mirror of
https://github.com/Z3Prover/z3
synced 2025-08-29 14:30:07 +00:00
444 lines
14 KiB
C++
444 lines
14 KiB
C++
/*++
|
|
Copyright (c) 2012 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
goal2nlsat.cpp
|
|
|
|
Abstract:
|
|
|
|
"Compile" a goal into the nonlinear arithmetic engine.
|
|
Non-arithmetic atoms are "abstracted" into boolean variables.
|
|
Non-supported terms are "abstracted" into variables.
|
|
|
|
The mappings can be used to convert back the state of the
|
|
engine into a goal.
|
|
|
|
Author:
|
|
|
|
Leonardo (leonardo) 2012-01-02
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
#include "nlsat/tactic/goal2nlsat.h"
|
|
#include "tactic/goal.h"
|
|
#include "tactic/goal_util.h"
|
|
#include "nlsat/nlsat_solver.h"
|
|
#include "ast/expr2polynomial.h"
|
|
#include "ast/expr2var.h"
|
|
#include "ast/arith_decl_plugin.h"
|
|
#include "tactic/tactic.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "math/polynomial/polynomial.h"
|
|
#include "math/polynomial/algebraic_numbers.h"
|
|
|
|
struct goal2nlsat::imp {
|
|
struct nlsat_expr2polynomial : public expr2polynomial {
|
|
nlsat::solver & m_solver;
|
|
nlsat_expr2polynomial(nlsat::solver & s, ast_manager & m, polynomial::manager & pm, expr2var * e2v):
|
|
expr2polynomial(m, pm, e2v),
|
|
m_solver(s) {
|
|
}
|
|
|
|
bool is_int(polynomial::var x) const override {
|
|
return m_solver.is_int(x);
|
|
}
|
|
|
|
polynomial::var mk_var(bool is_int) override {
|
|
return m_solver.mk_var(is_int);
|
|
}
|
|
};
|
|
|
|
ast_manager & m;
|
|
nlsat::solver & m_solver;
|
|
polynomial::manager & m_pm;
|
|
unsynch_mpq_manager & m_qm;
|
|
arith_util m_util;
|
|
expr2var & m_a2b;
|
|
expr2var & m_t2x;
|
|
nlsat_expr2polynomial m_expr2poly;
|
|
polynomial::factor_params m_fparams;
|
|
|
|
unsigned long long m_max_memory;
|
|
bool m_factor;
|
|
|
|
|
|
imp(ast_manager & _m, params_ref const & p, nlsat::solver & s, expr2var & a2b, expr2var & t2x):
|
|
m(_m),
|
|
m_solver(s),
|
|
m_pm(s.pm()),
|
|
m_qm(s.qm()),
|
|
m_util(m),
|
|
m_a2b(a2b),
|
|
m_t2x(t2x),
|
|
m_expr2poly(m_solver, m, m_solver.pm(), &m_t2x) {
|
|
updt_params(p);
|
|
}
|
|
|
|
void updt_params(params_ref const & p) {
|
|
m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX));
|
|
m_factor = p.get_bool("factor", true);
|
|
m_fparams.updt_params(p);
|
|
}
|
|
|
|
nlsat::atom::kind flip(nlsat::atom::kind k) {
|
|
switch (k) {
|
|
case nlsat::atom::EQ: return k;
|
|
case nlsat::atom::LT: return nlsat::atom::GT;
|
|
case nlsat::atom::GT: return nlsat::atom::LT;
|
|
default:
|
|
UNREACHABLE();
|
|
return k;
|
|
}
|
|
}
|
|
|
|
nlsat::bool_var factor_atom(polynomial::polynomial * p, nlsat::atom::kind k) {
|
|
sbuffer<bool> is_even;
|
|
ptr_buffer<polynomial::polynomial> ps;
|
|
polynomial::factors fs(m_pm);
|
|
m_pm.factor(p, fs, m_fparams);
|
|
TRACE("goal2nlsat_bug", tout << "factors:\n" << fs << "\n";);
|
|
SASSERT(fs.distinct_factors() > 0);
|
|
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
|
|
ps.push_back(fs[i]);
|
|
is_even.push_back(fs.get_degree(i) % 2 == 0);
|
|
}
|
|
if (m_qm.is_neg(fs.get_constant()))
|
|
k = flip(k);
|
|
return m_solver.mk_ineq_atom(k, ps.size(), ps.c_ptr(), is_even.c_ptr());
|
|
}
|
|
|
|
nlsat::literal process_atom(app * f, nlsat::atom::kind k) {
|
|
SASSERT(f->get_num_args() == 2);
|
|
expr * lhs = f->get_arg(0);
|
|
expr * rhs = f->get_arg(1);
|
|
polynomial_ref p1(m_pm);
|
|
polynomial_ref p2(m_pm);
|
|
scoped_mpz d1(m_qm);
|
|
scoped_mpz d2(m_qm);
|
|
m_expr2poly.to_polynomial(lhs, p1, d1);
|
|
m_expr2poly.to_polynomial(rhs, p2, d2);
|
|
scoped_mpz lcm(m_qm);
|
|
m_qm.lcm(d1, d2, lcm);
|
|
m_qm.div(lcm, d1, d1);
|
|
m_qm.div(lcm, d2, d2);
|
|
m_qm.neg(d2);
|
|
polynomial_ref p(m_pm);
|
|
p = m_pm.addmul(d1, m_pm.mk_unit(), p1, d2, m_pm.mk_unit(), p2);
|
|
TRACE("goal2nlsat_bug", tout << mk_pp(f, m) << " p: " << p << "\nk: " << k << "\n";);
|
|
if (is_const(p)) {
|
|
int sign;
|
|
if (is_zero(p))
|
|
sign = 0;
|
|
else
|
|
sign = m_qm.is_pos(m_pm.coeff(p, 0)) ? 1 : -1;
|
|
switch (k) {
|
|
case nlsat::atom::EQ: return sign == 0 ? nlsat::true_literal : nlsat::false_literal;
|
|
case nlsat::atom::LT: return sign < 0 ? nlsat::true_literal : nlsat::false_literal;
|
|
case nlsat::atom::GT: return sign > 0 ? nlsat::true_literal : nlsat::false_literal;
|
|
default:
|
|
UNREACHABLE();
|
|
return nlsat::true_literal;
|
|
}
|
|
}
|
|
if (m_factor) {
|
|
return nlsat::literal(factor_atom(p, k), false);
|
|
}
|
|
else {
|
|
bool is_even = false;
|
|
polynomial::polynomial * _p = p.get();
|
|
return nlsat::literal(m_solver.mk_ineq_atom(k, 1, &_p, &is_even), false);
|
|
}
|
|
}
|
|
|
|
nlsat::literal process_eq(app * f) {
|
|
return process_atom(f, nlsat::atom::EQ);
|
|
}
|
|
|
|
nlsat::literal process_le(app * f) {
|
|
return ~process_atom(f, nlsat::atom::GT);
|
|
}
|
|
|
|
nlsat::literal process_ge(app * f) {
|
|
return ~process_atom(f, nlsat::atom::LT);
|
|
}
|
|
|
|
// everything else is compiled as a boolean variable
|
|
nlsat::bool_var process_bvar(expr * f) {
|
|
if (m_a2b.is_var(f)) {
|
|
return static_cast<nlsat::bool_var>(m_a2b.to_var(f));
|
|
}
|
|
else {
|
|
nlsat::bool_var b = m_solver.mk_bool_var();
|
|
m_a2b.insert(f, b);
|
|
return b;
|
|
}
|
|
}
|
|
|
|
nlsat::literal process_atom(expr * f) {
|
|
if (m.is_eq(f)) {
|
|
if (m_util.is_int_real(to_app(f)->get_arg(0)))
|
|
return process_eq(to_app(f));
|
|
else
|
|
return nlsat::literal(process_bvar(f), false);
|
|
}
|
|
else if (m_util.is_le(f)) {
|
|
return process_le(to_app(f));
|
|
}
|
|
else if (m_util.is_ge(f)) {
|
|
return process_ge(to_app(f));
|
|
}
|
|
else if (is_app(f)) {
|
|
if (to_app(f)->get_family_id() == m.get_basic_family_id()) {
|
|
switch (to_app(f)->get_decl_kind()) {
|
|
case OP_TRUE:
|
|
case OP_FALSE:
|
|
TRACE("goal2nlsat", tout << "f: " << mk_pp(f, m) << "\n";);
|
|
throw tactic_exception("apply simplify before applying nlsat");
|
|
case OP_AND:
|
|
case OP_OR:
|
|
case OP_XOR:
|
|
case OP_NOT:
|
|
case OP_IMPLIES:
|
|
throw tactic_exception("convert goal into cnf before applying nlsat");
|
|
case OP_DISTINCT:
|
|
throw tactic_exception("eliminate distinct operator (use tactic '(using-params simplify :blast-distinct true)') before applying nlsat");
|
|
default:
|
|
UNREACHABLE();
|
|
return nlsat::literal(nlsat::null_bool_var, false);
|
|
}
|
|
}
|
|
else if (to_app(f)->get_family_id() == m_util.get_family_id()) {
|
|
throw tactic_exception("apply purify-arith before applying nlsat");
|
|
}
|
|
else {
|
|
return nlsat::literal(process_bvar(f), false);
|
|
}
|
|
}
|
|
else {
|
|
SASSERT(is_quantifier(f));
|
|
return nlsat::literal(process_bvar(f), false);
|
|
}
|
|
}
|
|
|
|
nlsat::literal process_literal(expr * f) {
|
|
bool neg = false;
|
|
while (m.is_not(f, f))
|
|
neg = !neg;
|
|
nlsat::literal l = process_atom(f);
|
|
if (neg)
|
|
l.neg();
|
|
return l;
|
|
}
|
|
|
|
void process(expr * f, expr_dependency * dep) {
|
|
unsigned num_lits;
|
|
expr * const * lits;
|
|
if (m.is_or(f)) {
|
|
num_lits = to_app(f)->get_num_args();
|
|
lits = to_app(f)->get_args();
|
|
}
|
|
else {
|
|
num_lits = 1;
|
|
lits = &f;
|
|
}
|
|
sbuffer<nlsat::literal> ls;
|
|
for (unsigned i = 0; i < num_lits; i++) {
|
|
ls.push_back(process_literal(lits[i]));
|
|
}
|
|
m_solver.mk_clause(ls.size(), ls.c_ptr(), dep);
|
|
}
|
|
|
|
void operator()(goal const & g) {
|
|
if (has_term_ite(g))
|
|
throw tactic_exception("eliminate term-ite before applying nlsat");
|
|
unsigned sz = g.size();
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
process(g.form(i), g.dep(i));
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
struct goal2nlsat::scoped_set_imp {
|
|
goal2nlsat & m_owner;
|
|
scoped_set_imp(goal2nlsat & o, imp & i):m_owner(o) {
|
|
m_owner.m_imp = &i;
|
|
}
|
|
|
|
~scoped_set_imp() {
|
|
m_owner.m_imp = nullptr;
|
|
}
|
|
};
|
|
|
|
goal2nlsat::goal2nlsat() {
|
|
m_imp = nullptr;
|
|
}
|
|
|
|
goal2nlsat::~goal2nlsat() {
|
|
SASSERT(m_imp == 0);
|
|
}
|
|
|
|
void goal2nlsat::collect_param_descrs(param_descrs & r) {
|
|
insert_max_memory(r);
|
|
r.insert("factor", CPK_BOOL, "(default: true) factor polynomials.");
|
|
polynomial::factor_params::get_param_descrs(r);
|
|
}
|
|
|
|
void goal2nlsat::operator()(goal const & g, params_ref const & p, nlsat::solver & s, expr2var & a2b, expr2var & t2x) {
|
|
imp local_imp(g.m(), p, s, a2b, t2x);
|
|
scoped_set_imp setter(*this, local_imp);
|
|
local_imp(g);
|
|
}
|
|
|
|
|
|
|
|
struct nlsat2goal::imp {
|
|
ast_manager& m;
|
|
arith_util a;
|
|
u_map<expr*> const* m_x2t;
|
|
public:
|
|
imp(ast_manager& m):m(m),a(m) {}
|
|
|
|
expr_ref operator()(nlsat::solver& s, u_map<expr*> const& b2a, u_map<expr*> const& x2t, nlsat::literal l) {
|
|
m_x2t = &x2t;
|
|
expr_ref result(m);
|
|
expr* t;
|
|
if (b2a.find(l.var(), t)) {
|
|
result = t;
|
|
}
|
|
else {
|
|
nlsat::atom const* at = s.bool_var2atom(l.var());
|
|
SASSERT(at != 0);
|
|
if (at->is_ineq_atom()) {
|
|
nlsat::ineq_atom const* ia = to_ineq_atom(at);
|
|
unsigned sz = ia->size();
|
|
expr_ref_vector ps(m);
|
|
bool is_int = true;
|
|
for (unsigned i = 0; is_int && i < sz; ++i) {
|
|
is_int = poly_is_int(ia->p(i));
|
|
}
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
polynomial::polynomial* p = ia->p(i);
|
|
expr_ref t = poly2expr(s, p, is_int);
|
|
if (ia->is_even(i)) {
|
|
t = a.mk_power(t, a.mk_numeral(rational(2), a.is_int(t)));
|
|
}
|
|
ps.push_back(t);
|
|
}
|
|
result = a.mk_mul_simplify(ps);
|
|
expr_ref zero(m);
|
|
zero = a.mk_numeral(rational(0), a.is_int(result));
|
|
switch (ia->get_kind()) {
|
|
case nlsat::atom::EQ:
|
|
result = m.mk_eq(result, zero);
|
|
break;
|
|
case nlsat::atom::LT:
|
|
if (l.sign()) {
|
|
l.neg();
|
|
result = a.mk_ge(result, zero);
|
|
}
|
|
else {
|
|
result = a.mk_lt(result, zero);
|
|
}
|
|
break;
|
|
case nlsat::atom::GT:
|
|
if (l.sign()) {
|
|
l.neg();
|
|
result = a.mk_le(result, zero);
|
|
}
|
|
else {
|
|
result = a.mk_gt(result, zero);
|
|
}
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
else {
|
|
//nlsat::root_atom const* ra = nlsat::to_root_atom(at);
|
|
//ra->i();
|
|
//expr_ref p = poly2expr(s, ra->p());
|
|
//expr* x = m_x2t->find(ra->x());
|
|
std::ostringstream strm;
|
|
s.display(strm, l.sign()?~l:l);
|
|
result = m.mk_const(symbol(strm.str().c_str()), m.mk_bool_sort());
|
|
}
|
|
}
|
|
|
|
if (l.sign()) {
|
|
result = m.mk_not(result);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
expr_ref poly2expr(nlsat::solver& s, polynomial::polynomial* p, bool is_int) {
|
|
expr_ref result(m);
|
|
unsigned sz = polynomial::manager::size(p);
|
|
expr_ref_vector args(m);
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
args.push_back(mono2expr(s,
|
|
polynomial::manager::coeff(p, i),
|
|
polynomial::manager::get_monomial(p, i), is_int));
|
|
}
|
|
result = a.mk_add_simplify(args);
|
|
return result;
|
|
}
|
|
|
|
expr_ref mono2expr(nlsat::solver& s, polynomial::numeral const& c, polynomial::monomial* mon, bool is_int) {
|
|
expr_ref result(m);
|
|
expr_ref_vector args(m);
|
|
unsigned sz = polynomial::manager::size(mon);
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
unsigned d = polynomial::manager::degree(mon, i);
|
|
expr* t = m_x2t->find(polynomial::manager::get_var(mon, i));
|
|
SASSERT(d >= 1);
|
|
if (d == 1) {
|
|
args.push_back(t);
|
|
}
|
|
else {
|
|
args.push_back(a.mk_power(t, a.mk_numeral(rational(d), a.is_int(t))));
|
|
}
|
|
}
|
|
if (!s.pm().m().is_one(c)) {
|
|
args.push_back(a.mk_numeral(c, is_int));
|
|
}
|
|
result = a.mk_mul_simplify(args);
|
|
return result;
|
|
}
|
|
|
|
bool poly_is_int(polynomial::polynomial* p) {
|
|
bool is_int = true;
|
|
unsigned sz = polynomial::manager::size(p);
|
|
for (unsigned i = 0; is_int && i < sz; ++i) {
|
|
is_int = mono_is_int(polynomial::manager::get_monomial(p, i));
|
|
}
|
|
return is_int;
|
|
}
|
|
|
|
bool mono_is_int(polynomial::monomial* mon) {
|
|
bool is_int = true;
|
|
unsigned sz = polynomial::manager::size(mon);
|
|
for (unsigned i = 0; is_int && i < sz; ++i) {
|
|
is_int = a.is_int(m_x2t->find(polynomial::manager::get_var(mon, i)));
|
|
}
|
|
return is_int;
|
|
}
|
|
};
|
|
|
|
|
|
nlsat2goal::nlsat2goal(ast_manager& m) {
|
|
m_imp = alloc(imp, m);
|
|
}
|
|
|
|
|
|
nlsat2goal::~nlsat2goal() {
|
|
dealloc(m_imp);
|
|
}
|
|
|
|
expr_ref nlsat2goal::operator()(nlsat::solver& s, u_map<expr*> const& b2a, u_map<expr*> const& x2t, nlsat::literal l) {
|
|
return (*m_imp)(s, b2a, x2t, l);
|
|
}
|
|
|
|
|