mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
move self-checking functionality to inside sat/smt so it can be used on-line and not just off-line. when self-validation fails, use vs, not clause, to check. It allows self-validation without checking and maintaining RUP validation. new options sat.smt.proof.check_rup, sat.smt.proof.check for online validation. z3 sat.smt.proof.check=true sat.euf=true /v:1 sat.smt.proof.check_rup=true /st file.smt2 sat.smt.proof=p.smt2
354 lines
11 KiB
C++
354 lines
11 KiB
C++
/*++
|
|
Copyright (c) 2020 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
recfun_solver.cpp
|
|
|
|
Abstract:
|
|
|
|
Recursive function solver plugin
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2021-02-09
|
|
|
|
--*/
|
|
|
|
#include "ast/rewriter/var_subst.h"
|
|
#include "sat/smt/recfun_solver.h"
|
|
#include "sat/smt/euf_solver.h"
|
|
|
|
|
|
#define TRACEFN(x) TRACE("recfun", tout << x << '\n';)
|
|
|
|
|
|
namespace recfun {
|
|
|
|
|
|
solver::solver(euf::solver& ctx):
|
|
th_euf_solver(ctx, symbol("recfun"), ctx.get_manager().mk_family_id("recfun")),
|
|
m_plugin(*reinterpret_cast<recfun::decl::plugin*>(m.get_plugin(ctx.get_manager().mk_family_id("recfun")))),
|
|
m_util(m_plugin.u()),
|
|
m_disabled_guards(m),
|
|
m_enabled_guards(m),
|
|
m_preds(m) {
|
|
}
|
|
|
|
solver::~solver() {
|
|
reset();
|
|
}
|
|
|
|
void solver::reset() {
|
|
m_stats.reset();
|
|
m_disabled_guards.reset();
|
|
m_enabled_guards.reset();
|
|
m_propagation_queue.reset();
|
|
for (auto & kv : m_guard2pending)
|
|
dealloc(kv.m_value);
|
|
m_guard2pending.reset();
|
|
}
|
|
|
|
expr_ref solver::apply_args(vars const & vars, expr_ref_vector const & args, expr * e) {
|
|
SASSERT(is_standard_order(vars));
|
|
var_subst subst(m, true);
|
|
expr_ref new_body = subst(e, args);
|
|
ctx.get_rewriter()(new_body);
|
|
return new_body;
|
|
}
|
|
|
|
/**
|
|
* For functions f(args) that are given as macros f(vs) = rhs
|
|
*
|
|
* 1. substitute `e.args` for `vs` into the macro rhs
|
|
* 2. add unit clause `f(args) = rhs`
|
|
*/
|
|
void solver::assert_macro_axiom(case_expansion & e) {
|
|
m_stats.m_macro_expansions++;
|
|
TRACEFN("case expansion " << e);
|
|
SASSERT(e.m_def->is_fun_macro());
|
|
auto & vars = e.m_def->get_vars();
|
|
app_ref lhs = e.m_lhs;
|
|
expr_ref rhs = apply_args(vars, e.m_args, e.m_def->get_rhs());
|
|
unsigned generation = std::max(ctx.get_max_generation(lhs), ctx.get_max_generation(rhs));
|
|
euf::solver::scoped_generation _sgen(ctx, generation + 1);
|
|
auto eq = eq_internalize(lhs, rhs);
|
|
add_unit(eq);
|
|
}
|
|
|
|
/**
|
|
* Add case axioms for every case expansion path.
|
|
*
|
|
* assert `p(args) <=> And(guards)` (with CNF on the fly)
|
|
*
|
|
* also body-expand paths that do not depend on any defined fun
|
|
*/
|
|
void solver::assert_case_axioms(case_expansion & e) {
|
|
if (e.m_def->is_fun_macro()) {
|
|
assert_macro_axiom(e);
|
|
return;
|
|
}
|
|
|
|
++m_stats.m_case_expansions;
|
|
TRACEFN("assert_case_axioms " << e
|
|
<< " with " << e.m_def->get_cases().size() << " cases");
|
|
SASSERT(e.m_def->is_fun_defined());
|
|
// add case-axioms for all case-paths
|
|
// assert this was not defined before.
|
|
sat::literal_vector preds;
|
|
auto & vars = e.m_def->get_vars();
|
|
|
|
for (case_def const & c : e.m_def->get_cases()) {
|
|
// applied predicate to `args`
|
|
app_ref pred_applied = c.apply_case_predicate(e.m_args);
|
|
SASSERT(u().owns_app(pred_applied));
|
|
preds.push_back(mk_literal(pred_applied));
|
|
expr_ref_vector guards(m);
|
|
for (auto & g : c.get_guards())
|
|
guards.push_back(apply_args(vars, e.m_args, g));
|
|
if (c.is_immediate()) {
|
|
body_expansion be(pred_applied, c, e.m_args);
|
|
assert_body_axiom(be);
|
|
}
|
|
else if (!is_enabled_guard(pred_applied)) {
|
|
disable_guard(pred_applied, guards);
|
|
continue;
|
|
}
|
|
assert_guard(pred_applied, guards);
|
|
}
|
|
add_clause(preds);
|
|
}
|
|
|
|
void solver::assert_guard(expr* pred_applied, expr_ref_vector const& guards) {
|
|
sat::literal_vector lguards;
|
|
for (expr* ga : guards)
|
|
lguards.push_back(mk_literal(ga));
|
|
add_equiv_and(mk_literal(pred_applied), lguards);
|
|
}
|
|
|
|
void solver::block_core(expr_ref_vector const& core) {
|
|
sat::literal_vector clause;
|
|
for (expr* e : core)
|
|
clause.push_back(~mk_literal(e));
|
|
add_clause(clause);
|
|
}
|
|
|
|
/**
|
|
* make clause `depth_limit => ~guard`
|
|
* the guard appears at a depth below the current cutoff.
|
|
*/
|
|
void solver::disable_guard(expr* guard, expr_ref_vector const& guards) {
|
|
SASSERT(!is_enabled_guard(guard));
|
|
app_ref dlimit = m_util.mk_num_rounds_pred(m_num_rounds);
|
|
expr_ref_vector core(m);
|
|
core.push_back(dlimit);
|
|
core.push_back(guard);
|
|
if (!m_guard2pending.contains(guard)) {
|
|
m_disabled_guards.push_back(guard);
|
|
m_guard2pending.insert(guard, alloc(expr_ref_vector, guards));
|
|
}
|
|
TRACEFN("add clause\n" << core);
|
|
push_c(core);
|
|
}
|
|
|
|
/**
|
|
* For a guarded definition guards => f(vars) = rhs
|
|
* and occurrence f(args)
|
|
*
|
|
* substitute `args` for `vars` in guards, and rhs
|
|
* add axiom guards[args/vars] => f(args) = rhs[args/vars]
|
|
*
|
|
*/
|
|
void solver::assert_body_axiom(body_expansion & e) {
|
|
++m_stats.m_body_expansions;
|
|
recfun::def & d = *e.m_cdef->get_def();
|
|
auto & vars = d.get_vars();
|
|
auto & args = e.m_args;
|
|
SASSERT(is_standard_order(vars));
|
|
sat::literal_vector clause;
|
|
for (auto & g : e.m_cdef->get_guards()) {
|
|
expr_ref guard = apply_args(vars, args, g);
|
|
if (m.is_false(guard))
|
|
return;
|
|
if (m.is_true(guard))
|
|
continue;
|
|
clause.push_back(~mk_literal(guard));
|
|
}
|
|
expr_ref lhs(u().mk_fun_defined(d, args), m);
|
|
expr_ref rhs = apply_args(vars, args, e.m_cdef->get_rhs());
|
|
clause.push_back(eq_internalize(lhs, rhs));
|
|
add_clause(clause);
|
|
}
|
|
|
|
void solver::get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing, sat::proof_hint*& ph) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void solver::asserted(sat::literal l) {
|
|
expr* e = ctx.bool_var2expr(l.var());
|
|
if (!l.sign() && u().is_case_pred(e))
|
|
push_body_expand(e);
|
|
}
|
|
|
|
sat::check_result solver::check() {
|
|
return sat::check_result::CR_DONE;
|
|
}
|
|
|
|
std::ostream& solver::display(std::ostream& out) const {
|
|
return out << "disabled guards:\n" << m_disabled_guards << "\n";
|
|
}
|
|
|
|
void solver::collect_statistics(statistics& st) const {
|
|
st.update("recfun macro expansion", m_stats.m_macro_expansions);
|
|
st.update("recfun case expansion", m_stats.m_case_expansions);
|
|
st.update("recfun body expansion", m_stats.m_body_expansions);
|
|
}
|
|
|
|
euf::th_solver* solver::clone(euf::solver& ctx) {
|
|
return alloc(solver, ctx);
|
|
}
|
|
|
|
bool solver::unit_propagate() {
|
|
force_push();
|
|
if (m_qhead == m_propagation_queue.size())
|
|
return false;
|
|
ctx.push(value_trail<unsigned>(m_qhead));
|
|
for (; m_qhead < m_propagation_queue.size() && !s().inconsistent(); ++m_qhead) {
|
|
auto& p = *m_propagation_queue[m_qhead];
|
|
if (p.is_guard())
|
|
assert_guard(p.guard(), *m_guard2pending[p.guard()]);
|
|
else if (p.is_core())
|
|
block_core(p.core());
|
|
else if (p.is_case())
|
|
assert_case_axioms(p.case_ex());
|
|
else
|
|
assert_body_axiom(p.body());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void solver::push_prop(propagation_item* p) {
|
|
m_propagation_queue.push_back(p);
|
|
ctx.push(push_back_vector<scoped_ptr_vector<propagation_item>>(m_propagation_queue));
|
|
}
|
|
|
|
sat::literal solver::internalize(expr* e, bool sign, bool root, bool redundant) {
|
|
force_push();
|
|
SASSERT(m.is_bool(e));
|
|
if (!visit_rec(m, e, sign, root, redundant)) {
|
|
TRACE("array", tout << mk_pp(e, m) << "\n";);
|
|
return sat::null_literal;
|
|
}
|
|
auto lit = expr2literal(e);
|
|
if (sign)
|
|
lit.neg();
|
|
return lit;
|
|
}
|
|
|
|
void solver::internalize(expr* e, bool redundant) {
|
|
force_push();
|
|
visit_rec(m, e, false, false, redundant);
|
|
}
|
|
|
|
bool solver::visited(expr* e) {
|
|
euf::enode* n = expr2enode(e);
|
|
return n && n->is_attached_to(get_id());
|
|
}
|
|
|
|
bool solver::visit(expr* e) {
|
|
if (visited(e))
|
|
return true;
|
|
if (!is_app(e) || to_app(e)->get_family_id() != get_id()) {
|
|
ctx.internalize(e, m_is_redundant);
|
|
return true;
|
|
}
|
|
m_stack.push_back(sat::eframe(e));
|
|
return false;
|
|
}
|
|
|
|
bool solver::post_visit(expr* e, bool sign, bool root) {
|
|
euf::enode* n = expr2enode(e);
|
|
SASSERT(!n || !n->is_attached_to(get_id()));
|
|
if (!n)
|
|
n = mk_enode(e, false);
|
|
SASSERT(!n->is_attached_to(get_id()));
|
|
euf::theory_var w = mk_var(n);
|
|
ctx.attach_th_var(n, this, w);
|
|
if (u().is_defined(e) && u().has_defs())
|
|
push_case_expand(e);
|
|
return true;
|
|
}
|
|
|
|
void solver::add_assumptions(sat::literal_set& assumptions) {
|
|
if (u().has_defs() || m_disabled_guards.empty()) {
|
|
app_ref dlimit = m_util.mk_num_rounds_pred(m_num_rounds);
|
|
TRACEFN("add_theory_assumption " << dlimit);
|
|
sat::literal assumption = mk_literal(dlimit);
|
|
assumptions.insert(assumption);
|
|
s().assign_scoped(assumption);
|
|
for (auto g : m_disabled_guards) {
|
|
assumption = ~mk_literal(g);
|
|
assumptions.insert(assumption);
|
|
s().assign_scoped(assumption);
|
|
}
|
|
}
|
|
for (expr* g : m_enabled_guards)
|
|
push_guard(g);
|
|
}
|
|
|
|
bool solver::should_research(sat::literal_vector const& core) {
|
|
bool found = false;
|
|
unsigned min_gen = UINT_MAX;
|
|
expr* to_delete = nullptr;
|
|
unsigned n = 0;
|
|
for (sat::literal lit : core) {
|
|
expr* e = ctx.bool_var2expr(lit.var());
|
|
if (lit.sign() && is_disabled_guard(e)) {
|
|
found = true;
|
|
unsigned gen = ctx.get_max_generation(e);
|
|
if (gen < min_gen)
|
|
n = 0;
|
|
|
|
if (gen <= min_gen && s().rand()() % (++n) == 0) {
|
|
to_delete = e;
|
|
min_gen = gen;
|
|
}
|
|
}
|
|
else if (u().is_num_rounds(e))
|
|
found = true;
|
|
}
|
|
if (found) {
|
|
++m_num_rounds;
|
|
if (!to_delete && !m_disabled_guards.empty())
|
|
to_delete = m_disabled_guards.back();
|
|
if (to_delete) {
|
|
m_disabled_guards.erase(to_delete);
|
|
m_enabled_guards.push_back(to_delete);
|
|
IF_VERBOSE(2, verbose_stream() << "(smt.recfun :enable-guard " << mk_pp(to_delete, m) << ")\n");
|
|
}
|
|
else {
|
|
IF_VERBOSE(2, verbose_stream() << "(smt.recfun :increment-round)\n");
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
bool solver::is_beta_redex(euf::enode* p, euf::enode* n) const {
|
|
return is_defined(p) || is_case_pred(p);
|
|
}
|
|
|
|
|
|
bool solver::add_dep(euf::enode* n, top_sort<euf::enode>& dep) {
|
|
if (n->num_args() == 0)
|
|
dep.insert(n, nullptr);
|
|
for (auto* k : euf::enode_args(n))
|
|
dep.add(n, k);
|
|
return true;
|
|
}
|
|
|
|
void solver::add_value(euf::enode* n, model& mdl, expr_ref_vector& values) {
|
|
values.set(n->get_root_id(), n->get_root()->get_expr());
|
|
}
|
|
|
|
}
|