mirror of
https://github.com/Z3Prover/z3
synced 2025-04-27 10:55:50 +00:00
573 lines
16 KiB
Python
573 lines
16 KiB
Python
############################################
|
|
# Copyright (c) 2012 Microsoft Corporation
|
|
#
|
|
# Z3 Python interface for Z3 numerals
|
|
#
|
|
# Author: Leonardo de Moura (leonardo)
|
|
############################################
|
|
from z3 import *
|
|
from z3core import *
|
|
from z3printer import *
|
|
from fractions import Fraction
|
|
|
|
def _to_numeral(num, ctx=None):
|
|
if isinstance(num, Numeral):
|
|
return num
|
|
else:
|
|
return Numeral(num, ctx)
|
|
|
|
class Numeral:
|
|
"""
|
|
A Z3 numeral can be used to perform computations over arbitrary
|
|
precision integers, rationals and real algebraic numbers.
|
|
It also automatically converts python numeric values.
|
|
|
|
>>> Numeral(2)
|
|
2
|
|
>>> Numeral("3/2") + 1
|
|
5/2
|
|
>>> Numeral(Sqrt(2))
|
|
1.4142135623?
|
|
>>> Numeral(Sqrt(2)) + 2
|
|
3.4142135623?
|
|
>>> Numeral(Sqrt(2)) + Numeral(Sqrt(3))
|
|
3.1462643699?
|
|
|
|
Z3 numerals can be used to perform computations with
|
|
values in a Z3 model.
|
|
|
|
>>> s = Solver()
|
|
>>> x = Real('x')
|
|
>>> s.add(x*x == 2)
|
|
>>> s.add(x > 0)
|
|
>>> s.check()
|
|
sat
|
|
>>> m = s.model()
|
|
>>> m[x]
|
|
1.4142135623?
|
|
>>> m[x] + 1
|
|
1.4142135623? + 1
|
|
|
|
The previous result is a Z3 expression.
|
|
|
|
>>> (m[x] + 1).sexpr()
|
|
'(+ (root-obj (+ (^ x 2) (- 2)) 2) 1.0)'
|
|
|
|
>>> Numeral(m[x]) + 1
|
|
2.4142135623?
|
|
>>> Numeral(m[x]).is_pos()
|
|
True
|
|
>>> Numeral(m[x])**2
|
|
2
|
|
|
|
We can also isolate the roots of polynomials.
|
|
|
|
>>> x0, x1, x2 = RealVarVector(3)
|
|
>>> r0 = isolate_roots(x0**5 - x0 - 1)
|
|
>>> r0
|
|
[1.1673039782?]
|
|
|
|
In the following example, we are isolating the roots
|
|
of a univariate polynomial (on x1) obtained after substituting
|
|
x0 -> r0[0]
|
|
|
|
>>> r1 = isolate_roots(x1**2 - x0 + 1, [ r0[0] ])
|
|
>>> r1
|
|
[-0.4090280898?, 0.4090280898?]
|
|
|
|
Similarly, in the next example we isolate the roots of
|
|
a univariate polynomial (on x2) obtained after substituting
|
|
x0 -> r0[0] and x1 -> r1[0]
|
|
|
|
>>> isolate_roots(x1*x2 + x0, [ r0[0], r1[0] ])
|
|
[2.8538479564?]
|
|
|
|
"""
|
|
def __init__(self, num, ctx=None):
|
|
if isinstance(num, Ast):
|
|
self.ast = num
|
|
self.ctx = z3._get_ctx(ctx)
|
|
elif isinstance(num, RatNumRef) or isinstance(num, AlgebraicNumRef):
|
|
self.ast = num.ast
|
|
self.ctx = num.ctx
|
|
elif isinstance(num, ArithRef):
|
|
r = simplify(num)
|
|
self.ast = r.ast
|
|
self.ctx = r.ctx
|
|
else:
|
|
v = RealVal(num, ctx)
|
|
self.ast = v.ast
|
|
self.ctx = v.ctx
|
|
Z3_inc_ref(self.ctx_ref(), self.as_ast())
|
|
assert Z3_algebraic_is_value(self.ctx_ref(), self.ast)
|
|
|
|
def __del__(self):
|
|
Z3_dec_ref(self.ctx_ref(), self.as_ast())
|
|
|
|
def is_integer(self):
|
|
""" Return True if the numeral is integer.
|
|
|
|
>>> Numeral(2).is_integer()
|
|
True
|
|
>>> (Numeral(Sqrt(2)) * Numeral(Sqrt(2))).is_integer()
|
|
True
|
|
>>> Numeral(Sqrt(2)).is_integer()
|
|
False
|
|
>>> Numeral("2/3").is_integer()
|
|
False
|
|
"""
|
|
return self.is_rational() and self.denominator() == 1
|
|
|
|
def is_rational(self):
|
|
""" Return True if the numeral is rational.
|
|
|
|
>>> Numeral(2).is_rational()
|
|
True
|
|
>>> Numeral("2/3").is_rational()
|
|
True
|
|
>>> Numeral(Sqrt(2)).is_rational()
|
|
False
|
|
|
|
"""
|
|
return Z3_get_ast_kind(self.ctx_ref(), self.as_ast()) == Z3_NUMERAL_AST
|
|
|
|
def denominator(self):
|
|
""" Return the denominator if `self` is rational.
|
|
|
|
>>> Numeral("2/3").denominator()
|
|
3
|
|
"""
|
|
assert(self.is_rational())
|
|
return Numeral(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
|
|
|
|
def numerator(self):
|
|
""" Return the numerator if `self` is rational.
|
|
|
|
>>> Numeral("2/3").numerator()
|
|
2
|
|
"""
|
|
assert(self.is_rational())
|
|
return Numeral(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
|
|
|
|
|
|
def is_irrational(self):
|
|
""" Return True if the numeral is irrational.
|
|
|
|
>>> Numeral(2).is_irrational()
|
|
False
|
|
>>> Numeral("2/3").is_irrational()
|
|
False
|
|
>>> Numeral(Sqrt(2)).is_irrational()
|
|
True
|
|
"""
|
|
return not self.is_rational()
|
|
|
|
def as_long(self):
|
|
""" Return a numeral (that is an integer) as a Python long.
|
|
|
|
>>> (Numeral(10)**20).as_long()
|
|
100000000000000000000L
|
|
"""
|
|
assert(self.is_integer())
|
|
return long(Z3_get_numeral_string(self.ctx_ref(), self.as_ast()))
|
|
|
|
def as_fraction(self):
|
|
""" Return a numeral (that is a rational) as a Python Fraction.
|
|
>>> Numeral("1/5").as_fraction()
|
|
Fraction(1, 5)
|
|
"""
|
|
assert(self.is_rational())
|
|
return Fraction(self.numerator().as_long(), self.denominator().as_long())
|
|
|
|
def approx(self, precision=10):
|
|
"""Return a numeral that approximates the numeral `self`.
|
|
The result `r` is such that |r - self| <= 1/10^precision
|
|
|
|
If `self` is rational, then the result is `self`.
|
|
|
|
>>> x = Numeral(2).root(2)
|
|
>>> x.approx(20)
|
|
6838717160008073720548335/4835703278458516698824704
|
|
>>> x.approx(5)
|
|
2965821/2097152
|
|
>>> Numeral(2).approx(10)
|
|
2
|
|
"""
|
|
return self.upper(precision)
|
|
|
|
def upper(self, precision=10):
|
|
"""Return a upper bound that approximates the numeral `self`.
|
|
The result `r` is such that r - self <= 1/10^precision
|
|
|
|
If `self` is rational, then the result is `self`.
|
|
|
|
>>> x = Numeral(2).root(2)
|
|
>>> x.upper(20)
|
|
6838717160008073720548335/4835703278458516698824704
|
|
>>> x.upper(5)
|
|
2965821/2097152
|
|
>>> Numeral(2).upper(10)
|
|
2
|
|
"""
|
|
if self.is_rational():
|
|
return self
|
|
else:
|
|
return Numeral(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx)
|
|
|
|
def lower(self, precision=10):
|
|
"""Return a lower bound that approximates the numeral `self`.
|
|
The result `r` is such that self - r <= 1/10^precision
|
|
|
|
If `self` is rational, then the result is `self`.
|
|
|
|
>>> x = Numeral(2).root(2)
|
|
>>> x.lower(20)
|
|
1709679290002018430137083/1208925819614629174706176
|
|
>>> Numeral("2/3").lower(10)
|
|
2/3
|
|
"""
|
|
if self.is_rational():
|
|
return self
|
|
else:
|
|
return Numeral(Z3_get_algebraic_number_lower(self.ctx_ref(), self.as_ast(), precision), self.ctx)
|
|
|
|
def sign(self):
|
|
""" Return the sign of the numeral.
|
|
|
|
>>> Numeral(2).sign()
|
|
1
|
|
>>> Numeral(-3).sign()
|
|
-1
|
|
>>> Numeral(0).sign()
|
|
0
|
|
"""
|
|
return Z3_algebraic_sign(self.ctx_ref(), self.ast)
|
|
|
|
def is_pos(self):
|
|
""" Return True if the numeral is positive.
|
|
|
|
>>> Numeral(2).is_pos()
|
|
True
|
|
>>> Numeral(-3).is_pos()
|
|
False
|
|
>>> Numeral(0).is_pos()
|
|
False
|
|
"""
|
|
return Z3_algebraic_is_pos(self.ctx_ref(), self.ast)
|
|
|
|
def is_neg(self):
|
|
""" Return True if the numeral is negative.
|
|
|
|
>>> Numeral(2).is_neg()
|
|
False
|
|
>>> Numeral(-3).is_neg()
|
|
True
|
|
>>> Numeral(0).is_neg()
|
|
False
|
|
"""
|
|
return Z3_algebraic_is_neg(self.ctx_ref(), self.ast)
|
|
|
|
def is_zero(self):
|
|
""" Return True if the numeral is zero.
|
|
|
|
>>> Numeral(2).is_zero()
|
|
False
|
|
>>> Numeral(-3).is_zero()
|
|
False
|
|
>>> Numeral(0).is_zero()
|
|
True
|
|
>>> sqrt2 = Numeral(2).root(2)
|
|
>>> sqrt2.is_zero()
|
|
False
|
|
>>> (sqrt2 - sqrt2).is_zero()
|
|
True
|
|
"""
|
|
return Z3_algebraic_is_zero(self.ctx_ref(), self.ast)
|
|
|
|
def __add__(self, other):
|
|
""" Return the numeral `self + other`.
|
|
|
|
>>> Numeral(2) + 3
|
|
5
|
|
>>> Numeral(2) + Numeral(4)
|
|
6
|
|
>>> Numeral("2/3") + 1
|
|
5/3
|
|
"""
|
|
return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
|
|
|
def __radd__(self, other):
|
|
""" Return the numeral `other + self`.
|
|
|
|
>>> 3 + Numeral(2)
|
|
5
|
|
"""
|
|
return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
|
|
|
def __sub__(self, other):
|
|
""" Return the numeral `self - other`.
|
|
|
|
>>> Numeral(2) - 3
|
|
-1
|
|
"""
|
|
return Numeral(Z3_algebraic_sub(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
|
|
|
def __rsub__(self, other):
|
|
""" Return the numeral `other - self`.
|
|
|
|
>>> 3 - Numeral(2)
|
|
1
|
|
"""
|
|
return Numeral(Z3_algebraic_sub(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)
|
|
|
|
def __mul__(self, other):
|
|
""" Return the numeral `self * other`.
|
|
>>> Numeral(2) * 3
|
|
6
|
|
"""
|
|
return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
|
|
|
def __rmul__(self, other):
|
|
""" Return the numeral `other * mul`.
|
|
>>> 3 * Numeral(2)
|
|
6
|
|
"""
|
|
return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
|
|
|
def __div__(self, other):
|
|
""" Return the numeral `self / other`.
|
|
>>> Numeral(2) / 3
|
|
2/3
|
|
>>> Numeral(2).root(2) / 3
|
|
0.4714045207?
|
|
>>> Numeral(Sqrt(2)) / Numeral(Sqrt(3))
|
|
0.8164965809?
|
|
"""
|
|
return Numeral(Z3_algebraic_div(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
|
|
|
def __rdiv__(self, other):
|
|
""" Return the numeral `other / self`.
|
|
>>> 3 / Numeral(2)
|
|
3/2
|
|
>>> 3 / Numeral(2).root(2)
|
|
2.1213203435?
|
|
"""
|
|
return Numeral(Z3_algebraic_div(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)
|
|
|
|
def root(self, k):
|
|
""" Return the numeral `self^(1/k)`.
|
|
|
|
>>> sqrt2 = Numeral(2).root(2)
|
|
>>> sqrt2
|
|
1.4142135623?
|
|
>>> sqrt2 * sqrt2
|
|
2
|
|
>>> sqrt2 * 2 + 1
|
|
3.8284271247?
|
|
>>> (sqrt2 * 2 + 1).sexpr()
|
|
'(root-obj (+ (^ x 2) (* (- 2) x) (- 7)) 2)'
|
|
"""
|
|
return Numeral(Z3_algebraic_root(self.ctx_ref(), self.ast, k), self.ctx)
|
|
|
|
def power(self, k):
|
|
""" Return the numeral `self^k`.
|
|
|
|
>>> sqrt3 = Numeral(3).root(2)
|
|
>>> sqrt3
|
|
1.7320508075?
|
|
>>> sqrt3.power(2)
|
|
3
|
|
"""
|
|
return Numeral(Z3_algebraic_power(self.ctx_ref(), self.ast, k), self.ctx)
|
|
|
|
def __pow__(self, k):
|
|
""" Return the numeral `self^k`.
|
|
|
|
>>> sqrt3 = Numeral(3).root(2)
|
|
>>> sqrt3
|
|
1.7320508075?
|
|
>>> sqrt3**2
|
|
3
|
|
"""
|
|
return self.power(k)
|
|
|
|
def __lt__(self, other):
|
|
""" Return True if `self < other`.
|
|
|
|
>>> Numeral(Sqrt(2)) < 2
|
|
True
|
|
>>> Numeral(Sqrt(3)) < Numeral(Sqrt(2))
|
|
False
|
|
>>> Numeral(Sqrt(2)) < Numeral(Sqrt(2))
|
|
False
|
|
"""
|
|
return Z3_algebraic_lt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
|
|
|
def __rlt__(self, other):
|
|
""" Return True if `other < self`.
|
|
|
|
>>> 2 < Numeral(Sqrt(2))
|
|
False
|
|
"""
|
|
return self > other
|
|
|
|
def __gt__(self, other):
|
|
""" Return True if `self > other`.
|
|
|
|
>>> Numeral(Sqrt(2)) > 2
|
|
False
|
|
>>> Numeral(Sqrt(3)) > Numeral(Sqrt(2))
|
|
True
|
|
>>> Numeral(Sqrt(2)) > Numeral(Sqrt(2))
|
|
False
|
|
"""
|
|
return Z3_algebraic_gt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
|
|
|
def __rgt__(self, other):
|
|
""" Return True if `other > self`.
|
|
|
|
>>> 2 > Numeral(Sqrt(2))
|
|
True
|
|
"""
|
|
return self < other
|
|
|
|
|
|
def __le__(self, other):
|
|
""" Return True if `self <= other`.
|
|
|
|
>>> Numeral(Sqrt(2)) <= 2
|
|
True
|
|
>>> Numeral(Sqrt(3)) <= Numeral(Sqrt(2))
|
|
False
|
|
>>> Numeral(Sqrt(2)) <= Numeral(Sqrt(2))
|
|
True
|
|
"""
|
|
return Z3_algebraic_le(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
|
|
|
def __rle__(self, other):
|
|
""" Return True if `other <= self`.
|
|
|
|
>>> 2 <= Numeral(Sqrt(2))
|
|
False
|
|
"""
|
|
return self >= other
|
|
|
|
def __ge__(self, other):
|
|
""" Return True if `self >= other`.
|
|
|
|
>>> Numeral(Sqrt(2)) >= 2
|
|
False
|
|
>>> Numeral(Sqrt(3)) >= Numeral(Sqrt(2))
|
|
True
|
|
>>> Numeral(Sqrt(2)) >= Numeral(Sqrt(2))
|
|
True
|
|
"""
|
|
return Z3_algebraic_ge(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
|
|
|
def __rge__(self, other):
|
|
""" Return True if `other >= self`.
|
|
|
|
>>> 2 >= Numeral(Sqrt(2))
|
|
True
|
|
"""
|
|
return self <= other
|
|
|
|
def __eq__(self, other):
|
|
""" Return True if `self == other`.
|
|
|
|
>>> Numeral(Sqrt(2)) == 2
|
|
False
|
|
>>> Numeral(Sqrt(3)) == Numeral(Sqrt(2))
|
|
False
|
|
>>> Numeral(Sqrt(2)) == Numeral(Sqrt(2))
|
|
True
|
|
"""
|
|
return Z3_algebraic_eq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
|
|
|
def __ne__(self, other):
|
|
""" Return True if `self != other`.
|
|
|
|
>>> Numeral(Sqrt(2)) != 2
|
|
True
|
|
>>> Numeral(Sqrt(3)) != Numeral(Sqrt(2))
|
|
True
|
|
>>> Numeral(Sqrt(2)) != Numeral(Sqrt(2))
|
|
False
|
|
"""
|
|
return Z3_algebraic_neq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
|
|
|
def __str__(self):
|
|
if Z3_is_numeral_ast(self.ctx_ref(), self.ast):
|
|
return str(RatNumRef(self.ast, self.ctx))
|
|
else:
|
|
return str(AlgebraicNumRef(self.ast, self.ctx))
|
|
|
|
def __repr__(self):
|
|
return self.__str__()
|
|
|
|
def sexpr(self):
|
|
return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
|
|
|
|
def as_ast(self):
|
|
return self.ast
|
|
|
|
def ctx_ref(self):
|
|
return self.ctx.ref()
|
|
|
|
def eval_sign_at(p, vs):
|
|
"""
|
|
Evaluate the sign of the polynomial `p` at `vs`. `p` is a Z3
|
|
Expression containing arithmetic operators: +, -, *, ^k where k is
|
|
an integer; and free variables x that is_var(x) is True. Moreover,
|
|
all variables must be real.
|
|
|
|
The result is 1 if the polynomial is positive at the given point,
|
|
-1 if negative, and 0 if zero.
|
|
|
|
>>> x0, x1, x2 = RealVarVector(3)
|
|
>>> eval_sign_at(x0**2 + x1*x2 + 1, (Numeral(0), Numeral(1), Numeral(2)))
|
|
1
|
|
>>> eval_sign_at(x0**2 - 2, [ Numeral(Sqrt(2)) ])
|
|
0
|
|
>>> eval_sign_at((x0 + x1)*(x0 + x2), (Numeral(0), Numeral(Sqrt(2)), Numeral(Sqrt(3))))
|
|
1
|
|
"""
|
|
num = len(vs)
|
|
_vs = (Ast * num)()
|
|
for i in range(num):
|
|
_vs[i] = vs[i].ast
|
|
return Z3_algebraic_eval(p.ctx_ref(), p.as_ast(), num, _vs)
|
|
|
|
def isolate_roots(p, vs=[]):
|
|
"""
|
|
Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the
|
|
roots of the univariate polynomial p(vs[0], ..., vs[len(vs)-1], x_n).
|
|
|
|
Remarks:
|
|
* p is a Z3 expression that contains only arithmetic terms and free variables.
|
|
* forall i in [0, n) vs is a numeral.
|
|
|
|
The result is a list of numerals
|
|
|
|
>>> x0 = RealVar(0)
|
|
>>> isolate_roots(x0**5 - x0 - 1)
|
|
[1.1673039782?]
|
|
>>> x1 = RealVar(1)
|
|
>>> isolate_roots(x0**2 - x1**4 - 1, [ Numeral(Sqrt(3)) ])
|
|
[-1.1892071150?, 1.1892071150?]
|
|
>>> x2 = RealVar(2)
|
|
>>> isolate_roots(x2**2 + x0 - x1, [ Numeral(Sqrt(3)), Numeral(Sqrt(2)) ])
|
|
[]
|
|
"""
|
|
num = len(vs)
|
|
_vs = (Ast * num)()
|
|
for i in range(num):
|
|
_vs[i] = vs[i].ast
|
|
_roots = AstVector(Z3_algebraic_roots(p.ctx_ref(), p.as_ast(), num, _vs), p.ctx)
|
|
return [ Numeral(r) for r in _roots ]
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
if doctest.testmod().failed:
|
|
exit(1)
|
|
|