3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-27 02:45:51 +00:00
z3/src/sat/sat_solver/inc_sat_solver.cpp
Nikolaj Bjorner f951372f03 fix regression in internalizing bit-vectors, reported by Mikolas Janota
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2016-03-18 13:54:42 -07:00

482 lines
16 KiB
C++

/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
inc_sat_solver.cpp
Abstract:
incremental solver based on SAT core.
Author:
Nikolaj Bjorner (nbjorner) 2014-7-30
Notes:
--*/
#include "solver.h"
#include "tactical.h"
#include "sat_solver.h"
#include "tactic2solver.h"
#include "aig_tactic.h"
#include "propagate_values_tactic.h"
#include "max_bv_sharing_tactic.h"
#include "card2bv_tactic.h"
#include "bit_blaster_tactic.h"
#include "simplify_tactic.h"
#include "goal2sat.h"
#include "ast_pp.h"
#include "model_smt2_pp.h"
#include "filter_model_converter.h"
#include "bit_blaster_model_converter.h"
#include "ast_translation.h"
// incremental SAT solver.
class inc_sat_solver : public solver {
ast_manager& m;
sat::solver m_solver;
goal2sat m_goal2sat;
params_ref m_params;
bool m_optimize_model; // parameter
expr_ref_vector m_fmls;
expr_ref_vector m_asmsf;
unsigned_vector m_fmls_lim;
unsigned_vector m_asms_lim;
unsigned_vector m_fmls_head_lim;
unsigned m_fmls_head;
expr_ref_vector m_core;
atom2bool_var m_map;
model_ref m_model;
scoped_ptr<bit_blaster_rewriter> m_bb_rewriter;
tactic_ref m_preprocess;
unsigned m_num_scopes;
sat::literal_vector m_asms;
goal_ref_buffer m_subgoals;
proof_converter_ref m_pc;
model_converter_ref m_mc;
model_converter_ref m_mc0;
expr_dependency_ref m_dep_core;
svector<double> m_weights;
std::string m_unknown;
typedef obj_map<expr, sat::literal> dep2asm_t;
public:
inc_sat_solver(ast_manager& m, params_ref const& p):
m(m), m_solver(p, m.limit(), 0),
m_params(p), m_optimize_model(false),
m_fmls(m),
m_asmsf(m),
m_fmls_head(0),
m_core(m),
m_map(m),
m_num_scopes(0),
m_dep_core(m),
m_unknown("no reason given") {
m_params.set_bool("elim_vars", false);
m_solver.updt_params(m_params);
init_preprocess();
}
virtual ~inc_sat_solver() {}
virtual solver* translate(ast_manager& dst_m, params_ref const& p) {
ast_translation tr(m, dst_m);
if (m_num_scopes > 0) {
throw default_exception("Cannot translate sat solver at non-base level");
}
inc_sat_solver* result = alloc(inc_sat_solver, dst_m, p);
expr_ref fml(dst_m);
for (unsigned i = 0; i < m_fmls.size(); ++i) {
fml = tr(m_fmls[i].get());
result->m_fmls.push_back(fml);
}
for (unsigned i = 0; i < m_asmsf.size(); ++i) {
fml = tr(m_asmsf[i].get());
result->m_asmsf.push_back(fml);
}
return result;
}
virtual void set_progress_callback(progress_callback * callback) {}
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions) {
return check_sat(num_assumptions, assumptions, 0, 0);
}
void display_weighted(std::ostream& out, unsigned sz, expr * const * assumptions, unsigned const* weights) {
m_weights.reset();
if (weights != 0) {
for (unsigned i = 0; i < sz; ++i) m_weights.push_back(weights[i]);
}
m_solver.pop_to_base_level();
dep2asm_t dep2asm;
VERIFY(l_true == internalize_formulas());
VERIFY(l_true == internalize_assumptions(sz, assumptions, dep2asm));
svector<unsigned> nweights;
for (unsigned i = 0; i < m_asms.size(); ++i) {
nweights.push_back((unsigned) m_weights[i]);
}
m_solver.display_wcnf(out, m_asms.size(), m_asms.c_ptr(), nweights.c_ptr());
}
lbool check_sat(unsigned sz, expr * const * assumptions, double const* weights, double max_weight) {
m_weights.reset();
if (weights != 0) {
m_weights.append(sz, weights);
}
SASSERT(m_weights.empty() == (m_weights.c_ptr() == 0));
m_solver.pop_to_base_level();
dep2asm_t dep2asm;
m_model = 0;
lbool r = internalize_formulas();
if (r != l_true) return r;
r = internalize_assumptions(sz, assumptions, dep2asm);
SASSERT(sz == m_asms.size());
if (r != l_true) return r;
r = m_solver.check(m_asms.size(), m_asms.c_ptr(), m_weights.c_ptr(), max_weight);
switch (r) {
case l_true:
if (sz > 0 && !weights) {
check_assumptions(dep2asm);
}
break;
case l_false:
// TBD: expr_dependency core is not accounted for.
if (sz > 0) {
extract_core(dep2asm);
}
break;
default:
break;
}
return r;
}
virtual void push() {
internalize_formulas();
m_solver.user_push();
++m_num_scopes;
m_fmls_lim.push_back(m_fmls.size());
m_asms_lim.push_back(m_asmsf.size());
m_fmls_head_lim.push_back(m_fmls_head);
if (m_bb_rewriter) m_bb_rewriter->push();
m_map.push();
}
virtual void pop(unsigned n) {
if (n > m_num_scopes) { // allow inc_sat_solver to
n = m_num_scopes; // take over for another solver.
}
if (m_bb_rewriter) m_bb_rewriter->pop(n);
m_map.pop(n);
SASSERT(n <= m_num_scopes);
m_solver.user_pop(n);
m_num_scopes -= n;
while (n > 0) {
m_fmls_head = m_fmls_head_lim.back();
m_fmls.resize(m_fmls_lim.back());
m_fmls_lim.pop_back();
m_fmls_head_lim.pop_back();
m_asmsf.resize(m_asms_lim.back());
m_asms_lim.pop_back();
--n;
}
}
virtual unsigned get_scope_level() const {
return m_num_scopes;
}
virtual void assert_expr(expr * t, expr * a) {
if (a) {
m_asmsf.push_back(a);
assert_expr(m.mk_implies(a, t));
}
else {
assert_expr(t);
}
}
virtual ast_manager& get_manager() { return m; }
virtual void assert_expr(expr * t) {
TRACE("sat", tout << mk_pp(t, m) << "\n";);
m_fmls.push_back(t);
}
virtual void set_produce_models(bool f) {}
virtual void collect_param_descrs(param_descrs & r) {
goal2sat::collect_param_descrs(r);
sat::solver::collect_param_descrs(r);
}
virtual void updt_params(params_ref const & p) {
m_params = p;
m_params.set_bool("elim_vars", false);
m_solver.updt_params(m_params);
m_optimize_model = m_params.get_bool("optimize_model", false);
}
virtual void collect_statistics(statistics & st) const {
if (m_preprocess) m_preprocess->collect_statistics(st);
m_solver.collect_statistics(st);
}
virtual void get_unsat_core(ptr_vector<expr> & r) {
r.reset();
r.append(m_core.size(), m_core.c_ptr());
}
virtual void get_model(model_ref & mdl) {
if (!m_model.get()) {
extract_model();
}
mdl = m_model;
}
virtual proof * get_proof() {
UNREACHABLE();
return 0;
}
virtual std::string reason_unknown() const {
return m_unknown;
}
virtual void set_reason_unknown(char const* msg) {
m_unknown = msg;
}
virtual void get_labels(svector<symbol> & r) {
}
virtual unsigned get_num_assertions() const {
return m_fmls.size();
}
virtual expr * get_assertion(unsigned idx) const {
return m_fmls[idx];
}
virtual unsigned get_num_assumptions() const {
return m_asmsf.size();
}
virtual expr * get_assumption(unsigned idx) const {
return m_asmsf[idx];
}
void init_preprocess() {
if (m_preprocess) {
m_preprocess->reset();
}
if (!m_bb_rewriter) {
m_bb_rewriter = alloc(bit_blaster_rewriter, m, m_params);
}
params_ref simp2_p = m_params;
simp2_p.set_bool("som", true);
simp2_p.set_bool("pull_cheap_ite", true);
simp2_p.set_bool("push_ite_bv", false);
simp2_p.set_bool("local_ctx", true);
simp2_p.set_uint("local_ctx_limit", 10000000);
simp2_p.set_bool("flat", true); // required by som
simp2_p.set_bool("hoist_mul", false); // required by som
simp2_p.set_bool("elim_and", true);
m_preprocess =
and_then(mk_card2bv_tactic(m, m_params),
using_params(mk_simplify_tactic(m), simp2_p),
mk_max_bv_sharing_tactic(m),
mk_bit_blaster_tactic(m, m_bb_rewriter.get()),
//mk_aig_tactic(),
using_params(mk_simplify_tactic(m), simp2_p));
for (unsigned i = 0; i < m_num_scopes; ++i) {
m_bb_rewriter->push();
}
m_preprocess->reset();
}
private:
lbool internalize_goal(goal_ref& g, dep2asm_t& dep2asm) {
m_mc.reset();
m_pc.reset();
m_dep_core.reset();
m_subgoals.reset();
init_preprocess();
SASSERT(g->models_enabled());
SASSERT(!g->proofs_enabled());
TRACE("sat", g->display(tout););
try {
(*m_preprocess)(g, m_subgoals, m_mc, m_pc, m_dep_core);
}
catch (tactic_exception & ex) {
IF_VERBOSE(0, verbose_stream() << "exception in tactic " << ex.msg() << "\n";);
m_preprocess = 0;
m_bb_rewriter = 0;
return l_undef;
}
if (m_subgoals.size() != 1) {
IF_VERBOSE(0, verbose_stream() << "size of subgoals is not 1, it is: " << m_subgoals.size() << "\n";);
return l_undef;
}
g = m_subgoals[0];
TRACE("sat", g->display_with_dependencies(tout););
m_goal2sat(*g, m_params, m_solver, m_map, dep2asm, true);
return l_true;
}
lbool internalize_assumptions(unsigned sz, expr* const* asms, dep2asm_t& dep2asm) {
if (sz == 0) {
m_asms.shrink(0);
return l_true;
}
goal_ref g = alloc(goal, m, true, true); // models and cores are enabled.
for (unsigned i = 0; i < sz; ++i) {
g->assert_expr(asms[i], m.mk_leaf(asms[i]));
}
lbool res = internalize_goal(g, dep2asm);
if (res == l_true) {
extract_assumptions(sz, asms, dep2asm);
}
return res;
}
lbool internalize_formulas() {
if (m_fmls_head == m_fmls.size()) {
return l_true;
}
dep2asm_t dep2asm;
goal_ref g = alloc(goal, m, true, false); // models, maybe cores are enabled
for (; m_fmls_head < m_fmls.size(); ++m_fmls_head) {
g->assert_expr(m_fmls[m_fmls_head].get());
}
return internalize_goal(g, dep2asm);
}
void extract_assumptions(unsigned sz, expr* const* asms, dep2asm_t& dep2asm) {
m_asms.reset();
unsigned j = 0;
sat::literal lit;
for (unsigned i = 0; i < sz; ++i) {
if (dep2asm.find(asms[i], lit)) {
SASSERT(lit.var() <= m_solver.num_vars());
m_asms.push_back(lit);
if (i != j && !m_weights.empty()) {
m_weights[j] = m_weights[i];
}
++j;
}
}
SASSERT(dep2asm.size() == m_asms.size());
}
void extract_core(dep2asm_t& dep2asm) {
u_map<expr*> asm2dep;
dep2asm_t::iterator it = dep2asm.begin(), end = dep2asm.end();
for (; it != end; ++it) {
expr* e = it->m_key;
asm2dep.insert(it->m_value.index(), e);
}
sat::literal_vector const& core = m_solver.get_core();
TRACE("sat",
dep2asm_t::iterator it2 = dep2asm.begin();
dep2asm_t::iterator end2 = dep2asm.end();
for (; it2 != end2; ++it2) {
tout << mk_pp(it2->m_key, m) << " |-> " << sat::literal(it2->m_value) << "\n";
}
tout << "core: ";
for (unsigned i = 0; i < core.size(); ++i) {
tout << core[i] << " ";
}
tout << "\n";
);
m_core.reset();
for (unsigned i = 0; i < core.size(); ++i) {
expr* e;
VERIFY(asm2dep.find(core[i].index(), e));
m_core.push_back(e);
}
}
void check_assumptions(dep2asm_t& dep2asm) {
sat::model const & ll_m = m_solver.get_model();
dep2asm_t::iterator it = dep2asm.begin(), end = dep2asm.end();
for (; it != end; ++it) {
sat::literal lit = it->m_value;
if (sat::value_at(lit, ll_m) != l_true) {
IF_VERBOSE(0, verbose_stream() << mk_pp(it->m_key, m) << " does not evaluate to true\n";
verbose_stream() << m_asms << "\n";
m_solver.display_assignment(verbose_stream());
m_solver.display(verbose_stream()););
throw default_exception("bad state");
}
}
}
void extract_model() {
TRACE("sat", tout << "retrieve model\n";);
if (!m_solver.model_is_current()) {
m_model = 0;
return;
}
sat::model const & ll_m = m_solver.get_model();
model_ref md = alloc(model, m);
atom2bool_var::iterator it = m_map.begin();
atom2bool_var::iterator end = m_map.end();
for (; it != end; ++it) {
expr * n = it->m_key;
if (is_app(n) && to_app(n)->get_num_args() > 0) {
continue;
}
sat::bool_var v = it->m_value;
switch (sat::value_at(v, ll_m)) {
case l_true:
md->register_decl(to_app(n)->get_decl(), m.mk_true());
break;
case l_false:
md->register_decl(to_app(n)->get_decl(), m.mk_false());
break;
default:
break;
}
}
m_model = md;
if (m_bb_rewriter.get() && !m_bb_rewriter->const2bits().empty()) {
m_mc0 = concat(m_mc0.get(), mk_bit_blaster_model_converter(m, m_bb_rewriter->const2bits()));
}
if (m_mc0) {
(*m_mc0)(m_model);
}
SASSERT(m_model);
DEBUG_CODE(
for (unsigned i = 0; i < m_fmls.size(); ++i) {
expr_ref tmp(m);
if (m_model->eval(m_fmls[i].get(), tmp, true)) {
CTRACE("sat", !m.is_true(tmp),
tout << "Evaluation failed: " << mk_pp(m_fmls[i].get(), m)
<< " to " << tmp << "\n";
model_smt2_pp(tout, m, *(m_model.get()), 0););
SASSERT(m.is_true(tmp));
}
});
}
};
solver* mk_inc_sat_solver(ast_manager& m, params_ref const& p) {
return alloc(inc_sat_solver, m, p);
}
lbool inc_sat_check_sat(solver& _s, unsigned sz, expr*const* soft, rational const* _weights, rational const& max_weight) {
inc_sat_solver& s = dynamic_cast<inc_sat_solver&>(_s);
vector<double> weights;
for (unsigned i = 0; _weights && i < sz; ++i) {
weights.push_back(_weights[i].get_double());
}
return s.check_sat(sz, soft, weights.c_ptr(), max_weight.get_double());
}
void inc_sat_display(std::ostream& out, solver& _s, unsigned sz, expr*const* soft, rational const* _weights) {
inc_sat_solver& s = dynamic_cast<inc_sat_solver&>(_s);
vector<unsigned> weights;
for (unsigned i = 0; _weights && i < sz; ++i) {
if (!_weights[i].is_unsigned()) {
throw default_exception("Cannot display weights that are not integers");
}
weights.push_back(_weights[i].get_unsigned());
}
return s.display_weighted(out, sz, soft, weights.c_ptr());
}