits);
lits.push_back(fml);
fml = m.mk_and(lits.size(), lits.data());
// substitute for sel terms
m_sub(fml);
TRACE(qe, tout << "after projection of selects:\n";
tout << mk_pp(fml, m) << "\n";);
}
/**
* project selects
* populates idx lits and obtains substitution for sel terms
*/
bool project(expr_ref &fml) {
// collect sel terms -- populate the map m_sel_terms
collect_selects(fml);
// model based ackermannization
for (auto const &[key, value] : m_sel_terms) {
TRACE(qe,
tout << "ackermann for var: " << mk_pp(key, m) << "\n";);
ackermann(*value);
}
TRACE(
qe, tout << "idx lits:\n";
for (unsigned i = 0; i < m_idx_lits.size();
i++) { tout << mk_pp(m_idx_lits.get(i), m) << "\n"; });
return true;
}
public:
array_project_selects_util(ast_manager &m)
: m(m), m_arr_u(m), m_ari_u(m), m_sel_consts(m), m_idx_lits(m),
m_mev(m), m_sub(m) {}
void operator()(model &mdl, app_ref_vector &arr_vars, expr_ref &fml,
app_ref_vector &aux_vars) {
reset();
M = &mdl;
// mark vars to eliminate
for (unsigned i = 0; i < arr_vars.size(); i++) {
m_arr_test.mark(arr_vars.get(i), true);
}
// alloc empty map from array var to sel terms over it
for (unsigned i = 0; i < arr_vars.size(); i++) {
ptr_vector<app> *lst = alloc(ptr_vector<app>);
m_sel_terms.insert(arr_vars.get(i), lst);
}
// assume all arr_vars are of array sort
// and they only appear in select terms
if (project(fml)) {
mk_result(fml);
aux_vars.append(m_sel_consts);
arr_vars.reset();
} else {
IF_VERBOSE(2, verbose_stream() << "can't project arrays:" << "\n";);
TRACE(qe, tout << "Failed to project arrays\n";);
}
// dealloc
sel_map::iterator begin = m_sel_terms.begin(), end = m_sel_terms.end();
for (sel_map::iterator it = begin; it != end; it++) {
dealloc(it->m_value);
}
m_sel_terms.reset();
}
};
expr_ref arith_project(model &mdl, app_ref_vector &vars,
expr_ref_vector const &lits) {
ast_manager &m = vars.get_manager();
arith_project_util ap(m);
return ap(mdl, vars, lits);
}
void arith_project(model &mdl, app_ref_vector &vars, expr_ref &fml) {
ast_manager &m = vars.get_manager();
arith_project_util ap(m);
qe::atom_set pos_lits, neg_lits;
is_relevant_default is_relevant;
mk_atom_default mk_atom;
get_nnf(fml, is_relevant, mk_atom, pos_lits, neg_lits);
ap(mdl, vars, fml);
}
void arith_project(model &mdl, app_ref_vector &vars, expr_ref &fml,
expr_map &map) {
ast_manager &m = vars.get_manager();
arith_project_util ap(m);
qe::atom_set pos_lits, neg_lits;
is_relevant_default is_relevant;
mk_atom_default mk_atom;
get_nnf(fml, is_relevant, mk_atom, pos_lits, neg_lits);
ap(mdl, vars, fml, map);
}
void array_project_eqs(model &mdl, app_ref_vector &arr_vars, expr_ref &fml,
app_ref_vector &aux_vars) {
ast_manager &m = arr_vars.get_manager();
array_project_eqs_util ap(m);
ap(mdl, arr_vars, fml, aux_vars);
}
void reduce_array_selects(model &mdl, app_ref_vector const &arr_vars,
expr_ref &fml, bool reduce_all_selects) {
ast_manager &m = arr_vars.get_manager();
array_select_reducer ap(m);
ap(mdl, arr_vars, fml, reduce_all_selects);
}
void reduce_array_selects(model &mdl, expr_ref &fml) {
ast_manager &m = fml.get_manager();
app_ref_vector _tmp(m);
reduce_array_selects(mdl, _tmp, fml, true);
}
void array_project_selects(model &mdl, app_ref_vector &arr_vars, expr_ref &fml,
app_ref_vector &aux_vars) {
ast_manager &m = arr_vars.get_manager();
array_project_selects_util ap(m);
ap(mdl, arr_vars, fml, aux_vars);
}
void array_project(model &mdl, app_ref_vector &arr_vars, expr_ref &fml,
app_ref_vector &aux_vars, bool reduce_all_selects) {
// 1. project array equalities
array_project_eqs(mdl, arr_vars, fml, aux_vars);
TRACE(qe,
tout << "Projected array eqs:\n" << fml << "\n";
tout << "Remaining array vars:\n" << arr_vars;
tout << "Aux vars:\n" << aux_vars;);
// 2. reduce selects
if (reduce_all_selects) {
reduce_array_selects(mdl, fml);
} else {
reduce_array_selects(mdl, arr_vars, fml);
}
TRACE(qe, tout << "Reduced selects:\n" << fml << "\n";);
// 3. project selects using model based ackermannization
array_project_selects(mdl, arr_vars, fml, aux_vars);
TRACE(
qe,
tout << "Projected array selects:\n";
tout << fml << "\n";
tout << "All aux vars:\n" << aux_vars;);
}
} // namespace spacer_qe