mirror of
https://github.com/Z3Prover/z3
synced 2025-08-24 20:16:00 +00:00
488 lines
17 KiB
C++
488 lines
17 KiB
C++
/*++
|
|
Copyright (c) 2021 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
Polysat core saturation
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2021-03-19
|
|
Jakob Rath 2021-04-6
|
|
|
|
|
|
TODO: preserve falsification
|
|
- each rule selects a certain premises that are problematic.
|
|
If the problematic premise is false under the current assignment, the newly inferred
|
|
literal should also be false in the assignment in order to preserve conflicts.
|
|
|
|
|
|
TODO: when we check that 'x' is "unary":
|
|
- in principle, 'x' could be any polynomial. However, we need to divide the lhs by x, and we don't have general polynomial division yet.
|
|
so for now we just allow the form 'value*variable'.
|
|
(extension to arbitrary monomials for 'x' should be fairly easy too)
|
|
|
|
--*/
|
|
#include "math/polysat/saturation.h"
|
|
#include "math/polysat/solver.h"
|
|
#include "math/polysat/log.h"
|
|
|
|
namespace polysat {
|
|
|
|
bool inf_saturate::perform(pvar v, conflict& core) {
|
|
for (auto c1 : core) {
|
|
if (!c1->is_ule())
|
|
continue;
|
|
if (c1.is_currently_true(s))
|
|
continue;
|
|
auto c = c1.as_inequality();
|
|
if (try_ugt_x(v, core, c))
|
|
return true;
|
|
if (try_ugt_y(v, core, c))
|
|
return true;
|
|
if (try_ugt_z(v, core, c))
|
|
return true;
|
|
if (try_y_l_ax_and_x_l_z(v, core, c))
|
|
return true;
|
|
if (try_tangent(v, core, c))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
signed_constraint inf_saturate::ineq(bool is_strict, pdd const& lhs, pdd const& rhs) {
|
|
if (is_strict)
|
|
return s.ult(lhs, rhs);
|
|
else
|
|
return s.ule(lhs, rhs);
|
|
}
|
|
|
|
/**
|
|
* Propagate c. It is added to reason and core all other literals in reason are false in current stack.
|
|
* The lemmas outlined in the rules are valid and therefore c is implied.
|
|
*/
|
|
bool inf_saturate::propagate(char const* inf_name, conflict& core, inequality const& _crit1, inequality const& _crit2, signed_constraint& c) {
|
|
|
|
auto crit1 = _crit1.as_signed_constraint();
|
|
auto crit2 = _crit2.as_signed_constraint();
|
|
m_new_constraints.push_back(crit1);
|
|
m_new_constraints.push_back(crit2);
|
|
SASSERT(!crit1.is_currently_true(s));
|
|
|
|
LOG("critical " << m_rule << " " << crit1);
|
|
LOG("consequent " << c << " value: " << c.bvalue(s) << " is-false: " << c.is_currently_false(s) << " " << core.contains(~c));
|
|
|
|
// ensure new core is a conflict
|
|
// TODO: don't we need to check the m_new_constraints too? or maybe that is implicit in the rules (should check it)
|
|
if (!c.is_currently_false(s) && c.bvalue(s) != l_false)
|
|
return false;
|
|
|
|
if (c.bvalue(s) == l_true)
|
|
return false;
|
|
|
|
// avoid loops
|
|
// NOTE:
|
|
// it is not enough to only check whether ~c is already in the core.
|
|
// One example had c: 0 != 0, so c was ignored when inserting it to the core.
|
|
// (But the side conditions in m_new_constraints were useful.)
|
|
bool inserting = false;
|
|
if (!c.is_always_false() && !core.contains(~c))
|
|
inserting = true;
|
|
else
|
|
for (auto d : m_new_constraints)
|
|
if (!d.is_always_true() && !core.contains(d)) {
|
|
inserting = true;
|
|
break;
|
|
}
|
|
if (!inserting)
|
|
return false;
|
|
|
|
core.reset();
|
|
for (auto d : m_new_constraints)
|
|
core.insert(d);
|
|
if (c.bvalue(s) != l_false) // conflict is due to the evaluation of c, so it depends on the variable values
|
|
core.insert_vars(c);
|
|
core.insert(~c);
|
|
core.log_inference(inf_name);
|
|
LOG("Core " << core);
|
|
return true;
|
|
}
|
|
|
|
bool inf_saturate::propagate(char const* inf_name, conflict& core, inequality const& crit1, inequality const& crit2, bool is_strict, pdd const& lhs, pdd const& rhs) {
|
|
signed_constraint c = ineq(is_strict, lhs, rhs);
|
|
return propagate(inf_name, core, crit1, crit2, c);
|
|
}
|
|
|
|
/// Add premises for Ω*(x, y)
|
|
void inf_saturate::push_omega_bisect(pdd const& x, rational x_max, pdd const& y, rational y_max) {
|
|
rational x_val, y_val;
|
|
auto& pddm = x.manager();
|
|
rational bound = pddm.max_value();
|
|
VERIFY(s.try_eval(x, x_val));
|
|
VERIFY(s.try_eval(y, y_val));
|
|
SASSERT(x_val * y_val <= bound);
|
|
|
|
rational x_lo = x_val, x_hi = x_max, y_lo = y_val, y_hi = y_max;
|
|
SASSERT(x_lo <= x_hi && y_lo <= y_hi);
|
|
rational two(2);
|
|
while (x_lo < x_hi || y_lo < y_hi) {
|
|
rational x_mid = div(x_hi + x_lo + 1, two);
|
|
rational y_mid = div(y_hi + y_lo + 1, two);
|
|
if (x_mid * y_mid > bound) {
|
|
x_hi = x_lo < x_hi ? x_mid - 1 : x_lo;
|
|
y_hi = y_lo < y_hi ? y_mid - 1 : y_lo;
|
|
}
|
|
else
|
|
x_lo = x_mid, y_lo = y_mid;
|
|
}
|
|
SASSERT(x_hi == x_lo && y_hi == y_lo);
|
|
SASSERT(x_lo * y_lo <= bound);
|
|
SASSERT((x_lo + 1) * (y_lo + 1) > bound);
|
|
if ((x_lo + 1) * y_lo <= bound) {
|
|
x_hi = x_max;
|
|
while (x_lo < x_hi) {
|
|
rational x_mid = div(x_hi + x_lo + 1, two);
|
|
if (x_mid * y_lo > bound)
|
|
x_hi = x_mid - 1;
|
|
else
|
|
x_lo = x_mid;
|
|
}
|
|
}
|
|
else if (x_lo * (y_lo + 1) <= bound) {
|
|
y_hi = y_max;
|
|
while (y_lo < y_hi) {
|
|
rational y_mid = div(y_hi + y_lo + 1, two);
|
|
if (y_mid * x_lo > bound)
|
|
y_hi = y_mid - 1;
|
|
else
|
|
y_lo = y_mid;
|
|
}
|
|
}
|
|
SASSERT(x_lo * y_lo <= bound);
|
|
SASSERT((x_lo + 1) * y_lo > bound || x_val == x_max);
|
|
SASSERT(x_lo * (y_lo + 1) > bound || y_val == y_max);
|
|
|
|
// inequalities are justified by current assignments to x, y
|
|
// conflict resolution should be able to pick up this as a valid justification.
|
|
// or we resort to the same extension as in the original mul_overflow code
|
|
// where we add explicit equality propagations from the current assignment.
|
|
auto c1 = s.ule(x, pddm.mk_val(x_lo));
|
|
auto c2 = s.ule(y, pddm.mk_val(y_lo));
|
|
m_new_constraints.insert(c1);
|
|
m_new_constraints.insert(c2);
|
|
LOG("bounded " << bound << " : " << x << " " << x_max << " " << y << " " << y_max << " " << c1 << " " << c2);
|
|
}
|
|
|
|
rational inf_saturate::max_value(pdd const& x) {
|
|
if (x.is_var())
|
|
return s.m_viable.max_viable(x.var());
|
|
else if (x.is_val())
|
|
return x.val();
|
|
else
|
|
return x.manager().max_value();
|
|
}
|
|
|
|
void inf_saturate::push_omega(pdd const& x, pdd const& y) {
|
|
m_new_constraints.insert(~s.umul_ovfl(x, y));
|
|
/*
|
|
// determine worst case upper bounds for x, y
|
|
// then extract premises for a non-worst-case bound.
|
|
auto& pddm = x.manager();
|
|
rational x_max = max_value(x);
|
|
rational y_max = max_value(y);
|
|
|
|
LOG("pushing " << x << " " << y);
|
|
|
|
if (x_max * y_max > pddm.max_value())
|
|
push_omega_bisect(x, x_max, y, y_max);
|
|
else {
|
|
for (auto const& c : s.m_viable.get_constraints(y.var()))
|
|
m_new_constraints.insert(c);
|
|
for (auto const& c : s.m_viable.get_constraints(x.var()))
|
|
m_new_constraints.insert(c);
|
|
}
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Match [v] .. <= v
|
|
*/
|
|
bool inf_saturate::is_l_v(pvar v, inequality const& i) {
|
|
return i.rhs == s.var(v);
|
|
}
|
|
|
|
/*
|
|
* Match [v] v <= ...
|
|
*/
|
|
bool inf_saturate::is_g_v(pvar v, inequality const& i) {
|
|
return i.lhs == s.var(v);
|
|
}
|
|
|
|
/*
|
|
* Match [x] x <= y
|
|
*/
|
|
bool inf_saturate::is_x_l_Y(pvar x, inequality const& c, pdd& y) {
|
|
y = c.rhs;
|
|
return is_g_v(x, c);
|
|
}
|
|
|
|
/*
|
|
* Match [x] y <= a*x
|
|
*/
|
|
bool inf_saturate::is_Y_l_Ax(pvar x, inequality const& d, pdd& a, pdd& y) {
|
|
y = d.lhs;
|
|
return is_xY(x, d.rhs, a);
|
|
}
|
|
|
|
bool inf_saturate::verify_Y_l_Ax(pvar x, inequality const& d, pdd const& a, pdd const& y) {
|
|
return d.lhs == y && d.rhs == a * s.var(x);
|
|
}
|
|
|
|
/**
|
|
* Match [coeff*x] coeff*x*Y
|
|
*/
|
|
|
|
bool inf_saturate::is_coeffxY(pdd const& x, pdd const& p, pdd& y) {
|
|
pdd xy = x;
|
|
return x.is_unary() && p.try_div(x.hi().val(), xy) && xy.factor(x.var(), 1, y);
|
|
}
|
|
|
|
/**
|
|
* determine whether values of x * y is non-overflowing.
|
|
*/
|
|
bool inf_saturate::is_non_overflow(pdd const& x, pdd const& y) {
|
|
rational x_val, y_val;
|
|
auto& pddm = x.manager();
|
|
rational bound = rational::power_of_two(pddm.power_of_2());
|
|
return s.try_eval(x, x_val) && s.try_eval(y, y_val) && x_val * y_val < bound;
|
|
}
|
|
|
|
/**
|
|
* Match [v] v*x <= z*x with x a variable
|
|
*/
|
|
bool inf_saturate::is_Xy_l_XZ(pvar v, inequality const& c, pdd& x, pdd& z) {
|
|
return is_xY(v, c.lhs, x) && is_coeffxY(x, c.rhs, z);
|
|
}
|
|
|
|
bool inf_saturate::verify_Xy_l_XZ(pvar v, inequality const& c, pdd const& x, pdd const& z) {
|
|
return c.lhs == s.var(v) * x && c.rhs == z * x;
|
|
}
|
|
|
|
/**
|
|
* Match [z] yx <= zx with x a variable
|
|
*/
|
|
bool inf_saturate::is_YX_l_zX(pvar z, inequality const& c, pdd& x, pdd& y) {
|
|
return is_xY(z, c.rhs, x) && is_coeffxY(x, c.lhs, y);
|
|
}
|
|
|
|
bool inf_saturate::verify_YX_l_zX(pvar z, inequality const& c, pdd const& x, pdd const& y) {
|
|
return c.lhs == y * x && c.rhs == s.var(z) * x;
|
|
}
|
|
|
|
/**
|
|
* Match [x] xY <= xZ
|
|
*/
|
|
bool inf_saturate::is_xY_l_xZ(pvar x, inequality const& c, pdd& y, pdd& z) {
|
|
return is_xY(x, c.lhs, y) && is_xY(x, c.rhs, z);
|
|
}
|
|
|
|
/**
|
|
* Match xy = x * Y
|
|
*/
|
|
bool inf_saturate::is_xY(pvar x, pdd const& xy, pdd& y) {
|
|
return xy.degree(x) == 1 && xy.factor(x, 1, y);
|
|
}
|
|
|
|
/**
|
|
* Implement the inferences
|
|
* [x] zx > yx ==> Ω*(x,y) \/ z > y
|
|
* [x] yx <= zx ==> Ω*(x,y) \/ y <= z \/ x = 0
|
|
*/
|
|
bool inf_saturate::try_ugt_x(pvar v, conflict& core, inequality const& xy_l_xz) {
|
|
set_rule("zx <= yx");
|
|
pdd x = s.var(v);
|
|
pdd y = x;
|
|
pdd z = x;
|
|
if (!is_xY_l_xZ(v, xy_l_xz, y, z))
|
|
return false;
|
|
if (!is_non_overflow(x, y))
|
|
return false;
|
|
if (!xy_l_xz.is_strict && s.get_value(v).is_zero())
|
|
return false;
|
|
|
|
m_new_constraints.reset();
|
|
if (!xy_l_xz.is_strict)
|
|
m_new_constraints.push_back(~s.eq(x));
|
|
push_omega(x, y);
|
|
return propagate("ugt_x", core, xy_l_xz, xy_l_xz, xy_l_xz.is_strict, y, z);
|
|
}
|
|
|
|
/// [y] z' <= y /\ zx > yx ==> Ω*(x,y) \/ zx > z'x
|
|
/// [y] z' <= y /\ yx <= zx ==> Ω*(x,y) \/ z'x <= zx
|
|
bool inf_saturate::try_ugt_y(pvar v, conflict& core, inequality const& le_y, inequality const& yx_l_zx, pdd const& x, pdd const& z) {
|
|
SASSERT(is_l_v(v, le_y));
|
|
SASSERT(verify_Xy_l_XZ(v, yx_l_zx, x, z));
|
|
pdd const y = s.var(v);
|
|
if (!is_non_overflow(x, y))
|
|
return false;
|
|
pdd const& z_prime = le_y.lhs;
|
|
m_new_constraints.reset();
|
|
push_omega(x, y);
|
|
return propagate("ugt_y", core, le_y, yx_l_zx, yx_l_zx.is_strict || le_y.is_strict, z_prime * x, z * x);
|
|
}
|
|
|
|
bool inf_saturate::try_ugt_y(pvar v, conflict& core, inequality const& yx_l_zx) {
|
|
set_rule("[y] z' <= y & yx <= zx");
|
|
pdd x = s.var(v);
|
|
pdd z = x;
|
|
if (!is_Xy_l_XZ(v, yx_l_zx, x, z))
|
|
return false;
|
|
for (auto si : s.m_search) {
|
|
if (!si.is_boolean())
|
|
continue;
|
|
if (si.is_resolved())
|
|
continue;
|
|
auto dd = s.lit2cnstr(si.lit());
|
|
if (!dd->is_ule())
|
|
continue;
|
|
auto le_y = dd.as_inequality();
|
|
if (is_l_v(v, le_y) && try_ugt_y(v, core, le_y, yx_l_zx, x, z))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// [x] y <= ax /\ x <= z (non-overflow case)
|
|
/// ==> Ω*(a, z) \/ y <= az
|
|
bool inf_saturate::try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& y_l_ax) {
|
|
set_rule("[x] y <= ax & x <= z");
|
|
pdd y = s.var(x);
|
|
pdd a = y;
|
|
if (!is_Y_l_Ax(x, y_l_ax, a, y))
|
|
return false;
|
|
if (a.is_one())
|
|
return false;
|
|
for (auto si : s.m_search) {
|
|
if (!si.is_boolean())
|
|
continue;
|
|
if (si.is_resolved())
|
|
continue;
|
|
auto dd = s.lit2cnstr(si.lit());
|
|
if (!dd->is_ule())
|
|
continue;
|
|
auto x_l_z = dd.as_inequality();
|
|
if (is_g_v(x, x_l_z) && try_y_l_ax_and_x_l_z(x, core, y_l_ax, x_l_z, a, y))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool inf_saturate::try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& y_l_ax, inequality const& x_l_z, pdd const& a, pdd const& y) {
|
|
SASSERT(is_g_v(x, x_l_z));
|
|
SASSERT(verify_Y_l_Ax(x, y_l_ax, a, y));
|
|
pdd z = x_l_z.rhs;
|
|
if (!is_non_overflow(a, z))
|
|
return false;
|
|
m_new_constraints.reset();
|
|
push_omega(a, z);
|
|
return propagate("y_l_ax_and_x_l_z", core, y_l_ax, x_l_z, x_l_z.is_strict || y_l_ax.is_strict, y, a * z);
|
|
}
|
|
|
|
|
|
/// [z] z <= y' /\ zx > yx ==> Ω*(x,y') \/ y'x > yx
|
|
/// [z] z <= y' /\ yx <= zx ==> Ω*(x,y') \/ yx <= y'x
|
|
bool inf_saturate::try_ugt_z(pvar z, conflict& core, inequality const& yx_l_zx) {
|
|
set_rule("[z] z <= y' && zx > yx");
|
|
pdd y = s.var(z);
|
|
pdd x = y;
|
|
if (!is_YX_l_zX(z, yx_l_zx, x, y))
|
|
return false;
|
|
for (auto si : s.m_search) {
|
|
if (!si.is_boolean())
|
|
continue;
|
|
if (si.is_resolved())
|
|
continue;
|
|
auto dd = s.lit2cnstr(si.lit());
|
|
if (!dd->is_ule())
|
|
continue;
|
|
auto z_l_y = dd.as_inequality();
|
|
if (is_g_v(z, z_l_y) && try_ugt_z(z, core, z_l_y, yx_l_zx, x, y))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool inf_saturate::try_ugt_z(pvar z, conflict& core, inequality const& z_l_y, inequality const& yx_l_zx, pdd const& x, pdd const& y) {
|
|
SASSERT(is_g_v(z, z_l_y));
|
|
SASSERT(verify_YX_l_zX(z, yx_l_zx, x, y));
|
|
pdd const& y_prime = z_l_y.rhs;
|
|
if (!is_non_overflow(x, y_prime))
|
|
return false;
|
|
m_new_constraints.reset();
|
|
push_omega(x, y_prime);
|
|
// yx <= y'x
|
|
return propagate("ugt_z", core, yx_l_zx, z_l_y, z_l_y.is_strict || yx_l_zx.is_strict, y * x, y_prime * x);
|
|
}
|
|
|
|
// [x] p(x) <= q(x) where value(p) > value(q)
|
|
// ==> q <= value(q) => p <= value(q)
|
|
//
|
|
// for strict?
|
|
// p(x) < q(x) where value(p) >= value(q)
|
|
// ==> value(p) <= p => value(p) < q
|
|
|
|
bool inf_saturate::try_tangent(pvar v, conflict& core, inequality const& c) {
|
|
set_rule("[x] p(x) <= q(x) where value(p) > value(q)");
|
|
if (c.is_strict)
|
|
return false;
|
|
if (!c.src->contains_var(v))
|
|
return false;
|
|
if (c.lhs.is_val() || c.rhs.is_val())
|
|
return false;
|
|
|
|
pdd q_l(c.lhs), e_l(c.lhs), q_r(c.rhs), e_r(c.rhs);
|
|
bool is_linear = true;
|
|
is_linear &= c.lhs.degree(v) <= 1;
|
|
is_linear &= c.rhs.degree(v) <= 1;
|
|
if (c.lhs.degree(v) == 1) {
|
|
c.lhs.factor(v, 1, q_l, e_l);
|
|
is_linear &= q_l.is_val();
|
|
}
|
|
if (c.rhs.degree(v) == 1) {
|
|
c.rhs.factor(v, 1, q_r, e_r);
|
|
is_linear &= q_r.is_val();
|
|
}
|
|
if (is_linear)
|
|
return false;
|
|
|
|
if (!c.as_signed_constraint().is_currently_false(s))
|
|
return false;
|
|
rational l_val, r_val;
|
|
if (!s.try_eval(c.lhs, l_val))
|
|
return false;
|
|
if (!s.try_eval(c.rhs, r_val))
|
|
return false;
|
|
SASSERT(c.is_strict || l_val > r_val);
|
|
SASSERT(!c.is_strict || l_val >= r_val);
|
|
m_new_constraints.reset();
|
|
m_new_constraints.push_back(c.as_signed_constraint());
|
|
if (c.is_strict) {
|
|
auto d = s.ule(l_val, c.lhs);
|
|
if (d.bvalue(s) == l_false) // it is a different value conflict that contains v
|
|
return false;
|
|
m_new_constraints.push_back(d);
|
|
auto conseq = s.ult(r_val, c.rhs);
|
|
return propagate("tangent (strict)", core, c, c, conseq);
|
|
}
|
|
else {
|
|
auto d = s.ule(c.rhs, r_val);
|
|
if (d.bvalue(s) == l_false) // it is a different value conflict that contains v
|
|
return false;
|
|
m_new_constraints.push_back(d);
|
|
auto conseq = s.ule(c.lhs, r_val);
|
|
return propagate("tangent (non-strict)", core, c, c, conseq);
|
|
}
|
|
}
|
|
|
|
}
|