3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 05:18:44 +00:00
z3/src/math/lp/int_solver.cpp
Lev Nachmanson abb13f8c76 randomise branches in int_solver
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2020-01-31 14:38:28 -08:00

1068 lines
33 KiB
C++

/*
Copyright (c) 2017 Microsoft Corporation
Author: Lev Nachmanson
*/
#include "math/lp/int_solver.h"
#include "math/lp/lar_solver.h"
#include "math/lp/lp_utils.h"
#include <utility>
#include "math/lp/monic.h"
#include "math/lp/gomory.h"
namespace lp {
std::ostream& int_solver::display_inf_rows(std::ostream& out) const {
unsigned num = m_lar_solver->A_r().column_count();
for (unsigned v = 0; v < num; v++) {
if (column_is_int(v) && !get_value(v).is_int()) {
display_column(out, v);
}
}
num = 0;
for (unsigned i = 0; i < m_lar_solver->A_r().row_count(); i++) {
unsigned j = m_lar_solver->m_mpq_lar_core_solver.m_r_basis[i];
if (column_is_int_inf(j)) {
num++;
m_lar_solver->print_row(m_lar_solver->A_r().m_rows[i], out);
out << "\n";
}
}
out << "num of int infeasible: " << num << "\n";
return out;
}
bool int_solver::has_inf_int() const {
return m_lar_solver->has_inf_int();
}
int int_solver::find_inf_int_base_column() {
unsigned inf_int_count = 0;
int j = find_inf_int_boxed_base_column_with_smallest_range(inf_int_count);
if (j != -1)
return j;
if (inf_int_count == 0)
return -1;
unsigned k = random() % inf_int_count;
return get_kth_inf_int(k);
}
int int_solver::get_kth_inf_int(unsigned k) const {
for (unsigned j : m_lar_solver->r_basis())
if (column_is_int_inf(j) && k-- == 0)
return j;
lp_assert(false);
return -1;
}
int int_solver::find_inf_int_nbasis_column() const {
for (unsigned j : m_lar_solver->r_nbasis())
if (!column_is_int_inf(j))
return j;
return -1;
}
int int_solver::find_inf_int_boxed_base_column_with_smallest_range(unsigned & inf_int_count) {
inf_int_count = 0;
int result = -1;
mpq range;
mpq new_range;
mpq small_range_thresold(1024);
unsigned n = 0;
lar_core_solver & lcs = m_lar_solver->m_mpq_lar_core_solver;
for (unsigned j : m_lar_solver->r_basis()) {
if (!column_is_int_inf(j))
continue;
inf_int_count++;
if (!is_boxed(j))
continue;
lp_assert(!is_fixed(j));
new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_lower_bounds()[j].x;
if (new_range > small_range_thresold)
continue;
if (result == -1 || new_range < range) {
result = j;
range = new_range;
n = 1;
}
else if (new_range == range && settings().random_next() % (++n) == 0) {
lp_assert(n > 1);
result = j;
}
}
return result;
}
bool int_solver::is_gomory_cut_target(const row_strip<mpq>& row) {
// All non base variables must be at their bounds and assigned to rationals (that is, infinitesimals are not allowed).
unsigned j;
for (const auto & p : row) {
j = p.var();
if (!is_base(j) && (!at_bound(j) || !is_zero(get_value(j).y))) {
TRACE("gomory_cut", tout << "row is not gomory cut target:\n";
display_column(tout, j);
tout << "infinitesimal: " << !is_zero(get_value(j).y) << "\n";);
return false;
}
}
return true;
}
constraint_index int_solver::column_upper_bound_constraint(unsigned j) const {
return m_lar_solver->get_column_upper_bound_witness(j);
}
bool int_solver::current_solution_is_inf_on_cut() const {
const auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x;
impq v = m_t.apply(x);
mpq sign = m_upper ? one_of_type<mpq>() : -one_of_type<mpq>();
CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign,
tout << "m_upper = " << m_upper << std::endl;
tout << "v = " << v << ", k = " << m_k << std::endl;
);
return v * sign > impq(m_k) * sign;
}
constraint_index int_solver::column_lower_bound_constraint(unsigned j) const {
return m_lar_solver->get_column_lower_bound_witness(j);
}
lia_move int_solver::mk_gomory_cut( unsigned inf_col, const row_strip<mpq> & row) {
lp_assert(column_is_int_inf(inf_col));
gomory gc(m_t, m_k, m_ex, inf_col, row, *this);
return gc.create_cut();
}
lia_move int_solver::proceed_with_gomory_cut(unsigned j) {
const row_strip<mpq>& row = m_lar_solver->get_row(row_of_basic_column(j));
SASSERT(m_lar_solver->row_is_correct(row_of_basic_column(j)));
if (!is_gomory_cut_target(row))
return create_branch_on_column(j);
m_upper = true;
return mk_gomory_cut(j, row);
}
unsigned int_solver::row_of_basic_column(unsigned j) const {
return m_lar_solver->row_of_basic_column(j);
}
// this will allow to enable and disable tracking of the pivot rows
struct check_return_helper {
lar_solver * m_lar_solver;
bool m_track_pivoted_rows;
check_return_helper(lar_solver* ls) :
m_lar_solver(ls),
m_track_pivoted_rows(ls->get_track_pivoted_rows())
{
TRACE("pivoted_rows", tout << "pivoted rows = " << ls->m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows->size() << std::endl;);
m_lar_solver->set_track_pivoted_rows(false);
}
~check_return_helper() {
TRACE("pivoted_rows", tout << "pivoted rows = " << m_lar_solver->m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows->size() << std::endl;);
m_lar_solver->set_track_pivoted_rows(m_track_pivoted_rows);
}
};
impq int_solver::get_cube_delta_for_term(const lar_term& t) const {
if (t.size() == 2) {
bool seen_minus = false;
bool seen_plus = false;
for(const auto & p : t) {
if (!column_is_int(p.var()))
goto usual_delta;
const mpq & c = p.coeff();
if (c == one_of_type<mpq>()) {
seen_plus = true;
} else if (c == -one_of_type<mpq>()) {
seen_minus = true;
} else {
goto usual_delta;
}
}
if (seen_minus && seen_plus)
return zero_of_type<impq>();
return impq(0, 1);
}
usual_delta:
mpq delta = zero_of_type<mpq>();
for (const auto & p : t)
if (column_is_int(p.var()))
delta += abs(p.coeff());
delta *= mpq(1, 2);
return impq(delta);
}
bool int_solver::tighten_term_for_cube(unsigned i) {
unsigned ti = i + m_lar_solver->terms_start_index();
if (!m_lar_solver->term_is_used_as_row(ti))
return true;
const lar_term* t = m_lar_solver->terms()[i];
impq delta = get_cube_delta_for_term(*t);
TRACE("cube", m_lar_solver->print_term_as_indices(*t, tout); tout << ", delta = " << delta;);
if (is_zero(delta))
return true;
return m_lar_solver->tighten_term_bounds_by_delta(i, delta);
}
bool int_solver::tighten_terms_for_cube() {
for (unsigned i = 0; i < m_lar_solver->terms().size(); i++)
if (!tighten_term_for_cube(i)) {
TRACE("cube", tout << "cannot tighten";);
return false;
}
return true;
}
bool int_solver::should_find_cube() {
return m_number_of_calls % settings().m_int_find_cube_period == 0;
}
lia_move int_solver::find_cube() {
if (!should_find_cube())
return lia_move::undef;
settings().stats().m_cube_calls++;
TRACE("cube",
for (unsigned j = 0; j < m_lar_solver->A_r().column_count(); j++)
display_column(tout, j);
m_lar_solver->print_constraints(tout);
);
m_lar_solver->push();
if (!tighten_terms_for_cube()) {
m_lar_solver->pop();
return lia_move::undef;
}
lp_status st = m_lar_solver->find_feasible_solution();
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
TRACE("cube", tout << "cannot find a feasiblie solution";);
m_lar_solver->pop();
m_lar_solver->move_non_basic_columns_to_bounds();
find_feasible_solution();
// it can happen that we found an integer solution here
return !m_lar_solver->r_basis_has_inf_int()? lia_move::sat: lia_move::undef;
}
m_lar_solver->pop();
m_lar_solver->round_to_integer_solution();
m_lar_solver->set_status(lp_status::FEASIBLE);
lp_assert(settings().get_cancel_flag() || is_feasible());
TRACE("cube", tout << "success";);
settings().stats().m_cube_success++;
return lia_move::sat;
}
void int_solver::find_feasible_solution() {
m_lar_solver->find_feasible_solution();
lp_assert(lp_status::OPTIMAL == m_lar_solver->get_status() || lp_status::FEASIBLE == m_lar_solver->get_status());
}
bool int_solver::should_run_gcd_test() {
return settings().m_int_run_gcd_test;
}
lia_move int_solver::run_gcd_test() {
if (should_run_gcd_test()) {
settings().stats().m_gcd_calls++;
TRACE("int_solver", tout << "gcd-test " << settings().stats().m_gcd_calls << "\n";);
if (!gcd_test()) {
settings().stats().m_gcd_conflicts++;
TRACE("gcd_test", tout << "gcd conflict\n";);
return lia_move::conflict;
}
}
return lia_move::undef;
}
bool int_solver::should_gomory_cut() {
return m_number_of_calls % settings().m_int_gomory_cut_period == 0;
}
lia_move int_solver::gomory_cut() {
TRACE("int_solver", tout << "gomory " << m_number_of_calls << "\n";);
if (!should_gomory_cut())
return lia_move::undef;
if (m_lar_solver->move_non_basic_columns_to_bounds()) {
lp_status st = m_lar_solver->find_feasible_solution();
(void)st;
lp_assert(st == lp_status::FEASIBLE || st == lp_status::OPTIMAL);
}
int j = find_inf_int_base_column();
if (j == -1) {
j = find_inf_int_nbasis_column();
return j == -1? lia_move::sat : create_branch_on_column(j);
}
return proceed_with_gomory_cut(j);
}
void int_solver::try_add_term_to_A_for_hnf(unsigned i) {
mpq rs;
const lar_term* t = m_lar_solver->terms()[i];
constraint_index ci;
bool upper_bound;
if (!hnf_cutter_is_full() && m_lar_solver->get_equality_and_right_side_for_term_on_current_x(i, rs, ci, upper_bound)) {
m_hnf_cutter.add_term(t, rs, ci, upper_bound);
}
}
bool int_solver::hnf_cutter_is_full() const {
return
m_hnf_cutter.terms_count() >= settings().limit_on_rows_for_hnf_cutter
||
m_hnf_cutter.vars().size() >= settings().limit_on_columns_for_hnf_cutter;
}
lp_settings& int_solver::settings() {
return m_lar_solver->settings();
}
const lp_settings& int_solver::settings() const {
return m_lar_solver->settings();
}
bool int_solver::hnf_has_var_with_non_integral_value() const {
for (unsigned j : m_hnf_cutter.vars())
if (!get_value(j).is_int())
return true;
return false;
}
bool int_solver::init_terms_for_hnf_cut() {
m_hnf_cutter.clear();
for (unsigned i = 0; i < m_lar_solver->terms().size() && !hnf_cutter_is_full(); i++) {
try_add_term_to_A_for_hnf(i);
}
return hnf_has_var_with_non_integral_value();
}
lia_move int_solver::make_hnf_cut() {
if (!init_terms_for_hnf_cut()) {
return lia_move::undef;
}
settings().stats().m_hnf_cutter_calls++;
TRACE("hnf_cut", tout << "settings().stats().m_hnf_cutter_calls = " << settings().stats().m_hnf_cutter_calls << "\n";
for (unsigned i : m_hnf_cutter.constraints_for_explanation()) {
m_lar_solver->print_constraint(i, tout);
}
m_lar_solver->print_constraints(tout);
);
#ifdef Z3DEBUG
vector<mpq> x0 = m_hnf_cutter.transform_to_local_columns(m_lar_solver->m_mpq_lar_core_solver.m_r_x);
#else
vector<mpq> x0;
#endif
lia_move r = m_hnf_cutter.create_cut(m_t, m_k, m_ex, m_upper, x0);
if (r == lia_move::cut) {
TRACE("hnf_cut",
m_lar_solver->print_term(m_t, tout << "cut:");
tout << " <= " << m_k << std::endl;
for (unsigned i : m_hnf_cutter.constraints_for_explanation()) {
m_lar_solver->print_constraint(i, tout);
}
);
lp_assert(current_solution_is_inf_on_cut());
settings().stats().m_hnf_cuts++;
m_ex->clear();
for (unsigned i : m_hnf_cutter.constraints_for_explanation()) {
m_ex->push_justification(i);
}
}
return r;
}
bool int_solver::should_hnf_cut() {
return settings().m_enable_hnf && m_number_of_calls % m_hnf_cut_period == 0;
}
lia_move int_solver::hnf_cut() {
lia_move r = lia_move::undef;
if (should_hnf_cut()) {
r = make_hnf_cut();
if (r == lia_move::undef) {
m_hnf_cut_period *= 2;
}
else {
m_hnf_cut_period = settings().hnf_cut_period();
}
}
return r;
}
lia_move int_solver::check(lp::explanation * e) {
++m_number_of_calls;
SASSERT(m_lar_solver->ax_is_correct());
if (!has_inf_int()) return lia_move::sat;
#define CHECK_RET(fn) \
r = fn; \
if (r != lia_move::undef) { TRACE("int_solver", tout << #fn << "\n";); return r; }
m_t.clear();
m_k.reset();
m_ex = e;
m_ex->clear();
m_upper = false;
lia_move r;
CHECK_RET(run_gcd_test());
check_return_helper pc(m_lar_solver);
if (settings().m_int_pivot_fixed_vars_from_basis)
m_lar_solver->pivot_fixed_vars_from_basis();
CHECK_RET(patch_nbasic_columns());
CHECK_RET(find_cube());
CHECK_RET(hnf_cut());
CHECK_RET(gomory_cut());
CHECK_RET(branch_or_sat());
return r;
}
lia_move int_solver::branch_or_sat() {
int j = find_any_inf_int_column_basis_first();
return j == -1? lia_move::sat : create_branch_on_column(j);
}
int int_solver::find_any_inf_int_column_basis_first() {
int j = find_inf_int_base_column();
return j != -1 ? j : find_inf_int_nbasis_column();
}
void int_solver::set_value_for_nbasic_column_ignore_old_values(unsigned j, const impq & new_val) {
lp_assert(!is_base(j));
auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
auto delta = new_val - x;
x = new_val;
m_lar_solver->change_basic_columns_dependend_on_a_given_nb_column(j, delta);
}
void int_solver::patch_nbasic_column(unsigned j, bool patch_only_int_vals) {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
impq & val = lcs.m_r_x[j];
bool val_is_int = val.is_int();
if (patch_only_int_vals && !val_is_int)
return;
bool inf_l, inf_u;
impq l, u;
mpq m;
if (!get_freedom_interval_for_column(j, val_is_int, inf_l, l, inf_u, u, m)) {
return;
}
bool m_is_one = m.is_one();
if (m.is_one() && val_is_int) {
return;
}
// check whether value of j is already a multiple of m.
if (val_is_int && (val.x / m).is_int()) {
return;
}
TRACE("patch_int",
tout << "TARGET j" << j << " -> [";
if (inf_l) tout << "-oo"; else tout << l;
tout << ", ";
if (inf_u) tout << "oo"; else tout << u;
tout << "]";
tout << ", m: " << m << ", val: " << val << ", is_int: " << m_lar_solver->column_is_int(j) << "\n";);
if (!inf_l) {
l = impq(m_is_one ? ceil(l) : m * ceil(l / m));
if (inf_u || l <= u) {
TRACE("patch_int", tout << "patching with l: " << l << '\n';);
m_lar_solver->set_value_for_nbasic_column(j, l);
}
else {
TRACE("patch_int", tout << "not patching " << l << "\n";);
}
}
else if (!inf_u) {
u = impq(m_is_one ? floor(u) : m * floor(u / m));
m_lar_solver->set_value_for_nbasic_column(j, u);
TRACE("patch_int", tout << "patching with u: " << u << '\n';);
}
else {
m_lar_solver->set_value_for_nbasic_column(j, impq(0));
TRACE("patch_int", tout << "patching with 0\n";);
}
}
lia_move int_solver::patch_nbasic_columns() {
settings().stats().m_patches++;
lp_assert(is_feasible());
for (unsigned j : m_lar_solver->m_mpq_lar_core_solver.m_r_nbasis) {
patch_nbasic_column(j, settings().m_int_patch_only_integer_values);
}
lp_assert(is_feasible());
if (!has_inf_int()) {
settings().stats().m_patches_success++;
return lia_move::sat;
}
return lia_move::undef;
}
mpq get_denominators_lcm(const row_strip<mpq> & row) {
mpq r(1);
for (auto & c : row) {
r = lcm(r, denominator(c.coeff()));
}
return r;
}
bool int_solver::gcd_test_for_row(static_matrix<mpq, numeric_pair<mpq>> & A, unsigned i) {
auto const& row = A.m_rows[i];
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
unsigned basic_var = lcs.m_r_basis[i];
if (!column_is_int(basic_var) || get_value(basic_var).is_int())
return true;
mpq lcm_den = get_denominators_lcm(row);
mpq consts(0);
mpq gcds(0);
mpq least_coeff(0);
bool least_coeff_is_bounded = false;
unsigned j;
for (auto &c : A.m_rows[i]) {
j = c.var();
const mpq& a = c.coeff();
if (m_lar_solver->column_is_fixed(j)) {
mpq aux = lcm_den * a;
consts += aux * m_lar_solver->column_lower_bound(j).x;
}
else if (m_lar_solver->column_is_real(j)) {
return true;
}
else if (gcds.is_zero()) {
gcds = abs(lcm_den * a);
least_coeff = gcds;
least_coeff_is_bounded = m_lar_solver->column_is_bounded(j);
}
else {
mpq aux = abs(lcm_den * a);
gcds = gcd(gcds, aux);
if (aux < least_coeff) {
least_coeff = aux;
least_coeff_is_bounded = m_lar_solver->column_is_bounded(j);
}
else if (least_coeff_is_bounded && aux == least_coeff) {
least_coeff_is_bounded = m_lar_solver->column_is_bounded(j);
}
}
SASSERT(gcds.is_int());
SASSERT(least_coeff.is_int());
TRACE("gcd_test_bug", tout << "coeff: " << a << ", gcds: " << gcds
<< " least_coeff: " << least_coeff << " consts: " << consts << "\n";);
}
if (gcds.is_zero()) {
// All variables are fixed.
// This theory guarantees that the assignment satisfies each row, and
// fixed integer variables are assigned to integer values.
return true;
}
if (!(consts / gcds).is_int()) {
TRACE("gcd_test", tout << "row failed the GCD test:\n"; display_row_info(tout, i););
fill_explanation_from_fixed_columns(A.m_rows[i]);
return false;
}
if (least_coeff.is_one() && !least_coeff_is_bounded) {
SASSERT(gcds.is_one());
return true;
}
if (least_coeff_is_bounded) {
return ext_gcd_test(A.m_rows[i], least_coeff, lcm_den, consts);
}
return true;
}
void int_solver::add_to_explanation_from_fixed_or_boxed_column(unsigned j) {
constraint_index lc, uc;
m_lar_solver->get_bound_constraint_witnesses_for_column(j, lc, uc);
m_ex->push_justification(lc);
m_ex->push_justification(uc);
}
void int_solver::fill_explanation_from_fixed_columns(const row_strip<mpq> & row) {
for (const auto & c : row) {
if (!m_lar_solver->column_is_fixed(c.var()))
continue;
add_to_explanation_from_fixed_or_boxed_column(c.var());
}
}
bool int_solver::gcd_test() {
auto & A = m_lar_solver->A_r(); // getting the matrix
for (unsigned i = 0; i < A.row_count(); i++)
if (!gcd_test_for_row(A, i))
return false;
return true;
}
bool int_solver::ext_gcd_test(const row_strip<mpq> & row,
mpq const & least_coeff,
mpq const & lcm_den,
mpq const & consts) {
TRACE("ext_gcd_test", tout << "row = "; m_lar_solver->print_row(row, tout););
mpq gcds(0);
mpq l(consts);
mpq u(consts);
mpq a;
unsigned j;
for (const auto & c : row) {
j = c.var();
TRACE("ext_gcd_test", tout << "col = "; m_lar_solver->m_mpq_lar_core_solver.m_r_solver.print_column_bound_info(j, tout););
const mpq & a = c.coeff();
if (m_lar_solver->column_is_fixed(j))
continue;
SASSERT(!m_lar_solver->column_is_real(j));
mpq ncoeff = lcm_den * a;
SASSERT(ncoeff.is_int());
mpq abs_ncoeff = abs(ncoeff);
if (abs_ncoeff == least_coeff) {
SASSERT(m_lar_solver->column_is_bounded(j));
if (ncoeff.is_pos()) {
// l += ncoeff * m_lar_solver->column_lower_bound(j).x;
l.addmul(ncoeff, m_lar_solver->column_lower_bound(j).x);
// u += ncoeff * m_lar_solver->column_upper_bound(j).x;
u.addmul(ncoeff, m_lar_solver->column_upper_bound(j).x);
}
else {
// l += ncoeff * upper_bound(j).get_rational();
l.addmul(ncoeff, m_lar_solver->column_upper_bound(j).x);
// u += ncoeff * lower_bound(j).get_rational();
u.addmul(ncoeff, m_lar_solver->column_lower_bound(j).x);
}
add_to_explanation_from_fixed_or_boxed_column(j);
}
else if (gcds.is_zero()) {
gcds = abs_ncoeff;
}
else {
gcds = gcd(gcds, abs_ncoeff);
}
SASSERT(gcds.is_int());
}
if (gcds.is_zero()) {
return true;
}
mpq l1 = ceil(l/gcds);
mpq u1 = floor(u/gcds);
if (u1 < l1) {
fill_explanation_from_fixed_columns(row);
return false;
}
return true;
}
/*
linear_combination_iterator<mpq> * int_solver::get_column_iterator(unsigned j) {
if (m_lar_solver->use_tableau())
return new iterator_on_column<mpq, impq>(m_lar_solver->A_r().m_columns[j], m_lar_solver->A_r());
return new iterator_on_indexed_vector<mpq>(m_lar_solver->get_column_in_lu_mode(j));
}
*/
int_solver::int_solver(lar_solver* lar_slv) :
m_lar_solver(lar_slv),
m_number_of_calls(0),
m_hnf_cutter(settings()),
m_hnf_cut_period(settings().hnf_cut_period()) {
m_lar_solver->set_int_solver(this);
}
bool int_solver::has_lower(unsigned j) const {
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
case column_type::fixed:
case column_type::boxed:
case column_type::lower_bound:
return true;
default:
return false;
}
}
bool int_solver::has_upper(unsigned j) const {
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
case column_type::fixed:
case column_type::boxed:
case column_type::upper_bound:
return true;
default:
return false;
}
}
static void set_lower(impq & l, bool & inf_l, impq const & v ) {
if (inf_l || v > l) {
l = v;
inf_l = false;
}
}
static void set_upper(impq & u, bool & inf_u, impq const & v) {
if (inf_u || v < u) {
u = v;
inf_u = false;
}
}
bool int_solver::get_freedom_interval_for_column(unsigned j, bool val_is_int, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
if (lcs.m_r_heading[j] >= 0) // the basic var
return false;
impq const & xj = get_value(j);
inf_l = true;
inf_u = true;
l = u = zero_of_type<impq>();
m = mpq(1);
if (has_lower(j)) {
set_lower(l, inf_l, lower_bound(j) - xj);
}
if (has_upper(j)) {
set_upper(u, inf_u, upper_bound(j) - xj);
}
mpq a; // the coefficient in the column
unsigned row_index;
lp_assert(settings().use_tableau());
const auto & A = m_lar_solver->A_r();
unsigned rounds = 0;
for (const auto &c : A.column(j)) {
row_index = c.var();
const mpq & a = c.coeff();
unsigned i = lcs.m_r_basis[row_index];
if (column_is_int(i) && column_is_int(j) && !a.is_int())
m = lcm(m, denominator(a));
}
if (val_is_int && m.is_one())
return false;
for (const auto &c : A.column(j)) {
if (!inf_l && !inf_u && l >= u) break;
row_index = c.var();
const mpq & a = c.coeff();
unsigned i = lcs.m_r_basis[row_index];
impq const & xi = get_value(i);
#define SET_BOUND(_fn_, a, b, x, y, z) \
if (x.is_one()) \
_fn_(a, b, y - z); \
else if (x.is_minus_one()) \
_fn_(a, b, z - y); \
else if (z == y) \
_fn_(a, b, zero_of_type<impq>()); \
else \
{ _fn_(a, b, (y - z)/x); } \
if (a.is_neg()) {
if (has_lower(i)) {
SET_BOUND(set_lower, l, inf_l, a, xi, lcs.m_r_lower_bounds()[i]);
}
if (has_upper(i)) {
SET_BOUND(set_upper, u, inf_u, a, xi, lcs.m_r_upper_bounds()[i]);
}
}
else {
if (has_upper(i)) {
SET_BOUND(set_lower, l, inf_l, a, xi, lcs.m_r_upper_bounds()[i]);
}
if (has_lower(i)) {
SET_BOUND(set_upper, u, inf_u, a, xi, lcs.m_r_lower_bounds()[i]);
}
}
++rounds;
}
l += xj;
u += xj;
TRACE("freedom_interval",
tout << "freedom variable for:\n";
tout << m_lar_solver->get_variable_name(j);
tout << "[";
if (inf_l) tout << "-oo"; else tout << l;
tout << "; ";
if (inf_u) tout << "oo"; else tout << u;
tout << "]\n";
tout << "val = " << get_value(j) << "\n";
tout << "return " << (inf_l || inf_u || l <= u);
);
return (inf_l || inf_u || l <= u);
}
bool int_solver::column_is_int(unsigned j) const {
return m_lar_solver->column_is_int(j);
}
bool int_solver::is_real(unsigned j) const {
return !column_is_int(j);
}
bool int_solver::value_is_int(unsigned j) const {
return m_lar_solver->column_value_is_int(j);
}
bool int_solver::is_feasible() const {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
lp_assert(
lcs.m_r_solver.calc_current_x_is_feasible_include_non_basis() ==
lcs.m_r_solver.current_x_is_feasible());
return lcs.m_r_solver.current_x_is_feasible();
}
const impq & int_solver::get_value(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
}
void int_solver::display_column(std::ostream & out, unsigned j) const {
m_lar_solver->m_mpq_lar_core_solver.m_r_solver.print_column_info(j, out);
}
bool int_solver::column_is_int_inf(unsigned j) const {
return column_is_int(j) && (!value_is_int(j));
}
bool int_solver::is_base(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_r_heading[j] >= 0;
}
bool int_solver::is_boxed(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::boxed;
}
bool int_solver::is_fixed(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::fixed;
}
bool int_solver::is_free(unsigned j) const {
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::free_column;
}
bool int_solver::at_bound(unsigned j) const {
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
switch (mpq_solver.m_column_types[j] ) {
case column_type::fixed:
case column_type::boxed:
return
mpq_solver.m_lower_bounds[j] == get_value(j) ||
mpq_solver.m_upper_bounds[j] == get_value(j);
case column_type::lower_bound:
return mpq_solver.m_lower_bounds[j] == get_value(j);
case column_type::upper_bound:
return mpq_solver.m_upper_bounds[j] == get_value(j);
default:
return false;
}
}
bool int_solver::at_lower(unsigned j) const {
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
switch (mpq_solver.m_column_types[j] ) {
case column_type::fixed:
case column_type::boxed:
case column_type::lower_bound:
return mpq_solver.m_lower_bounds[j] == get_value(j);
default:
return false;
}
}
bool int_solver::at_upper(unsigned j) const {
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
switch (mpq_solver.m_column_types[j] ) {
case column_type::fixed:
case column_type::boxed:
case column_type::upper_bound:
return mpq_solver.m_upper_bounds[j] == get_value(j);
default:
return false;
}
}
void int_solver::display_row_info(std::ostream & out, unsigned row_index) const {
auto & rslv = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
for (const auto &c: rslv.m_A.m_rows[row_index]) {
if (numeric_traits<mpq>::is_pos(c.coeff()))
out << "+";
out << c.coeff() << rslv.column_name(c.var()) << " ";
}
for (const auto& c: rslv.m_A.m_rows[row_index]) {
rslv.print_column_bound_info(c.var(), out);
}
rslv.print_column_bound_info(rslv.m_basis[row_index], out);
}
unsigned int_solver::random() {
return m_lar_solver->get_core_solver().settings().random_next();
}
bool int_solver::shift_var(unsigned j, unsigned range) {
if (is_fixed(j) || is_base(j))
return false;
bool inf_l, inf_u;
impq l, u;
mpq m;
get_freedom_interval_for_column(j, false, inf_l, l, inf_u, u, m);
if (inf_l && inf_u) {
impq new_val = impq(random() % (range + 1));
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
if (column_is_int(j)) {
if (!inf_l) {
l = impq(ceil(l));
if (!m.is_one())
l = impq(m*ceil(l/m));
}
if (!inf_u) {
u = impq(floor(u));
if (!m.is_one())
u = impq(m*floor(u/m));
}
}
if (!inf_l && !inf_u && l >= u)
return false;
if (inf_u) {
SASSERT(!inf_l);
impq delta = impq(random() % (range + 1));
impq new_val = l + m*delta;
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
if (inf_l) {
SASSERT(!inf_u);
impq delta = impq(random() % (range + 1));
impq new_val = u - m*delta;
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
if (!column_is_int(j)) {
SASSERT(!inf_l && !inf_u);
mpq delta = mpq(random() % (range + 1));
impq new_val = l + ((delta * (u - l)) / mpq(range));
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
else {
mpq r = (u.x - l.x) / m;
if (r < mpq(range))
range = static_cast<unsigned>(r.get_uint64());
impq new_val = l + m * (impq(random() % (range + 1)));
set_value_for_nbasic_column_ignore_old_values(j, new_val);
return true;
}
}
bool int_solver::non_basic_columns_are_at_bounds() const {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
for (unsigned j :lcs.m_r_nbasis) {
auto & val = lcs.m_r_x[j];
switch (lcs.m_column_types()[j]) {
case column_type::boxed:
if (val != lcs.m_r_lower_bounds()[j] && val != lcs.m_r_upper_bounds()[j])
return false;
break;
case column_type::lower_bound:
if (val != lcs.m_r_lower_bounds()[j])
return false;
break;
case column_type::upper_bound:
if (val != lcs.m_r_upper_bounds()[j])
return false;
break;
default:
if (column_is_int(j) && !val.is_int()) {
return false;
}
}
}
return true;
}
const impq& int_solver::lower_bound(unsigned j) const {
return m_lar_solver->column_lower_bound(j);
}
lia_move int_solver::create_branch_on_column(int j) {
TRACE("check_main_int", tout << "branching" << std::endl;);
lp_assert(m_t.is_empty());
lp_assert(j != -1);
m_t.add_monomial(mpq(1), m_lar_solver->adjust_column_index_to_term_index(j));
if (is_free(j)) {
m_upper = random() % 2;
m_k = mpq(0);
} else {
m_upper = left_branch_is_more_narrow_than_right(j);
m_k = m_upper? floor(get_value(j)) : ceil(get_value(j));
}
TRACE("int_solver",
display_column(tout << "branching v" << j << " = " << get_value(j) << "\n", j);
tout << "k = " << m_k << std::endl;);
return lia_move::branch;
}
bool int_solver::left_branch_is_more_narrow_than_right(unsigned j) {
switch (m_lar_solver->m_mpq_lar_core_solver.m_r_solver.m_column_types[j] ) {
case column_type::fixed:
return false;
case column_type::boxed:
{
auto k = floor(get_value(j));
return k - lower_bound(j).x < upper_bound(j).x - (k + mpq(1));
}
case column_type::lower_bound:
return true;
case column_type::upper_bound:
return false;
default:
return false;
}
}
const impq& int_solver::upper_bound(unsigned j) const {
return m_lar_solver->column_upper_bound(j);
}
bool int_solver::is_term(unsigned j) const {
return m_lar_solver->column_corresponds_to_term(j);
}
unsigned int_solver::column_count() const { return m_lar_solver->column_count(); }
}