3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00
z3/src/sat/smt/euf_proof.cpp
Nikolaj Bjorner b169292743 add parameter descriptions
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2022-08-16 08:26:53 -07:00

196 lines
6.5 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
euf_proof.cpp
Abstract:
Proof logging facilities.
Author:
Nikolaj Bjorner (nbjorner) 2020-08-25
--*/
#include "sat/smt/euf_solver.h"
namespace euf {
void solver::init_drat() {
if (!m_drat_initialized) {
get_drat().add_theory(get_id(), symbol("euf"));
get_drat().add_theory(m.get_basic_family_id(), symbol("bool"));
}
m_drat_initialized = true;
}
void solver::drat_log_params(func_decl* f) {
for (unsigned i = f->get_num_parameters(); i-- > 0; ) {
auto const& p = f->get_parameter(i);
if (!p.is_ast())
continue;
ast* a = p.get_ast();
if (is_func_decl(a))
drat_log_decl(to_func_decl(a));
}
}
void solver::drat_log_expr1(expr* e) {
if (is_app(e)) {
app* a = to_app(e);
drat_log_params(a->get_decl());
drat_log_decl(a->get_decl());
std::stringstream strm;
strm << mk_ismt2_func(a->get_decl(), m);
get_drat().def_begin('e', e->get_id(), strm.str());
for (expr* arg : *a)
get_drat().def_add_arg(arg->get_id());
get_drat().def_end();
}
else if (is_var(e)) {
var* v = to_var(e);
get_drat().def_begin('v', v->get_id(), "" + mk_pp(e->get_sort(), m));
get_drat().def_add_arg(v->get_idx());
get_drat().def_end();
}
else if (is_quantifier(e)) {
quantifier* q = to_quantifier(e);
std::stringstream strm;
strm << "(" << (is_forall(q) ? "forall" : (is_exists(q) ? "exists" : "lambda"));
for (unsigned i = 0; i < q->get_num_decls(); ++i)
strm << " (" << q->get_decl_name(i) << " " << mk_pp(q->get_decl_sort(i), m) << ")";
strm << ")";
get_drat().def_begin('q', q->get_id(), strm.str());
get_drat().def_add_arg(q->get_expr()->get_id());
get_drat().def_end();
}
else
UNREACHABLE();
m_drat_asts.insert(e);
push(insert_obj_trail<ast>(m_drat_asts, e));
}
void solver::drat_log_expr(expr* e) {
if (m_drat_asts.contains(e))
return;
ptr_vector<expr>::scoped_stack _sc(m_drat_todo);
m_drat_todo.push_back(e);
while (!m_drat_todo.empty()) {
e = m_drat_todo.back();
unsigned sz = m_drat_todo.size();
if (is_app(e))
for (expr* arg : *to_app(e))
if (!m_drat_asts.contains(arg))
m_drat_todo.push_back(arg);
if (is_quantifier(e)) {
expr* arg = to_quantifier(e)->get_expr();
if (!m_drat_asts.contains(arg))
m_drat_todo.push_back(arg);
}
if (m_drat_todo.size() != sz)
continue;
if (!m_drat_asts.contains(e))
drat_log_expr1(e);
m_drat_todo.pop_back();
}
}
void solver::drat_bool_def(sat::bool_var v, expr* e) {
if (!use_drat())
return;
drat_log_expr(e);
get_drat().bool_def(v, e->get_id());
}
void solver::drat_log_decl(func_decl* f) {
if (f->get_family_id() != null_family_id)
return;
if (m_drat_asts.contains(f))
return;
m_drat_asts.insert(f);
push(insert_obj_trail< ast>(m_drat_asts, f));
std::ostringstream strm;
smt2_pp_environment_dbg env(m);
ast_smt2_pp(strm, f, env);
get_drat().def_begin('f', f->get_small_id(), strm.str());
get_drat().def_end();
}
/**
* \brief logs antecedents to a proof trail.
*
* NB with theories, this is not a pure EUF justification,
* It is true modulo EUF and previously logged certificates
* so it isn't necessarily an axiom over EUF,
* We will here leave it to the EUF checker to perform resolution steps.
*/
void solver::log_antecedents(literal l, literal_vector const& r) {
TRACE("euf", log_antecedents(tout, l, r););
if (!use_drat())
return;
literal_vector lits;
for (literal lit : r)
lits.push_back(~lit);
if (l != sat::null_literal)
lits.push_back(l);
get_drat().add(lits, sat::status::th(true, get_id()));
}
void solver::log_antecedents(std::ostream& out, literal l, literal_vector const& r) {
for (sat::literal l : r) {
expr* n = m_bool_var2expr[l.var()];
out << ~l << ": ";
if (!l.sign()) out << "! ";
out << mk_bounded_pp(n, m) << "\n";
SASSERT(s().value(l) == l_true);
}
if (l != sat::null_literal) {
out << l << ": ";
if (l.sign()) out << "! ";
expr* n = m_bool_var2expr[l.var()];
out << mk_bounded_pp(n, m) << "\n";
}
}
void solver::log_justification(literal l, th_explain const& jst) {
literal_vector lits;
unsigned nv = s().num_vars();
expr_ref_vector eqs(m);
auto add_lit = [&](enode_pair const& eq) {
++nv;
literal lit(nv, false);
eqs.push_back(m.mk_eq(eq.first->get_expr(), eq.second->get_expr()));
drat_eq_def(lit, eqs.back());
return lit;
};
for (auto lit : euf::th_explain::lits(jst))
lits.push_back(~lit);
if (l != sat::null_literal)
lits.push_back(l);
for (auto eq : euf::th_explain::eqs(jst))
lits.push_back(~add_lit(eq));
if (jst.lit_consequent() != sat::null_literal && jst.lit_consequent() != l)
lits.push_back(jst.lit_consequent());
if (jst.eq_consequent().first != nullptr)
lits.push_back(add_lit(jst.eq_consequent()));
get_drat().add(lits, sat::status::th(m_is_redundant, jst.ext().get_id(), jst.get_pragma()));
}
void solver::drat_eq_def(literal lit, expr* eq) {
expr *a = nullptr, *b = nullptr;
VERIFY(m.is_eq(eq, a, b));
drat_log_expr(a);
drat_log_expr(b);
get_drat().def_begin('e', eq->get_id(), std::string("="));
get_drat().def_add_arg(a->get_id());
get_drat().def_add_arg(b->get_id());
get_drat().def_end();
get_drat().bool_def(lit.var(), eq->get_id());
}
}