mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
move self-checking functionality to inside sat/smt so it can be used on-line and not just off-line. when self-validation fails, use vs, not clause, to check. It allows self-validation without checking and maintaining RUP validation. new options sat.smt.proof.check_rup, sat.smt.proof.check for online validation. z3 sat.smt.proof.check=true sat.euf=true /v:1 sat.smt.proof.check_rup=true /st file.smt2 sat.smt.proof=p.smt2
415 lines
13 KiB
C++
415 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2020 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
q_solver.cpp
|
|
|
|
Abstract:
|
|
|
|
Quantifier solver plugin
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2020-09-29
|
|
|
|
--*/
|
|
|
|
#include "ast/ast_util.h"
|
|
#include "ast/well_sorted.h"
|
|
#include "ast/rewriter/var_subst.h"
|
|
#include "ast/normal_forms/pull_quant.h"
|
|
#include "ast/rewriter/inj_axiom.h"
|
|
#include "sat/smt/q_solver.h"
|
|
#include "sat/smt/euf_solver.h"
|
|
#include "sat/smt/sat_th.h"
|
|
#include "qe/lite/qe_lite.h"
|
|
#include <iostream>
|
|
|
|
|
|
namespace q {
|
|
|
|
solver::solver(euf::solver& ctx, family_id fid) :
|
|
th_euf_solver(ctx, ctx.get_manager().get_family_name(fid), fid),
|
|
m_mbqi(ctx, *this),
|
|
m_ematch(ctx, *this),
|
|
m_expanded(ctx.get_manager()),
|
|
m_der(ctx.get_manager())
|
|
{
|
|
}
|
|
|
|
void solver::asserted(sat::literal l) {
|
|
expr* e = bool_var2expr(l.var());
|
|
if (!is_forall(e) && !is_exists(e))
|
|
return;
|
|
quantifier* q = to_quantifier(e);
|
|
|
|
if (l.sign() == is_forall(e)) {
|
|
sat::literal lit = skolemize(q);
|
|
add_clause(~l, lit);
|
|
return;
|
|
}
|
|
quantifier* q_flat = nullptr;
|
|
if (!m_flat.find(q, q_flat)) {
|
|
if (expand(q)) {
|
|
for (expr* e : m_expanded) {
|
|
sat::literal lit = ctx.internalize(e, l.sign(), false, false);
|
|
add_clause(~l, lit);
|
|
}
|
|
return;
|
|
}
|
|
q_flat = flatten(q);
|
|
}
|
|
|
|
if (is_ground(q_flat->get_expr())) {
|
|
auto lit = ctx.internalize(q_flat->get_expr(), l.sign(), false, false);
|
|
add_clause(~l, lit);
|
|
}
|
|
else {
|
|
ctx.push_vec(m_universal, l);
|
|
if (ctx.get_config().m_ematching)
|
|
m_ematch.add(q);
|
|
}
|
|
m_stats.m_num_quantifier_asserts++;
|
|
}
|
|
|
|
sat::check_result solver::check() {
|
|
if (ctx.get_config().m_ematching && m_ematch())
|
|
return sat::check_result::CR_CONTINUE;
|
|
|
|
if (ctx.get_config().m_mbqi) {
|
|
switch (m_mbqi()) {
|
|
case l_true:
|
|
return sat::check_result::CR_DONE;
|
|
case l_false:
|
|
return sat::check_result::CR_CONTINUE;
|
|
case l_undef:
|
|
break;
|
|
}
|
|
}
|
|
return sat::check_result::CR_GIVEUP;
|
|
}
|
|
|
|
std::ostream& solver::display(std::ostream& out) const {
|
|
return m_ematch.display(out);
|
|
}
|
|
|
|
std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
|
|
return m_ematch.display_constraint(out, idx);
|
|
}
|
|
|
|
void solver::collect_statistics(statistics& st) const {
|
|
st.update("q asserts", m_stats.m_num_quantifier_asserts);
|
|
m_mbqi.collect_statistics(st);
|
|
m_ematch.collect_statistics(st);
|
|
}
|
|
|
|
euf::th_solver* solver::clone(euf::solver& ctx) {
|
|
family_id fid = ctx.get_manager().mk_family_id(symbol("quant"));
|
|
return alloc(solver, ctx, fid);
|
|
}
|
|
|
|
bool solver::unit_propagate() {
|
|
return m_ematch.unit_propagate();
|
|
}
|
|
|
|
euf::theory_var solver::mk_var(euf::enode* n) {
|
|
auto v = euf::th_euf_solver::mk_var(n);
|
|
ctx.attach_th_var(n, this, v);
|
|
return v;
|
|
}
|
|
|
|
sat::literal solver::instantiate(quantifier* _q, bool negate, std::function<expr* (quantifier*, unsigned)>& mk_var) {
|
|
sat::literal sk;
|
|
expr_ref tmp(m);
|
|
quantifier_ref q(_q, m);
|
|
expr_ref_vector vars(m);
|
|
if (negate) {
|
|
q = m.mk_quantifier(
|
|
is_forall(q) ? quantifier_kind::exists_k : quantifier_kind::forall_k,
|
|
q->get_num_decls(), q->get_decl_sorts(), q->get_decl_names(), m.mk_not(q->get_expr()),
|
|
q->get_weight(), q->get_qid(), q->get_skid());
|
|
}
|
|
quantifier* q_flat = flatten(q);
|
|
unsigned sz = q_flat->get_num_decls();
|
|
vars.resize(sz, nullptr);
|
|
for (unsigned i = 0; i < sz; ++i)
|
|
vars[i] = mk_var(q_flat, i);
|
|
var_subst subst(m);
|
|
expr_ref body = subst(q_flat->get_expr(), vars);
|
|
rewrite(body);
|
|
return mk_literal(body);
|
|
}
|
|
|
|
sat::literal solver::skolemize(quantifier* q) {
|
|
std::function<expr* (quantifier*, unsigned)> mk_var = [&](quantifier* q, unsigned i) {
|
|
return m.mk_fresh_const(q->get_decl_name(i), q->get_decl_sort(i));
|
|
};
|
|
return instantiate(q, is_forall(q), mk_var);
|
|
}
|
|
|
|
/*
|
|
* Find initial values to instantiate quantifier with so to make it as hard as possible for solver
|
|
* to find values to free variables.
|
|
*/
|
|
sat::literal solver::specialize(quantifier* q) {
|
|
std::function<expr* (quantifier*, unsigned)> mk_var = [&](quantifier* q, unsigned i) {
|
|
return get_unit(q->get_decl_sort(i));
|
|
};
|
|
return instantiate(q, is_exists(q), mk_var);
|
|
}
|
|
|
|
void solver::init_search() {
|
|
m_mbqi.init_search();
|
|
}
|
|
|
|
sat::literal solver::internalize(expr* e, bool sign, bool root, bool learned) {
|
|
SASSERT(is_forall(e) || is_exists(e));
|
|
sat::bool_var v = ctx.get_si().add_bool_var(e);
|
|
sat::literal lit = ctx.attach_lit(sat::literal(v, false), e);
|
|
mk_var(ctx.get_egraph().find(e));
|
|
if (sign)
|
|
lit.neg();
|
|
return lit;
|
|
}
|
|
|
|
void solver::finalize_model(model& mdl) {
|
|
m_mbqi.finalize_model(mdl);
|
|
}
|
|
|
|
quantifier* solver::flatten(quantifier* q) {
|
|
quantifier* q_flat = nullptr;
|
|
if (m_flat.find(q, q_flat))
|
|
return q_flat;
|
|
|
|
expr_ref new_q(q, m), r(m);
|
|
proof_ref pr(m);
|
|
if (!has_quantifiers(q->get_expr())) {
|
|
if (!ctx.get_config().m_refine_inj_axiom)
|
|
return q;
|
|
if (!simplify_inj_axiom(m, q, new_q))
|
|
return q;
|
|
}
|
|
else if (is_forall(q)) {
|
|
pull_quant pull(m);
|
|
pull(q, new_q, pr);
|
|
SASSERT(is_well_sorted(m, new_q));
|
|
}
|
|
else {
|
|
new_q = q;
|
|
}
|
|
q_flat = to_quantifier(new_q);
|
|
m.inc_ref(q_flat);
|
|
m.inc_ref(q);
|
|
m_flat.insert(q, q_flat);
|
|
ctx.push(insert_ref2_map<ast_manager, quantifier, quantifier>(m, m_flat, q, q_flat));
|
|
return q_flat;
|
|
}
|
|
|
|
void solver::init_units() {
|
|
if (!m_unit_table.empty())
|
|
return;
|
|
for (euf::enode* n : ctx.get_egraph().nodes()) {
|
|
if (!n->interpreted() && !m.is_uninterp(n->get_expr()->get_sort()))
|
|
continue;
|
|
expr* e = n->get_expr();
|
|
sort* s = e->get_sort();
|
|
if (m_unit_table.contains(s))
|
|
continue;
|
|
m_unit_table.insert(s, e);
|
|
ctx.push(insert_map<obj_map<sort, expr*>, sort*>(m_unit_table, s));
|
|
}
|
|
}
|
|
|
|
expr* solver::get_unit(sort* s) {
|
|
expr* u = nullptr;
|
|
if (m_unit_table.find(s, u))
|
|
return u;
|
|
init_units();
|
|
if (m_unit_table.find(s, u))
|
|
return u;
|
|
model mdl(m);
|
|
expr* val = mdl.get_some_value(s);
|
|
m.inc_ref(val);
|
|
m.inc_ref(s);
|
|
ctx.push(insert_ref2_map<ast_manager, sort, expr>(m, m_unit_table, s, val));
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* Expand returns true if it was able to rewrite the formula.
|
|
* If the rewrite results in a quantifier, the rewritten quantifier
|
|
* is stored in m_flat to avoid repeated expansions.
|
|
*
|
|
*/
|
|
bool solver::expand(quantifier* q) {
|
|
expr_ref r(q, m);
|
|
proof_ref pr(m);
|
|
ctx.rewrite(r);
|
|
m_der(r, r, pr);
|
|
if (ctx.get_config().m_qe_lite) {
|
|
qe_lite qe(m, ctx.s().params());
|
|
qe(r);
|
|
}
|
|
m_expanded.reset();
|
|
bool updated = q != r;
|
|
if (updated) {
|
|
ctx.rewrite(r);
|
|
if (!is_quantifier(r)) {
|
|
m_expanded.push_back(r);
|
|
return true;
|
|
}
|
|
if (is_forall(q) != is_forall(r)) {
|
|
m_expanded.push_back(r);
|
|
return true;
|
|
}
|
|
if (r == q)
|
|
return false;
|
|
q = to_quantifier(r);
|
|
}
|
|
if (is_forall(q))
|
|
flatten_and(q->get_expr(), m_expanded);
|
|
else if (is_exists(q))
|
|
flatten_or(q->get_expr(), m_expanded);
|
|
else
|
|
UNREACHABLE();
|
|
|
|
if (m_expanded.size() == 1 && is_forall(q)) {
|
|
m_expanded.reset();
|
|
flatten_or(q->get_expr(), m_expanded);
|
|
expr_ref split1(m), split2(m), e1(m), e2(m);
|
|
unsigned idx = 0;
|
|
for (unsigned i = m_expanded.size(); i-- > 0; ) {
|
|
expr* arg = m_expanded.get(i);
|
|
if (split(arg, split1, split2)) {
|
|
if (e1)
|
|
return false;
|
|
e1 = split1;
|
|
e2 = split2;
|
|
idx = i;
|
|
}
|
|
}
|
|
if (!e1 && updated) {
|
|
m_expanded.reset();
|
|
m_expanded.push_back(r);
|
|
return true;
|
|
}
|
|
if (!e1)
|
|
return false;
|
|
|
|
m_expanded[idx] = e1;
|
|
e1 = mk_or(m_expanded);
|
|
m_expanded[idx] = e2;
|
|
e2 = mk_or(m_expanded);
|
|
m_expanded.reset();
|
|
m_expanded.push_back(e1);
|
|
m_expanded.push_back(e2);
|
|
}
|
|
if (m_expanded.size() > 1) {
|
|
for (unsigned i = m_expanded.size(); i-- > 0; ) {
|
|
expr_ref tmp(m.update_quantifier(q, m_expanded.get(i)), m);
|
|
ctx.rewrite(tmp);
|
|
m_expanded[i] = tmp;
|
|
}
|
|
return true;
|
|
}
|
|
else if (m_expanded.size() == 1 && updated) {
|
|
m_expanded[0] = r;
|
|
flatten(to_quantifier(r));
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool solver::split(expr* arg, expr_ref& e1, expr_ref& e2) {
|
|
expr* x, * y, * z;
|
|
if (m.is_not(arg, x) && m.is_or(x, y, z) && is_literal(y) && is_literal(z)) {
|
|
e1 = mk_not(m, y);
|
|
e2 = mk_not(m, z);
|
|
return true;
|
|
}
|
|
if (m.is_iff(arg, x, y) && is_literal(x) && is_literal(y)) {
|
|
e1 = m.mk_implies(x, y);
|
|
e2 = m.mk_implies(y, x);
|
|
return true;
|
|
}
|
|
if (m.is_and(arg, x, y) && is_literal(x) && is_literal(y)) {
|
|
e1 = x;
|
|
e2 = y;
|
|
return true;
|
|
}
|
|
if (m.is_not(arg, z) && m.is_iff(z, x, y) && is_literal(x) && is_literal(y)) {
|
|
e1 = m.mk_or(x, y);
|
|
e2 = m.mk_or(mk_not(m, x), mk_not(m, y));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool solver::is_literal(expr* arg) {
|
|
m.is_not(arg, arg);
|
|
return !m.is_and(arg) && !m.is_or(arg) && !m.is_iff(arg) && !m.is_implies(arg);
|
|
}
|
|
|
|
void solver::get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing, sat::proof_hint*& ph) {
|
|
m_ematch.get_antecedents(l, idx, r, probing);
|
|
}
|
|
|
|
void solver::log_instantiation(unsigned n, sat::literal const* lits, justification* j) {
|
|
TRACE("q", for (unsigned i = 0; i < n; ++i) tout << literal2expr(lits[i]) << "\n";);
|
|
if (get_config().m_instantiations2console) {
|
|
ctx.on_instantiation(n, lits, j ? j->m_clause.num_decls() : 0, j ? j->m_binding : nullptr);
|
|
}
|
|
}
|
|
|
|
q_proof_hint* q_proof_hint::mk(euf::solver& s, sat::literal_vector const& lits, unsigned n, euf::enode* const* bindings) {
|
|
SASSERT(n > 0);
|
|
auto* mem = s.get_region().allocate(q_proof_hint::get_obj_size(n, lits.size()));
|
|
q_proof_hint* ph = new (mem) q_proof_hint(n, lits.size());
|
|
for (unsigned i = 0; i < n; ++i)
|
|
ph->m_bindings[i] = bindings[i]->get_expr();
|
|
for (unsigned i = 0; i < lits.size(); ++i)
|
|
ph->m_literals[i] = lits[i];
|
|
return ph;
|
|
}
|
|
|
|
q_proof_hint* q_proof_hint::mk(euf::solver& s, sat::literal l1, sat::literal l2, unsigned n, expr* const* bindings) {
|
|
SASSERT(n > 0);
|
|
auto* mem = s.get_region().allocate(q_proof_hint::get_obj_size(n, 2));
|
|
q_proof_hint* ph = new (mem) q_proof_hint(n, 2);
|
|
for (unsigned i = 0; i < n; ++i)
|
|
ph->m_bindings[i] = bindings[i];
|
|
ph->m_literals[0] = l1;
|
|
ph->m_literals[1] = l2;
|
|
return ph;
|
|
}
|
|
|
|
expr* q_proof_hint::get_hint(euf::solver& s) const {
|
|
ast_manager& m = s.get_manager();
|
|
expr_ref_vector args(m);
|
|
ptr_buffer<sort> sorts;
|
|
expr_ref binding(m);
|
|
sort* range = m.mk_proof_sort();
|
|
func_decl* d;
|
|
for (unsigned i = 0; i < m_num_bindings; ++i)
|
|
args.push_back(m_bindings[i]);
|
|
for (expr* arg : args)
|
|
sorts.push_back(arg->get_sort());
|
|
d = m.mk_func_decl(symbol("bind"), args.size(), sorts.data(), range);
|
|
binding = m.mk_app(d, args);
|
|
args.reset();
|
|
sorts.reset();
|
|
for (unsigned i = 0; i < m_num_literals; ++i)
|
|
args.push_back(s.literal2expr(~m_literals[i]));
|
|
args.push_back(binding);
|
|
for (expr* arg : args)
|
|
sorts.push_back(arg->get_sort());
|
|
|
|
d = m.mk_func_decl(symbol("inst"), args.size(), sorts.data(), range);
|
|
return m.mk_app(d, args);
|
|
}
|
|
|
|
}
|