3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00
z3/src/sat/smt/euf_solver.h
Nikolaj Bjorner f0740bdf60 move user propagte declare to context level
declaration of user propagate functions are declared at context level instead of at solver scope.
2021-12-18 10:56:42 -08:00

450 lines
19 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
euf_solver.h
Abstract:
Solver plugin for EUF
Author:
Nikolaj Bjorner (nbjorner) 2020-08-25
--*/
#pragma once
#include "util/scoped_ptr_vector.h"
#include "util/trail.h"
#include "ast/ast_translation.h"
#include "ast/euf/euf_egraph.h"
#include "ast/rewriter/th_rewriter.h"
#include "tactic/model_converter.h"
#include "sat/sat_extension.h"
#include "sat/smt/atom2bool_var.h"
#include "sat/smt/sat_th.h"
#include "sat/smt/sat_dual_solver.h"
#include "sat/smt/euf_ackerman.h"
#include "sat/smt/user_solver.h"
#include "smt/params/smt_params.h"
namespace euf {
typedef sat::literal literal;
typedef sat::ext_constraint_idx ext_constraint_idx;
typedef sat::ext_justification_idx ext_justification_idx;
typedef sat::literal_vector literal_vector;
typedef sat::bool_var bool_var;
class constraint {
public:
enum class kind_t { conflict, eq, lit };
private:
kind_t m_kind;
public:
constraint(kind_t k) : m_kind(k) {}
kind_t kind() const { return m_kind; }
static constraint& from_idx(size_t z) {
return *reinterpret_cast<constraint*>(sat::constraint_base::idx2mem(z));
}
size_t to_index() const { return sat::constraint_base::mem2base(this); }
};
class clause_pp {
solver& s;
sat::literal_vector const& lits;
public:
clause_pp(solver& s, sat::literal_vector const& lits):s(s), lits(lits) {}
std::ostream& display(std::ostream& out) const;
};
class solver : public sat::extension, public th_internalizer, public th_decompile {
typedef top_sort<euf::enode> deps_t;
friend class ackerman;
class user_sort;
// friend class sat::ba_solver;
struct stats {
unsigned m_ackerman;
unsigned m_final_checks;
stats() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
};
struct scope {
unsigned m_var_lim;
scope(unsigned l) : m_var_lim(l) {}
};
size_t* to_ptr(sat::literal l) { return TAG(size_t*, reinterpret_cast<size_t*>((size_t)(l.index() << 4)), 1); }
size_t* to_ptr(size_t jst) { return TAG(size_t*, reinterpret_cast<size_t*>(jst), 2); }
bool is_literal(size_t* p) const { return GET_TAG(p) == 1; }
bool is_justification(size_t* p) const { return GET_TAG(p) == 2; }
sat::literal get_literal(size_t* p) const {
unsigned idx = static_cast<unsigned>(reinterpret_cast<size_t>(UNTAG(size_t*, p)));
return sat::to_literal(idx >> 4);
}
size_t get_justification(size_t* p) const {
return reinterpret_cast<size_t>(UNTAG(size_t*, p));
}
std::function<::solver*(void)> m_mk_solver;
ast_manager& m;
sat::sat_internalizer& si;
smt_params m_config;
euf::egraph m_egraph;
trail_stack m_trail;
stats m_stats;
th_rewriter m_rewriter;
func_decl_ref_vector m_unhandled_functions;
sat::lookahead* m_lookahead = nullptr;
ast_manager* m_to_m;
sat::sat_internalizer* m_to_si;
scoped_ptr<euf::ackerman> m_ackerman;
user_solver::solver* m_user_propagator = nullptr;
th_solver* m_qsolver = nullptr;
unsigned m_generation = 0;
mutable ptr_vector<expr> m_todo;
ptr_vector<expr> m_bool_var2expr;
ptr_vector<size_t> m_explain;
unsigned m_num_scopes = 0;
unsigned_vector m_var_trail;
svector<scope> m_scopes;
scoped_ptr_vector<th_solver> m_solvers;
ptr_vector<th_solver> m_id2solver;
constraint* m_conflict = nullptr;
constraint* m_eq = nullptr;
constraint* m_lit = nullptr;
// internalization
bool visit(expr* e) override;
bool visited(expr* e) override;
bool post_visit(expr* e, bool sign, bool root) override;
void add_distinct_axiom(app* e, euf::enode* const* args);
void add_not_distinct_axiom(app* e, euf::enode* const* args);
void axiomatize_basic(enode* n);
bool internalize_root(app* e, bool sign, ptr_vector<enode> const& args);
void ensure_merged_tf(euf::enode* n);
euf::enode* mk_true();
euf::enode* mk_false();
// replay
typedef std::tuple<expr_ref, unsigned, sat::bool_var> reinit_t;
vector<reinit_t> m_reinit;
void start_reinit(unsigned num_scopes);
void finish_reinit();
void relevancy_reinit(expr* e);
// extensions
th_solver* get_solver(family_id fid, func_decl* f);
th_solver* sort2solver(sort* s) { return get_solver(s->get_family_id(), nullptr); }
th_solver* func_decl2solver(func_decl* f) { return get_solver(f->get_family_id(), f); }
th_solver* quantifier2solver();
th_solver* expr2solver(expr* e);
th_solver* bool_var2solver(sat::bool_var v);
void add_solver(th_solver* th);
void init_ackerman();
// model building
expr_ref_vector m_values;
obj_map<expr, enode*> m_values2root;
bool include_func_interp(func_decl* f);
void register_macros(model& mdl);
void dependencies2values(user_sort& us, deps_t& deps, model_ref& mdl);
void collect_dependencies(user_sort& us, deps_t& deps);
void values2model(deps_t const& deps, model_ref& mdl);
void validate_model(model& mdl);
void display_validation_failure(std::ostream& out, model& mdl, enode* n);
// solving
void propagate_literals();
void propagate_th_eqs();
bool is_self_propagated(th_eq const& e);
void get_antecedents(literal l, constraint& j, literal_vector& r, bool probing);
void new_diseq(enode* a, enode* b, literal lit);
bool merge_shared_bools();
// proofs
void log_antecedents(std::ostream& out, literal l, literal_vector const& r);
void log_antecedents(literal l, literal_vector const& r);
void log_justification(literal l, th_explain const& jst);
void drat_log_decl(func_decl* f);
void drat_log_expr(expr* n);
void drat_log_expr1(expr* n);
ptr_vector<expr> m_drat_todo;
obj_hashtable<ast> m_drat_asts;
bool m_drat_initialized{ false };
void init_drat();
// relevancy
bool_vector m_relevant_expr_ids;
bool_vector m_relevant_visited;
ptr_vector<expr> m_relevant_todo;
void ensure_dual_solver();
bool init_relevancy();
// invariant
void check_eqc_bool_assignment() const;
void check_missing_bool_enode_propagation() const;
void check_missing_eq_propagation() const;
// diagnosis
std::ostream& display_justification_ptr(std::ostream& out, size_t* j) const;
// constraints
constraint& mk_constraint(constraint*& c, constraint::kind_t k);
constraint& conflict_constraint() { return mk_constraint(m_conflict, constraint::kind_t::conflict); }
constraint& eq_constraint() { return mk_constraint(m_eq, constraint::kind_t::eq); }
constraint& lit_constraint() { return mk_constraint(m_lit, constraint::kind_t::lit); }
// user propagator
void check_for_user_propagator() {
if (!m_user_propagator)
throw default_exception("user propagator must be initialized");
}
public:
solver(ast_manager& m, sat::sat_internalizer& si, params_ref const& p = params_ref());
~solver() override {
if (m_conflict) dealloc(sat::constraint_base::mem2base_ptr(m_conflict));
if (m_eq) dealloc(sat::constraint_base::mem2base_ptr(m_eq));
if (m_lit) dealloc(sat::constraint_base::mem2base_ptr(m_lit));
m_trail.reset();
}
struct scoped_set_translate {
solver& s;
scoped_set_translate(solver& s, ast_manager& m, sat::sat_internalizer& si) :
s(s) {
s.m_to_m = &m;
s.m_to_si = &si;
}
~scoped_set_translate() {
s.m_to_m = &s.m;
s.m_to_si = &s.si;
}
};
struct scoped_generation {
solver& s;
unsigned m_g;
scoped_generation(solver& s, unsigned g):
s(s),
m_g(s.m_generation) {
s.m_generation = g;
}
~scoped_generation() {
s.m_generation = m_g;
}
};
unsigned get_max_generation(expr* e) const;
// accessors
sat::sat_internalizer& get_si() { return si; }
ast_manager& get_manager() { return m; }
enode* get_enode(expr* e) const { return m_egraph.find(e); }
sat::literal expr2literal(expr* e) const { return enode2literal(get_enode(e)); }
sat::literal enode2literal(enode* n) const { return sat::literal(n->bool_var(), false); }
lbool value(enode* n) const { return s().value(enode2literal(n)); }
smt_params const& get_config() const { return m_config; }
region& get_region() { return m_trail.get_region(); }
egraph& get_egraph() { return m_egraph; }
th_solver* fid2solver(family_id fid) const { return m_id2solver.get(fid, nullptr); }
template <typename C>
void push(C const& c) { m_trail.push(c); }
template <typename V>
void push_vec(ptr_vector<V>& vec, V* val) {
vec.push_back(val);
push(push_back_trail< V*, false>(vec));
}
template <typename V>
void push_vec(svector<V>& vec, V val) {
vec.push_back(val);
push(push_back_trail< V, false>(vec));
}
trail_stack& get_trail_stack() { return m_trail; }
void updt_params(params_ref const& p);
void set_lookahead(sat::lookahead* s) override { m_lookahead = s; }
void init_search() override;
double get_reward(literal l, ext_constraint_idx idx, sat::literal_occs_fun& occs) const override;
bool is_extended_binary(ext_justification_idx idx, literal_vector& r) override;
bool is_external(bool_var v) override;
bool propagated(literal l, ext_constraint_idx idx) override;
bool unit_propagate() override;
bool should_research(sat::literal_vector const& core) override;
void add_assumptions(sat::literal_set& assumptions) override;
bool tracking_assumptions() override;
void propagate(literal lit, ext_justification_idx idx);
bool propagate(enode* a, enode* b, ext_justification_idx idx);
void set_conflict(ext_justification_idx idx);
void propagate(literal lit, th_explain* p) { propagate(lit, p->to_index()); }
bool propagate(enode* a, enode* b, th_explain* p) { return propagate(a, b, p->to_index()); }
size_t* to_justification(sat::literal l) { return to_ptr(l); }
void set_conflict(th_explain* p) { set_conflict(p->to_index()); }
bool set_root(literal l, literal r) override;
void flush_roots() override;
void get_antecedents(literal l, ext_justification_idx idx, literal_vector& r, bool probing) override;
void get_antecedents(literal l, th_explain& jst, literal_vector& r, bool probing);
void add_antecedent(enode* a, enode* b);
void add_diseq_antecedent(enode* a, enode* b);
void set_eliminated(bool_var v) override;
void asserted(literal l) override;
sat::check_result check() override;
void push() override;
void pop(unsigned n) override;
void user_push() override;
void user_pop(unsigned n) override;
void pre_simplify() override;
void simplify() override;
// have a way to replace l by r in all constraints
void clauses_modifed() override;
lbool get_phase(bool_var v) override;
std::ostream& display(std::ostream& out) const override;
std::ostream& display_justification(std::ostream& out, ext_justification_idx idx) const override;
std::ostream& display_constraint(std::ostream& out, ext_constraint_idx idx) const override;
euf::egraph::b_pp bpp(enode* n) const { return m_egraph.bpp(n); }
clause_pp pp(literal_vector const& lits) { return clause_pp(*this, lits); }
void collect_statistics(statistics& st) const override;
extension* copy(sat::solver* s) override;
enode* copy(solver& dst_ctx, enode* src_n);
void find_mutexes(literal_vector& lits, vector<literal_vector>& mutexes) override;
void gc() override;
void pop_reinit() override;
bool validate() override;
void init_use_list(sat::ext_use_list& ul) override;
bool is_blocked(literal l, ext_constraint_idx) override;
bool check_model(sat::model const& m) const override;
void gc_vars(unsigned num_vars) override;
bool resource_limits_exceeded() const { return false; } // TODO
// proof
bool use_drat() { return s().get_config().m_drat && (init_drat(), true); }
sat::drat& get_drat() { return s().get_drat(); }
void drat_bool_def(sat::bool_var v, expr* n);
void drat_eq_def(sat::literal lit, expr* eq);
// decompile
bool extract_pb(std::function<void(unsigned sz, literal const* c, unsigned k)>& card,
std::function<void(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k)>& pb) override;
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override;
// internalize
sat::literal internalize(expr* e, bool sign, bool root, bool learned) override;
void internalize(expr* e, bool learned) override;
sat::literal mk_literal(expr* e);
void attach_th_var(enode* n, th_solver* th, theory_var v) { m_egraph.add_th_var(n, v, th->get_id()); }
void attach_node(euf::enode* n);
expr_ref mk_eq(expr* e1, expr* e2);
expr_ref mk_eq(euf::enode* n1, euf::enode* n2) { return mk_eq(n1->get_expr(), n2->get_expr()); }
euf::enode* e_internalize(expr* e);
euf::enode* mk_enode(expr* e, unsigned n, enode* const* args);
expr* bool_var2expr(sat::bool_var v) const { return m_bool_var2expr.get(v, nullptr); }
expr_ref literal2expr(sat::literal lit) const { expr* e = bool_var2expr(lit.var()); return (e && lit.sign()) ? expr_ref(m.mk_not(e), m) : expr_ref(e, m); }
unsigned generation() const { return m_generation; }
sat::literal attach_lit(sat::literal lit, expr* e);
void unhandled_function(func_decl* f);
th_rewriter& get_rewriter() { return m_rewriter; }
void rewrite(expr_ref& e) { m_rewriter(e); }
bool is_shared(euf::enode* n) const;
// relevancy
bool m_relevancy = true;
scoped_ptr<sat::dual_solver> m_dual_solver;
ptr_vector<expr> m_auto_relevant;
unsigned_vector m_auto_relevant_lim;
unsigned m_auto_relevant_scopes = 0;
bool relevancy_enabled() const { return m_relevancy && get_config().m_relevancy_lvl > 0; }
void disable_relevancy(expr* e) { IF_VERBOSE(0, verbose_stream() << "disabling relevancy " << mk_pp(e, m) << "\n"); m_relevancy = false; }
void add_root(unsigned n, sat::literal const* lits);
void add_root(sat::literal_vector const& lits) { add_root(lits.size(), lits.data()); }
void add_root(sat::literal lit) { add_root(1, &lit); }
void add_root(sat::literal a, sat::literal b) { sat::literal lits[2] = {a, b}; add_root(2, lits); }
void add_aux(sat::literal_vector const& lits) { add_aux(lits.size(), lits.data()); }
void add_aux(unsigned n, sat::literal const* lits);
void add_aux(sat::literal a) { sat::literal lits[1] = { a }; add_aux(1, lits); }
void add_aux(sat::literal a, sat::literal b) { sat::literal lits[2] = {a, b}; add_aux(2, lits); }
void add_aux(sat::literal a, sat::literal b, sat::literal c) { sat::literal lits[3] = { a, b, c }; add_aux(3, lits); }
void track_relevancy(sat::bool_var v);
bool is_relevant(expr* e) const;
bool is_relevant(enode* n) const;
void add_auto_relevant(expr* e);
void pop_relevant(unsigned n);
void push_relevant();
// model construction
void update_model(model_ref& mdl);
obj_map<expr, enode*> const& values2root();
void model_updated(model_ref& mdl);
expr* node2value(enode* n) const;
// diagnostics
func_decl_ref_vector const& unhandled_functions() { return m_unhandled_functions; }
// user propagator
void user_propagate_init(
void* ctx,
user_propagator::push_eh_t& push_eh,
user_propagator::pop_eh_t& pop_eh,
user_propagator::fresh_eh_t& fresh_eh);
bool watches_fixed(enode* n) const;
void assign_fixed(enode* n, expr* val, unsigned sz, literal const* explain);
void assign_fixed(enode* n, expr* val, literal_vector const& explain) { assign_fixed(n, val, explain.size(), explain.data()); }
void assign_fixed(enode* n, expr* val, literal explain) { assign_fixed(n, val, 1, &explain); }
void user_propagate_register_final(user_propagator::final_eh_t& final_eh) {
check_for_user_propagator();
m_user_propagator->register_final(final_eh);
}
void user_propagate_register_fixed(user_propagator::fixed_eh_t& fixed_eh) {
check_for_user_propagator();
m_user_propagator->register_fixed(fixed_eh);
}
void user_propagate_register_eq(user_propagator::eq_eh_t& eq_eh) {
check_for_user_propagator();
m_user_propagator->register_eq(eq_eh);
}
void user_propagate_register_diseq(user_propagator::eq_eh_t& diseq_eh) {
check_for_user_propagator();
m_user_propagator->register_diseq(diseq_eh);
}
unsigned user_propagate_register_expr(expr* e) {
check_for_user_propagator();
return m_user_propagator->add_expr(e);
}
// solver factory
::solver* mk_solver() { return m_mk_solver(); }
void set_mk_solver(std::function<::solver*(void)>& mk) { m_mk_solver = mk; }
};
inline std::ostream& operator<<(std::ostream& out, clause_pp const& p) {
return p.display(out);
}
};
inline std::ostream& operator<<(std::ostream& out, euf::solver const& s) {
return s.display(out);
}