mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
2616 lines
103 KiB
C++
2616 lines
103 KiB
C++
/*++
|
|
Copyright (c) 2016 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
theory_lra.cpp
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Lev Nachmanson (levnach) 2016-25-3
|
|
Nikolaj Bjorner (nbjorner)
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
#include "util/stopwatch.h"
|
|
#include "util/lp/lp_solver.h"
|
|
#include "util/lp/lp_primal_simplex.h"
|
|
#include "util/lp/lp_dual_simplex.h"
|
|
#include "util/lp/indexed_value.h"
|
|
#include "util/lp/lar_solver.h"
|
|
#include "util/nat_set.h"
|
|
#include "util/optional.h"
|
|
#include "lp_params.hpp"
|
|
#include "util/inf_rational.h"
|
|
#include "smt/smt_theory.h"
|
|
#include "smt/smt_context.h"
|
|
#include "smt/theory_lra.h"
|
|
#include "smt/proto_model/numeral_factory.h"
|
|
#include "smt/smt_model_generator.h"
|
|
#include "smt/arith_eq_adapter.h"
|
|
#include "util/nat_set.h"
|
|
#include "tactic/filter_model_converter.h"
|
|
|
|
namespace lp {
|
|
enum bound_kind { lower_t, upper_t };
|
|
|
|
std::ostream& operator<<(std::ostream& out, bound_kind const& k) {
|
|
switch (k) {
|
|
case lower_t: return out << "<=";
|
|
case upper_t: return out << ">=";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
class bound {
|
|
smt::bool_var m_bv;
|
|
smt::theory_var m_var;
|
|
rational m_value;
|
|
bound_kind m_bound_kind;
|
|
|
|
public:
|
|
bound(smt::bool_var bv, smt::theory_var v, rational const & val, bound_kind k):
|
|
m_bv(bv),
|
|
m_var(v),
|
|
m_value(val),
|
|
m_bound_kind(k) {
|
|
}
|
|
virtual ~bound() {}
|
|
smt::theory_var get_var() const { return m_var; }
|
|
smt::bool_var get_bv() const { return m_bv; }
|
|
bound_kind get_bound_kind() const { return m_bound_kind; }
|
|
rational const& get_value() const { return m_value; }
|
|
inf_rational get_value(bool is_true) const {
|
|
if (is_true) return inf_rational(m_value); // v >= value or v <= value
|
|
if (m_bound_kind == lower_t) return inf_rational(m_value, false); // v <= value - epsilon
|
|
return inf_rational(m_value, true); // v >= value + epsilon
|
|
}
|
|
virtual std::ostream& display(std::ostream& out) const {
|
|
return out << "v" << get_var() << " " << get_bound_kind() << " " << m_value;
|
|
}
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& out, bound const& b) {
|
|
return b.display(out);
|
|
}
|
|
|
|
struct stats {
|
|
unsigned m_assert_lower;
|
|
unsigned m_assert_upper;
|
|
unsigned m_add_rows;
|
|
unsigned m_bounds_propagations;
|
|
unsigned m_num_iterations;
|
|
unsigned m_num_iterations_with_no_progress;
|
|
unsigned m_num_factorizations;
|
|
unsigned m_need_to_solve_inf;
|
|
unsigned m_fixed_eqs;
|
|
unsigned m_conflicts;
|
|
unsigned m_bound_propagations1;
|
|
unsigned m_bound_propagations2;
|
|
unsigned m_assert_diseq;
|
|
unsigned m_make_feasible;
|
|
unsigned m_max_cols;
|
|
unsigned m_max_rows;
|
|
stats() { reset(); }
|
|
void reset() {
|
|
memset(this, 0, sizeof(*this));
|
|
}
|
|
};
|
|
|
|
typedef optional<inf_rational> opt_inf_rational;
|
|
|
|
|
|
}
|
|
|
|
namespace smt {
|
|
|
|
typedef ptr_vector<lp::bound> lp_bounds;
|
|
|
|
class theory_lra::imp {
|
|
|
|
struct scope {
|
|
unsigned m_bounds_lim;
|
|
unsigned m_asserted_qhead;
|
|
unsigned m_asserted_atoms_lim;
|
|
unsigned m_delayed_terms_lim;
|
|
unsigned m_delayed_equalities_lim;
|
|
unsigned m_delayed_defs_lim;
|
|
unsigned m_underspecified_lim;
|
|
unsigned m_var_trail_lim;
|
|
expr* m_not_handled;
|
|
};
|
|
|
|
struct delayed_atom {
|
|
unsigned m_bv;
|
|
bool m_is_true;
|
|
delayed_atom(unsigned b, bool t): m_bv(b), m_is_true(t) {}
|
|
};
|
|
|
|
class resource_limit : public lean::lp_resource_limit {
|
|
imp& m_imp;
|
|
public:
|
|
resource_limit(imp& i): m_imp(i) { }
|
|
virtual bool get_cancel_flag() { return m_imp.m.canceled(); }
|
|
};
|
|
|
|
|
|
theory_lra& th;
|
|
ast_manager& m;
|
|
theory_arith_params& m_arith_params;
|
|
arith_util a;
|
|
|
|
arith_eq_adapter m_arith_eq_adapter;
|
|
|
|
vector<rational> m_columns;
|
|
// temporary values kept during internalization
|
|
struct internalize_state {
|
|
expr_ref_vector m_terms;
|
|
vector<rational> m_coeffs;
|
|
svector<theory_var> m_vars;
|
|
rational m_coeff;
|
|
ptr_vector<expr> m_terms_to_internalize;
|
|
internalize_state(ast_manager& m): m_terms(m) {}
|
|
void reset() {
|
|
m_terms.reset();
|
|
m_coeffs.reset();
|
|
m_coeff.reset();
|
|
m_vars.reset();
|
|
m_terms_to_internalize.reset();
|
|
}
|
|
};
|
|
ptr_vector<internalize_state> m_internalize_states;
|
|
unsigned m_internalize_head;
|
|
|
|
class scoped_internalize_state {
|
|
imp& m_imp;
|
|
internalize_state& m_st;
|
|
|
|
internalize_state& push_internalize(imp& i) {
|
|
if (i.m_internalize_head == i.m_internalize_states.size()) {
|
|
i.m_internalize_states.push_back(alloc(internalize_state, i.m));
|
|
}
|
|
internalize_state& st = *i.m_internalize_states[i.m_internalize_head++];
|
|
st.reset();
|
|
return st;
|
|
}
|
|
public:
|
|
scoped_internalize_state(imp& i): m_imp(i), m_st(push_internalize(i)) {}
|
|
~scoped_internalize_state() { --m_imp.m_internalize_head; }
|
|
expr_ref_vector& terms() { return m_st.m_terms; }
|
|
vector<rational>& coeffs() { return m_st.m_coeffs; }
|
|
svector<theory_var>& vars() { return m_st.m_vars; }
|
|
rational& coeff() { return m_st.m_coeff; }
|
|
ptr_vector<expr>& terms_to_internalize() { return m_st.m_terms_to_internalize; }
|
|
void push(expr* e, rational c) { m_st.m_terms.push_back(e); m_st.m_coeffs.push_back(c); }
|
|
void set_back(unsigned i) {
|
|
if (terms().size() == i + 1) return;
|
|
terms()[i] = terms().back();
|
|
coeffs()[i] = coeffs().back();
|
|
terms().pop_back();
|
|
coeffs().pop_back();
|
|
}
|
|
};
|
|
|
|
typedef vector<std::pair<rational, lean::var_index>> var_coeffs;
|
|
struct delayed_def {
|
|
vector<rational> m_coeffs;
|
|
svector<theory_var> m_vars;
|
|
rational m_coeff;
|
|
theory_var m_var;
|
|
delayed_def(svector<theory_var> const& vars, vector<rational> const& coeffs, rational const& r, theory_var v):
|
|
m_coeffs(coeffs), m_vars(vars), m_coeff(r), m_var(v) {}
|
|
};
|
|
|
|
svector<lean::var_index> m_theory_var2var_index; // translate from theory variables to lar vars
|
|
svector<theory_var> m_var_index2theory_var; // reverse map from lp_solver variables to theory variables
|
|
svector<theory_var> m_term_index2theory_var; // reverse map from lp_solver variables to theory variables
|
|
var_coeffs m_left_side; // constraint left side
|
|
mutable std::unordered_map<lean::var_index, rational> m_variable_values; // current model
|
|
|
|
enum constraint_source {
|
|
inequality_source,
|
|
equality_source,
|
|
definition_source,
|
|
null_source
|
|
};
|
|
svector<constraint_source> m_constraint_sources;
|
|
svector<literal> m_inequalities; // asserted rows corresponding to inequality literals.
|
|
svector<enode_pair> m_equalities; // asserted rows corresponding to equalities.
|
|
svector<theory_var> m_definitions; // asserted rows corresponding to definitions
|
|
|
|
bool m_delay_constraints; // configuration
|
|
svector<delayed_atom> m_asserted_atoms;
|
|
app_ref_vector m_delayed_terms;
|
|
svector<std::pair<theory_var, theory_var>> m_delayed_equalities;
|
|
vector<delayed_def> m_delayed_defs;
|
|
expr* m_not_handled;
|
|
ptr_vector<app> m_underspecified;
|
|
unsigned_vector m_var_trail;
|
|
vector<ptr_vector<lp::bound> > m_use_list; // bounds where variables are used.
|
|
|
|
// attributes for incremental version:
|
|
u_map<lp::bound*> m_bool_var2bound;
|
|
vector<lp_bounds> m_bounds;
|
|
unsigned_vector m_unassigned_bounds;
|
|
unsigned_vector m_bounds_trail;
|
|
unsigned m_asserted_qhead;
|
|
|
|
svector<unsigned> m_to_check; // rows that should be checked for theory propagation
|
|
|
|
svector<std::pair<theory_var, theory_var> > m_assume_eq_candidates;
|
|
unsigned m_assume_eq_head;
|
|
|
|
unsigned m_num_conflicts;
|
|
|
|
|
|
struct var_value_eq {
|
|
imp & m_th;
|
|
var_value_eq(imp & th):m_th(th) {}
|
|
bool operator()(theory_var v1, theory_var v2) const { return m_th.get_ivalue(v1) == m_th.get_ivalue(v2) && m_th.is_int(v1) == m_th.is_int(v2); }
|
|
};
|
|
struct var_value_hash {
|
|
imp & m_th;
|
|
var_value_hash(imp & th):m_th(th) {}
|
|
unsigned operator()(theory_var v) const { return (unsigned)std::hash<lean::impq>()(m_th.get_ivalue(v)); }
|
|
};
|
|
int_hashtable<var_value_hash, var_value_eq> m_model_eqs;
|
|
|
|
|
|
svector<scope> m_scopes;
|
|
lp::stats m_stats;
|
|
arith_factory* m_factory;
|
|
scoped_ptr<lean::lar_solver> m_solver;
|
|
resource_limit m_resource_limit;
|
|
lp_bounds m_new_bounds;
|
|
|
|
|
|
context& ctx() const { return th.get_context(); }
|
|
theory_id get_id() const { return th.get_id(); }
|
|
bool is_int(theory_var v) const { return is_int(get_enode(v)); }
|
|
bool is_int(enode* n) const { return a.is_int(n->get_owner()); }
|
|
enode* get_enode(theory_var v) const { return th.get_enode(v); }
|
|
enode* get_enode(expr* e) const { return ctx().get_enode(e); }
|
|
expr* get_owner(theory_var v) const { return get_enode(v)->get_owner(); }
|
|
|
|
void init_solver() {
|
|
if (m_solver) return;
|
|
lp_params lp(ctx().get_params());
|
|
m_solver = alloc(lean::lar_solver);
|
|
m_theory_var2var_index.reset();
|
|
m_solver->settings().set_resource_limit(m_resource_limit);
|
|
m_solver->settings().simplex_strategy() = static_cast<lean::simplex_strategy_enum>(lp.simplex_strategy());
|
|
reset_variable_values();
|
|
m_solver->settings().bound_propagation() = BP_NONE != propagation_mode();
|
|
m_solver->set_propagate_bounds_on_pivoted_rows_mode(lp.bprop_on_pivoted_rows());
|
|
//m_solver->settings().set_ostream(0);
|
|
}
|
|
|
|
void found_not_handled(expr* n) {
|
|
m_not_handled = n;
|
|
if (is_app(n) && is_underspecified(to_app(n))) {
|
|
m_underspecified.push_back(to_app(n));
|
|
}
|
|
TRACE("arith", tout << "Unhandled: " << mk_pp(n, m) << "\n";);
|
|
}
|
|
|
|
bool is_numeral(expr* term, rational& r) {
|
|
rational mul(1);
|
|
do {
|
|
if (a.is_numeral(term, r)) {
|
|
r *= mul;
|
|
return true;
|
|
}
|
|
if (a.is_uminus(term, term)) {
|
|
mul.neg();
|
|
continue;
|
|
}
|
|
if (a.is_to_real(term, term)) {
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
while (false);
|
|
return false;
|
|
}
|
|
|
|
void linearize_term(expr* term, scoped_internalize_state& st) {
|
|
st.push(term, rational::one());
|
|
linearize(st);
|
|
}
|
|
|
|
void linearize_ineq(expr* lhs, expr* rhs, scoped_internalize_state& st) {
|
|
st.push(lhs, rational::one());
|
|
st.push(rhs, rational::minus_one());
|
|
linearize(st);
|
|
}
|
|
|
|
void linearize(scoped_internalize_state& st) {
|
|
expr_ref_vector & terms = st.terms();
|
|
svector<theory_var>& vars = st.vars();
|
|
vector<rational>& coeffs = st.coeffs();
|
|
rational& coeff = st.coeff();
|
|
rational r;
|
|
expr* n1, *n2;
|
|
unsigned index = 0;
|
|
while (index < terms.size()) {
|
|
SASSERT(index >= vars.size());
|
|
expr* n = terms[index].get();
|
|
st.terms_to_internalize().push_back(n);
|
|
if (a.is_add(n)) {
|
|
unsigned sz = to_app(n)->get_num_args();
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
st.push(to_app(n)->get_arg(i), coeffs[index]);
|
|
}
|
|
st.set_back(index);
|
|
}
|
|
else if (a.is_sub(n)) {
|
|
unsigned sz = to_app(n)->get_num_args();
|
|
terms[index] = to_app(n)->get_arg(0);
|
|
for (unsigned i = 1; i < sz; ++i) {
|
|
st.push(to_app(n)->get_arg(i), -coeffs[index]);
|
|
}
|
|
}
|
|
else if (a.is_mul(n, n1, n2) && is_numeral(n1, r)) {
|
|
coeffs[index] *= r;
|
|
terms[index] = n2;
|
|
st.terms_to_internalize().push_back(n1);
|
|
}
|
|
else if (a.is_mul(n, n1, n2) && is_numeral(n2, r)) {
|
|
coeffs[index] *= r;
|
|
terms[index] = n1;
|
|
st.terms_to_internalize().push_back(n2);
|
|
}
|
|
else if (a.is_numeral(n, r)) {
|
|
coeff += coeffs[index]*r;
|
|
++index;
|
|
}
|
|
else if (a.is_uminus(n, n1)) {
|
|
coeffs[index].neg();
|
|
terms[index] = n1;
|
|
}
|
|
else if (is_app(n) && a.get_family_id() == to_app(n)->get_family_id()) {
|
|
app* t = to_app(n);
|
|
found_not_handled(n);
|
|
internalize_args(t);
|
|
mk_enode(t);
|
|
theory_var v = mk_var(n);
|
|
coeffs[vars.size()] = coeffs[index];
|
|
vars.push_back(v);
|
|
++index;
|
|
}
|
|
else {
|
|
if (is_app(n)) {
|
|
internalize_args(to_app(n));
|
|
}
|
|
if (a.is_int(n)) {
|
|
found_not_handled(n);
|
|
}
|
|
theory_var v = mk_var(n);
|
|
coeffs[vars.size()] = coeffs[index];
|
|
vars.push_back(v);
|
|
++index;
|
|
}
|
|
}
|
|
for (unsigned i = st.terms_to_internalize().size(); i > 0; ) {
|
|
--i;
|
|
expr* n = st.terms_to_internalize()[i];
|
|
if (is_app(n)) {
|
|
mk_enode(to_app(n));
|
|
}
|
|
}
|
|
st.terms_to_internalize().reset();
|
|
}
|
|
|
|
void internalize_args(app* t) {
|
|
for (unsigned i = 0; reflect(t) && i < t->get_num_args(); ++i) {
|
|
if (!ctx().e_internalized(t->get_arg(i))) {
|
|
ctx().internalize(t->get_arg(i), false);
|
|
}
|
|
}
|
|
}
|
|
|
|
enode * mk_enode(app * n) {
|
|
if (ctx().e_internalized(n)) {
|
|
return get_enode(n);
|
|
}
|
|
else {
|
|
return ctx().mk_enode(n, !reflect(n), false, enable_cgc_for(n));
|
|
}
|
|
}
|
|
|
|
bool enable_cgc_for(app * n) const {
|
|
// Congruence closure is not enabled for (+ ...) and (* ...) applications.
|
|
return !(n->get_family_id() == get_id() && (n->get_decl_kind() == OP_ADD || n->get_decl_kind() == OP_MUL));
|
|
}
|
|
|
|
|
|
void mk_clause(literal l1, literal l2, unsigned num_params, parameter * params) {
|
|
TRACE("arith", literal lits[2]; lits[0] = l1; lits[1] = l2; ctx().display_literals_verbose(tout, 2, lits); tout << "\n";);
|
|
ctx().mk_th_axiom(get_id(), l1, l2, num_params, params);
|
|
}
|
|
|
|
void mk_clause(literal l1, literal l2, literal l3, unsigned num_params, parameter * params) {
|
|
TRACE("arith", literal lits[3]; lits[0] = l1; lits[1] = l2; lits[2] = l3; ctx().display_literals_verbose(tout, 3, lits); tout << "\n";);
|
|
ctx().mk_th_axiom(get_id(), l1, l2, l3, num_params, params);
|
|
}
|
|
|
|
bool is_underspecified(app* n) const {
|
|
if (n->get_family_id() == get_id()) {
|
|
switch (n->get_decl_kind()) {
|
|
case OP_DIV:
|
|
case OP_IDIV:
|
|
case OP_REM:
|
|
case OP_MOD:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool reflect(app* n) const {
|
|
return m_arith_params.m_arith_reflect || is_underspecified(n);
|
|
}
|
|
|
|
theory_var mk_var(expr* n, bool internalize = true) {
|
|
if (!ctx().e_internalized(n)) {
|
|
ctx().internalize(n, false);
|
|
}
|
|
enode* e = get_enode(n);
|
|
theory_var v;
|
|
if (!th.is_attached_to_var(e)) {
|
|
v = th.mk_var(e);
|
|
SASSERT(m_bounds.size() <= static_cast<unsigned>(v) || m_bounds[v].empty());
|
|
if (m_bounds.size() <= static_cast<unsigned>(v)) {
|
|
m_bounds.push_back(lp_bounds());
|
|
m_unassigned_bounds.push_back(0);
|
|
}
|
|
ctx().attach_th_var(e, &th, v);
|
|
}
|
|
else {
|
|
v = e->get_th_var(get_id());
|
|
}
|
|
SASSERT(null_theory_var != v);
|
|
return v;
|
|
}
|
|
|
|
lean::var_index get_var_index(theory_var v) {
|
|
lean::var_index result = UINT_MAX;
|
|
if (m_theory_var2var_index.size() > static_cast<unsigned>(v)) {
|
|
result = m_theory_var2var_index[v];
|
|
}
|
|
if (result == UINT_MAX) {
|
|
result = m_solver->add_var(v); // TBD: is_int(v);
|
|
m_theory_var2var_index.setx(v, result, UINT_MAX);
|
|
m_var_index2theory_var.setx(result, v, UINT_MAX);
|
|
m_var_trail.push_back(v);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void init_left_side(scoped_internalize_state& st) {
|
|
SASSERT(all_zeros(m_columns));
|
|
svector<theory_var> const& vars = st.vars();
|
|
vector<rational> const& coeffs = st.coeffs();
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
theory_var var = vars[i];
|
|
rational const& coeff = coeffs[i];
|
|
if (m_columns.size() <= static_cast<unsigned>(var)) {
|
|
m_columns.setx(var, coeff, rational::zero());
|
|
}
|
|
else {
|
|
m_columns[var] += coeff;
|
|
}
|
|
}
|
|
m_left_side.clear();
|
|
// reset the coefficients after they have been used.
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
theory_var var = vars[i];
|
|
rational const& r = m_columns[var];
|
|
if (!r.is_zero()) {
|
|
m_left_side.push_back(std::make_pair(r, get_var_index(var)));
|
|
m_columns[var].reset();
|
|
}
|
|
}
|
|
SASSERT(all_zeros(m_columns));
|
|
}
|
|
|
|
bool all_zeros(vector<rational> const& v) const {
|
|
for (unsigned i = 0; i < v.size(); ++i) {
|
|
if (!v[i].is_zero()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void add_eq_constraint(lean::constraint_index index, enode* n1, enode* n2) {
|
|
m_constraint_sources.setx(index, equality_source, null_source);
|
|
m_equalities.setx(index, enode_pair(n1, n2), enode_pair(0, 0));
|
|
++m_stats.m_add_rows;
|
|
}
|
|
|
|
void add_ineq_constraint(lean::constraint_index index, literal lit) {
|
|
m_constraint_sources.setx(index, inequality_source, null_source);
|
|
m_inequalities.setx(index, lit, null_literal);
|
|
++m_stats.m_add_rows;
|
|
TRACE("arith", m_solver->print_constraint(index, tout); tout << "\n";);
|
|
}
|
|
|
|
void add_def_constraint(lean::constraint_index index, theory_var v) {
|
|
m_constraint_sources.setx(index, definition_source, null_source);
|
|
m_definitions.setx(index, v, null_theory_var);
|
|
++m_stats.m_add_rows;
|
|
}
|
|
|
|
void internalize_eq(delayed_def const& d) {
|
|
scoped_internalize_state st(*this);
|
|
st.vars().append(d.m_vars);
|
|
st.coeffs().append(d.m_coeffs);
|
|
init_left_side(st);
|
|
add_def_constraint(m_solver->add_constraint(m_left_side, lean::EQ, -d.m_coeff), d.m_var);
|
|
}
|
|
|
|
void internalize_eq(theory_var v1, theory_var v2) {
|
|
enode* n1 = get_enode(v1);
|
|
enode* n2 = get_enode(v2);
|
|
scoped_internalize_state st(*this);
|
|
st.vars().push_back(v1);
|
|
st.vars().push_back(v2);
|
|
st.coeffs().push_back(rational::one());
|
|
st.coeffs().push_back(rational::minus_one());
|
|
init_left_side(st);
|
|
add_eq_constraint(m_solver->add_constraint(m_left_side, lean::EQ, rational::zero()), n1, n2);
|
|
TRACE("arith",
|
|
tout << "v" << v1 << " = " << "v" << v2 << ": "
|
|
<< mk_pp(n1->get_owner(), m) << " = " << mk_pp(n2->get_owner(), m) << "\n";);
|
|
}
|
|
|
|
void del_bounds(unsigned old_size) {
|
|
for (unsigned i = m_bounds_trail.size(); i > old_size; ) {
|
|
--i;
|
|
unsigned v = m_bounds_trail[i];
|
|
lp::bound* b = m_bounds[v].back();
|
|
// del_use_lists(b);
|
|
dealloc(b);
|
|
m_bounds[v].pop_back();
|
|
}
|
|
m_bounds_trail.shrink(old_size);
|
|
}
|
|
|
|
void updt_unassigned_bounds(theory_var v, int inc) {
|
|
TRACE("arith", tout << "v" << v << " " << m_unassigned_bounds[v] << " += " << inc << "\n";);
|
|
ctx().push_trail(vector_value_trail<smt::context, unsigned, false>(m_unassigned_bounds, v));
|
|
m_unassigned_bounds[v] += inc;
|
|
}
|
|
|
|
bool is_unit_var(scoped_internalize_state& st) {
|
|
return st.coeff().is_zero() && st.vars().size() == 1 && st.coeffs()[0].is_one();
|
|
}
|
|
|
|
theory_var internalize_def(app* term, scoped_internalize_state& st) {
|
|
linearize_term(term, st);
|
|
if (is_unit_var(st)) {
|
|
return st.vars()[0];
|
|
}
|
|
else {
|
|
theory_var v = mk_var(term);
|
|
SASSERT(null_theory_var != v);
|
|
st.coeffs().resize(st.vars().size() + 1);
|
|
st.coeffs()[st.vars().size()] = rational::minus_one();
|
|
st.vars().push_back(v);
|
|
return v;
|
|
}
|
|
}
|
|
|
|
// term - v = 0
|
|
theory_var internalize_def(app* term) {
|
|
scoped_internalize_state st(*this);
|
|
linearize_term(term, st);
|
|
if (is_unit_var(st)) {
|
|
return st.vars()[0];
|
|
}
|
|
else {
|
|
init_left_side(st);
|
|
theory_var v = mk_var(term);
|
|
lean::var_index vi = m_theory_var2var_index.get(v, UINT_MAX);
|
|
if (vi == UINT_MAX) {
|
|
vi = m_solver->add_term(m_left_side, st.coeff());
|
|
m_theory_var2var_index.setx(v, vi, UINT_MAX);
|
|
if (m_solver->is_term(vi)) {
|
|
m_term_index2theory_var.setx(m_solver->adjust_term_index(vi), v, UINT_MAX);
|
|
}
|
|
else {
|
|
m_var_index2theory_var.setx(vi, v, UINT_MAX);
|
|
}
|
|
m_var_trail.push_back(v);
|
|
TRACE("arith", tout << "v" << v << " := " << mk_pp(term, m) << " slack: " << vi << " scopes: " << m_scopes.size() << "\n";
|
|
m_solver->print_term(m_solver->get_term(vi), tout); tout << "\n";);
|
|
}
|
|
rational val;
|
|
if (a.is_numeral(term, val)) {
|
|
m_fixed_var_table.insert(value_sort_pair(val, is_int(v)), v);
|
|
}
|
|
return v;
|
|
}
|
|
}
|
|
|
|
|
|
public:
|
|
imp(theory_lra& th, ast_manager& m, theory_arith_params& ap):
|
|
th(th), m(m),
|
|
m_arith_params(ap),
|
|
a(m),
|
|
m_arith_eq_adapter(th, ap, a),
|
|
m_internalize_head(0),
|
|
m_delay_constraints(false),
|
|
m_delayed_terms(m),
|
|
m_not_handled(0),
|
|
m_asserted_qhead(0),
|
|
m_assume_eq_head(0),
|
|
m_num_conflicts(0),
|
|
m_model_eqs(DEFAULT_HASHTABLE_INITIAL_CAPACITY, var_value_hash(*this), var_value_eq(*this)),
|
|
m_solver(0),
|
|
m_resource_limit(*this) {
|
|
}
|
|
|
|
~imp() {
|
|
del_bounds(0);
|
|
std::for_each(m_internalize_states.begin(), m_internalize_states.end(), delete_proc<internalize_state>());
|
|
}
|
|
|
|
void init(context* ctx) {
|
|
init_solver();
|
|
}
|
|
|
|
bool internalize_atom(app * atom, bool gate_ctx) {
|
|
if (m_delay_constraints) {
|
|
return internalize_atom_lazy(atom, gate_ctx);
|
|
}
|
|
else {
|
|
return internalize_atom_strict(atom, gate_ctx);
|
|
}
|
|
}
|
|
|
|
bool internalize_atom_strict(app * atom, bool gate_ctx) {
|
|
SASSERT(!ctx().b_internalized(atom));
|
|
bool_var bv = ctx().mk_bool_var(atom);
|
|
ctx().set_var_theory(bv, get_id());
|
|
expr* n1, *n2;
|
|
rational r;
|
|
lp::bound_kind k;
|
|
theory_var v = null_theory_var;
|
|
if (a.is_le(atom, n1, n2) && is_numeral(n2, r) && is_app(n1)) {
|
|
v = internalize_def(to_app(n1));
|
|
k = lp::upper_t;
|
|
}
|
|
else if (a.is_ge(atom, n1, n2) && is_numeral(n2, r) && is_app(n1)) {
|
|
v = internalize_def(to_app(n1));
|
|
k = lp::lower_t;
|
|
}
|
|
else {
|
|
TRACE("arith", tout << "Could not internalize " << mk_pp(atom, m) << "\n";);
|
|
found_not_handled(atom);
|
|
return true;
|
|
}
|
|
lp::bound* b = alloc(lp::bound, bv, v, r, k);
|
|
m_bounds[v].push_back(b);
|
|
updt_unassigned_bounds(v, +1);
|
|
m_bounds_trail.push_back(v);
|
|
m_bool_var2bound.insert(bv, b);
|
|
TRACE("arith", tout << "Internalized " << mk_pp(atom, m) << "\n";);
|
|
mk_bound_axioms(*b);
|
|
//add_use_lists(b);
|
|
return true;
|
|
}
|
|
|
|
bool internalize_atom_lazy(app * atom, bool gate_ctx) {
|
|
SASSERT(!ctx().b_internalized(atom));
|
|
bool_var bv = ctx().mk_bool_var(atom);
|
|
ctx().set_var_theory(bv, get_id());
|
|
expr* n1, *n2;
|
|
rational r;
|
|
lp::bound_kind k;
|
|
theory_var v = null_theory_var;
|
|
scoped_internalize_state st(*this);
|
|
if (a.is_le(atom, n1, n2) && is_numeral(n2, r) && is_app(n1)) {
|
|
v = internalize_def(to_app(n1), st);
|
|
k = lp::upper_t;
|
|
}
|
|
else if (a.is_ge(atom, n1, n2) && is_numeral(n2, r) && is_app(n1)) {
|
|
v = internalize_def(to_app(n1), st);
|
|
k = lp::lower_t;
|
|
}
|
|
else {
|
|
TRACE("arith", tout << "Could not internalize " << mk_pp(atom, m) << "\n";);
|
|
found_not_handled(atom);
|
|
return true;
|
|
}
|
|
lp::bound* b = alloc(lp::bound, bv, v, r, k);
|
|
m_bounds[v].push_back(b);
|
|
updt_unassigned_bounds(v, +1);
|
|
m_bounds_trail.push_back(v);
|
|
m_bool_var2bound.insert(bv, b);
|
|
TRACE("arith", tout << "Internalized " << mk_pp(atom, m) << "\n";);
|
|
if (!is_unit_var(st) && m_bounds[v].size() == 1) {
|
|
m_delayed_defs.push_back(delayed_def(st.vars(), st.coeffs(), st.coeff(), v));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool internalize_term(app * term) {
|
|
if (ctx().e_internalized(term) && th.is_attached_to_var(ctx().get_enode(term))) {
|
|
// skip
|
|
}
|
|
else if (m_delay_constraints) {
|
|
scoped_internalize_state st(*this);
|
|
linearize_term(term, st); // ensure that a theory_var was created.
|
|
SASSERT(ctx().e_internalized(term));
|
|
if(!th.is_attached_to_var(ctx().get_enode(term))) {
|
|
mk_var(term);
|
|
}
|
|
m_delayed_terms.push_back(term);
|
|
}
|
|
else {
|
|
internalize_def(term);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void internalize_eq_eh(app * atom, bool_var) {
|
|
expr* lhs, *rhs;
|
|
VERIFY(m.is_eq(atom, lhs, rhs));
|
|
enode * n1 = get_enode(lhs);
|
|
enode * n2 = get_enode(rhs);
|
|
if (n1->get_th_var(get_id()) != null_theory_var &&
|
|
n2->get_th_var(get_id()) != null_theory_var &&
|
|
n1 != n2) {
|
|
TRACE("arith", tout << mk_pp(atom, m) << "\n";);
|
|
m_arith_eq_adapter.mk_axioms(n1, n2);
|
|
}
|
|
}
|
|
|
|
void assign_eh(bool_var v, bool is_true) {
|
|
TRACE("arith", tout << mk_pp(ctx().bool_var2expr(v), m) << " " << (is_true?"true":"false") << "\n";);
|
|
m_asserted_atoms.push_back(delayed_atom(v, is_true));
|
|
}
|
|
|
|
void new_eq_eh(theory_var v1, theory_var v2) {
|
|
if (m_delay_constraints) {
|
|
m_delayed_equalities.push_back(std::make_pair(v1, v2));
|
|
}
|
|
else {
|
|
// or internalize_eq(v1, v2);
|
|
m_arith_eq_adapter.new_eq_eh(v1, v2);
|
|
}
|
|
}
|
|
|
|
bool use_diseqs() const {
|
|
return true;
|
|
}
|
|
|
|
void new_diseq_eh(theory_var v1, theory_var v2) {
|
|
TRACE("arith", tout << "v" << v1 << " != " << "v" << v2 << "\n";);
|
|
++m_stats.m_assert_diseq;
|
|
m_arith_eq_adapter.new_diseq_eh(v1, v2);
|
|
}
|
|
|
|
void push_scope_eh() {
|
|
m_scopes.push_back(scope());
|
|
scope& s = m_scopes.back();
|
|
s.m_bounds_lim = m_bounds_trail.size();
|
|
s.m_asserted_qhead = m_asserted_qhead;
|
|
s.m_asserted_atoms_lim = m_asserted_atoms.size();
|
|
s.m_delayed_terms_lim = m_delayed_terms.size();
|
|
s.m_delayed_equalities_lim = m_delayed_equalities.size();
|
|
s.m_delayed_defs_lim = m_delayed_defs.size();
|
|
s.m_not_handled = m_not_handled;
|
|
s.m_underspecified_lim = m_underspecified.size();
|
|
s.m_var_trail_lim = m_var_trail.size();
|
|
if (!m_delay_constraints) m_solver->push();
|
|
}
|
|
|
|
void pop_scope_eh(unsigned num_scopes) {
|
|
if (num_scopes == 0) {
|
|
return;
|
|
}
|
|
unsigned old_size = m_scopes.size() - num_scopes;
|
|
del_bounds(m_scopes[old_size].m_bounds_lim);
|
|
for (unsigned i = m_scopes[old_size].m_var_trail_lim; i < m_var_trail.size(); ++i) {
|
|
lean::var_index vi = m_theory_var2var_index[m_var_trail[i]];
|
|
if (m_solver->is_term(vi)) {
|
|
unsigned ti = m_solver->adjust_term_index(vi);
|
|
m_term_index2theory_var[ti] = UINT_MAX;
|
|
}
|
|
else if (vi < m_var_index2theory_var.size()) {
|
|
m_var_index2theory_var[vi] = UINT_MAX;
|
|
}
|
|
m_theory_var2var_index[m_var_trail[i]] = UINT_MAX;
|
|
}
|
|
m_asserted_atoms.shrink(m_scopes[old_size].m_asserted_atoms_lim);
|
|
m_delayed_terms.shrink(m_scopes[old_size].m_delayed_terms_lim);
|
|
m_delayed_defs.shrink(m_scopes[old_size].m_delayed_defs_lim);
|
|
m_delayed_equalities.shrink(m_scopes[old_size].m_delayed_equalities_lim);
|
|
m_asserted_qhead = m_scopes[old_size].m_asserted_qhead;
|
|
m_underspecified.shrink(m_scopes[old_size].m_underspecified_lim);
|
|
m_var_trail.shrink(m_scopes[old_size].m_var_trail_lim);
|
|
m_not_handled = m_scopes[old_size].m_not_handled;
|
|
m_scopes.resize(old_size);
|
|
if (!m_delay_constraints) m_solver->pop(num_scopes);
|
|
// VERIFY(l_false != make_feasible());
|
|
m_new_bounds.reset();
|
|
m_to_check.reset();
|
|
TRACE("arith", tout << "num scopes: " << num_scopes << " new scope level: " << m_scopes.size() << "\n";);
|
|
}
|
|
|
|
void restart_eh() {
|
|
m_arith_eq_adapter.restart_eh();
|
|
}
|
|
|
|
void relevant_eh(app* n) {
|
|
TRACE("arith", tout << mk_pp(n, m) << "\n";);
|
|
expr* n1, *n2;
|
|
if (a.is_mod(n, n1, n2))
|
|
mk_idiv_mod_axioms(n1, n2);
|
|
else if (a.is_rem(n, n1, n2))
|
|
mk_rem_axiom(n1, n2);
|
|
else if (a.is_div(n, n1, n2))
|
|
mk_div_axiom(n1, n2);
|
|
else if (a.is_to_int(n))
|
|
mk_to_int_axiom(n);
|
|
else if (a.is_is_int(n))
|
|
mk_is_int_axiom(n);
|
|
}
|
|
|
|
// n < 0 || rem(a, n) = mod(a, n)
|
|
// !n < 0 || rem(a, n) = -mod(a, n)
|
|
void mk_rem_axiom(expr* dividend, expr* divisor) {
|
|
expr_ref zero(a.mk_int(0), m);
|
|
expr_ref rem(a.mk_rem(dividend, divisor), m);
|
|
expr_ref mod(a.mk_mod(dividend, divisor), m);
|
|
expr_ref mmod(a.mk_uminus(mod), m);
|
|
literal dgez = mk_literal(a.mk_ge(divisor, zero));
|
|
mk_axiom(~dgez, th.mk_eq(rem, mod, false));
|
|
mk_axiom( dgez, th.mk_eq(rem, mmod, false));
|
|
}
|
|
|
|
// q = 0 or q * (p div q) = p
|
|
void mk_div_axiom(expr* p, expr* q) {
|
|
if (a.is_zero(q)) return;
|
|
literal eqz = th.mk_eq(q, a.mk_real(0), false);
|
|
literal eq = th.mk_eq(a.mk_mul(q, a.mk_div(p, q)), p, false);
|
|
mk_axiom(eqz, eq);
|
|
}
|
|
|
|
// to_int (to_real x) = x
|
|
// to_real(to_int(x)) <= x < to_real(to_int(x)) + 1
|
|
void mk_to_int_axiom(app* n) {
|
|
expr* x, *y;
|
|
VERIFY (a.is_to_int(n, x));
|
|
if (a.is_to_real(x, y)) {
|
|
mk_axiom(th.mk_eq(y, n, false));
|
|
}
|
|
else {
|
|
expr_ref to_r(a.mk_to_real(n), m);
|
|
expr_ref lo(a.mk_le(a.mk_sub(to_r, x), a.mk_real(0)), m);
|
|
expr_ref hi(a.mk_ge(a.mk_sub(x, to_r), a.mk_real(1)), m);
|
|
mk_axiom(mk_literal(lo));
|
|
mk_axiom(~mk_literal(hi));
|
|
}
|
|
}
|
|
|
|
// is_int(x) <=> to_real(to_int(x)) = x
|
|
void mk_is_int_axiom(app* n) {
|
|
expr* x;
|
|
VERIFY(a.is_is_int(n, x));
|
|
literal eq = th.mk_eq(a.mk_to_real(a.mk_to_int(x)), x, false);
|
|
literal is_int = ctx().get_literal(n);
|
|
mk_axiom(~is_int, eq);
|
|
mk_axiom(is_int, ~eq);
|
|
}
|
|
|
|
void mk_idiv_mod_axioms(expr * p, expr * q) {
|
|
if (a.is_zero(q)) {
|
|
return;
|
|
}
|
|
// if q is zero, then idiv and mod are uninterpreted functions.
|
|
expr_ref div(a.mk_idiv(p, q), m);
|
|
expr_ref mod(a.mk_mod(p, q), m);
|
|
expr_ref zero(a.mk_int(0), m);
|
|
literal q_ge_0 = mk_literal(a.mk_ge(q, zero));
|
|
literal q_le_0 = mk_literal(a.mk_le(q, zero));
|
|
// literal eqz = th.mk_eq(q, zero, false);
|
|
literal eq = th.mk_eq(a.mk_add(a.mk_mul(q, div), mod), p, false);
|
|
literal mod_ge_0 = mk_literal(a.mk_ge(mod, zero));
|
|
// q >= 0 or p = (p mod q) + q * (p div q)
|
|
// q <= 0 or p = (p mod q) + q * (p div q)
|
|
// q >= 0 or (p mod q) >= 0
|
|
// q <= 0 or (p mod q) >= 0
|
|
// q <= 0 or (p mod q) < q
|
|
// q >= 0 or (p mod q) < -q
|
|
mk_axiom(q_ge_0, eq);
|
|
mk_axiom(q_le_0, eq);
|
|
mk_axiom(q_ge_0, mod_ge_0);
|
|
mk_axiom(q_le_0, mod_ge_0);
|
|
mk_axiom(q_le_0, ~mk_literal(a.mk_ge(a.mk_sub(mod, q), zero)));
|
|
mk_axiom(q_ge_0, ~mk_literal(a.mk_ge(a.mk_add(mod, q), zero)));
|
|
rational k;
|
|
if (m_arith_params.m_arith_enum_const_mod && a.is_numeral(q, k) &&
|
|
k.is_pos() && k < rational(8)) {
|
|
unsigned _k = k.get_unsigned();
|
|
literal_buffer lits;
|
|
for (unsigned j = 0; j < _k; ++j) {
|
|
literal mod_j = th.mk_eq(mod, a.mk_int(j), false);
|
|
lits.push_back(mod_j);
|
|
ctx().mark_as_relevant(mod_j);
|
|
}
|
|
ctx().mk_th_axiom(get_id(), lits.size(), lits.begin());
|
|
}
|
|
}
|
|
|
|
void mk_axiom(literal l) {
|
|
ctx().mk_th_axiom(get_id(), false_literal, l);
|
|
if (ctx().relevancy()) {
|
|
ctx().mark_as_relevant(l);
|
|
}
|
|
}
|
|
|
|
void mk_axiom(literal l1, literal l2) {
|
|
if (l1 == false_literal) {
|
|
mk_axiom(l2);
|
|
return;
|
|
}
|
|
ctx().mk_th_axiom(get_id(), l1, l2);
|
|
if (ctx().relevancy()) {
|
|
ctx().mark_as_relevant(l1);
|
|
expr_ref e(m);
|
|
ctx().literal2expr(l2, e);
|
|
ctx().add_rel_watch(~l1, e);
|
|
}
|
|
}
|
|
|
|
void mk_axiom(literal l1, literal l2, literal l3) {
|
|
ctx().mk_th_axiom(get_id(), l1, l2, l3);
|
|
if (ctx().relevancy()) {
|
|
expr_ref e(m);
|
|
ctx().mark_as_relevant(l1);
|
|
ctx().literal2expr(l2, e);
|
|
ctx().add_rel_watch(~l1, e);
|
|
ctx().literal2expr(l3, e);
|
|
ctx().add_rel_watch(~l2, e);
|
|
}
|
|
}
|
|
|
|
literal mk_literal(expr* e) {
|
|
expr_ref pinned(e, m);
|
|
if (!ctx().e_internalized(e)) {
|
|
ctx().internalize(e, false);
|
|
}
|
|
return ctx().get_literal(e);
|
|
}
|
|
|
|
|
|
void init_search_eh() {
|
|
m_arith_eq_adapter.init_search_eh();
|
|
m_num_conflicts = 0;
|
|
}
|
|
|
|
bool can_get_value(theory_var v) const {
|
|
return
|
|
(v != null_theory_var) &&
|
|
(v < static_cast<theory_var>(m_theory_var2var_index.size())) &&
|
|
(UINT_MAX != m_theory_var2var_index[v]) &&
|
|
(m_solver->is_term(m_theory_var2var_index[v]) || m_variable_values.count(m_theory_var2var_index[v]) > 0);
|
|
}
|
|
|
|
|
|
bool can_get_ivalue(theory_var v) const {
|
|
if (v == null_theory_var || (v >= static_cast<theory_var>(m_theory_var2var_index.size())))
|
|
return false;
|
|
return m_solver->var_is_registered(m_theory_var2var_index[v]);
|
|
}
|
|
|
|
lean::impq get_ivalue(theory_var v) const {
|
|
lean_assert(can_get_ivalue(v));
|
|
lean::var_index vi = m_theory_var2var_index[v];
|
|
if (!m_solver->is_term(vi))
|
|
return m_solver->get_value(vi);
|
|
|
|
const lean::lar_term& term = m_solver->get_term(vi);
|
|
lean::impq result(term.m_v);
|
|
for (const auto & i: term.m_coeffs) {
|
|
result += m_solver->get_value(i.first) * i.second;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
rational get_value(theory_var v) const {
|
|
if (!can_get_value(v)) return rational::zero();
|
|
lean::var_index vi = m_theory_var2var_index[v];
|
|
if (m_variable_values.count(vi) > 0) {
|
|
return m_variable_values[vi];
|
|
}
|
|
if (m_solver->is_term(vi)) {
|
|
const lean::lar_term& term = m_solver->get_term(vi);
|
|
rational result = term.m_v;
|
|
for (auto i = term.m_coeffs.begin(); i != term.m_coeffs.end(); ++i) {
|
|
result += m_variable_values[i->first] * i->second;
|
|
}
|
|
m_variable_values[vi] = result;
|
|
return result;
|
|
}
|
|
UNREACHABLE();
|
|
return m_variable_values[vi];
|
|
}
|
|
|
|
void init_variable_values() {
|
|
if (m_solver.get() && th.get_num_vars() > 0) {
|
|
m_solver->get_model(m_variable_values);
|
|
}
|
|
}
|
|
|
|
void reset_variable_values() {
|
|
m_variable_values.clear();
|
|
}
|
|
|
|
bool assume_eqs() {
|
|
svector<lean::var_index> vars;
|
|
theory_var sz = static_cast<theory_var>(th.get_num_vars());
|
|
for (theory_var v = 0; v < sz; ++v) {
|
|
if (th.is_relevant_and_shared(get_enode(v))) {
|
|
vars.push_back(m_theory_var2var_index[v]);
|
|
}
|
|
}
|
|
if (vars.empty()) {
|
|
return false;
|
|
}
|
|
TRACE("arith",
|
|
for (theory_var v = 0; v < sz; ++v) {
|
|
if (th.is_relevant_and_shared(get_enode(v))) {
|
|
tout << "v" << v << " " << m_theory_var2var_index[v] << " ";
|
|
}
|
|
}
|
|
tout << "\n";
|
|
);
|
|
m_solver->random_update(vars.size(), vars.c_ptr());
|
|
m_model_eqs.reset();
|
|
TRACE("arith", display(tout););
|
|
|
|
unsigned old_sz = m_assume_eq_candidates.size();
|
|
bool result = false;
|
|
int start = ctx().get_random_value();
|
|
for (theory_var i = 0; i < sz; ++i) {
|
|
theory_var v = (i + start) % sz;
|
|
enode* n1 = get_enode(v);
|
|
if (!th.is_relevant_and_shared(n1)) {
|
|
continue;
|
|
}
|
|
if (!can_get_ivalue(v)) {
|
|
continue;
|
|
}
|
|
theory_var other = m_model_eqs.insert_if_not_there(v);
|
|
if (other == v) {
|
|
continue;
|
|
}
|
|
enode* n2 = get_enode(other);
|
|
if (n1->get_root() != n2->get_root()) {
|
|
TRACE("arith", tout << mk_pp(n1->get_owner(), m) << " = " << mk_pp(n2->get_owner(), m) << "\n";
|
|
tout << mk_pp(n1->get_owner(), m) << " = " << mk_pp(n2->get_owner(), m) << "\n";
|
|
tout << "v" << v << " = " << "v" << other << "\n";);
|
|
m_assume_eq_candidates.push_back(std::make_pair(v, other));
|
|
result = true;
|
|
}
|
|
}
|
|
|
|
if (result) {
|
|
ctx().push_trail(restore_size_trail<context, std::pair<theory_var, theory_var>, false>(m_assume_eq_candidates, old_sz));
|
|
}
|
|
|
|
return delayed_assume_eqs();
|
|
}
|
|
|
|
bool delayed_assume_eqs() {
|
|
if (m_assume_eq_head == m_assume_eq_candidates.size())
|
|
return false;
|
|
|
|
ctx().push_trail(value_trail<context, unsigned>(m_assume_eq_head));
|
|
while (m_assume_eq_head < m_assume_eq_candidates.size()) {
|
|
std::pair<theory_var, theory_var> const & p = m_assume_eq_candidates[m_assume_eq_head];
|
|
theory_var v1 = p.first;
|
|
theory_var v2 = p.second;
|
|
enode* n1 = get_enode(v1);
|
|
enode* n2 = get_enode(v2);
|
|
m_assume_eq_head++;
|
|
CTRACE("arith",
|
|
get_ivalue(v1) == get_ivalue(v2) && n1->get_root() != n2->get_root(),
|
|
tout << "assuming eq: v" << v1 << " = v" << v2 << "\n";);
|
|
if (get_ivalue(v1) == get_ivalue(v2) && n1->get_root() != n2->get_root() && th.assume_eq(n1, n2)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool has_delayed_constraints() const {
|
|
return !(m_asserted_atoms.empty() && m_delayed_terms.empty() && m_delayed_equalities.empty());
|
|
}
|
|
|
|
final_check_status final_check_eh() {
|
|
lbool is_sat = l_true;
|
|
if (m_delay_constraints) {
|
|
init_solver();
|
|
for (unsigned i = 0; i < m_asserted_atoms.size(); ++i) {
|
|
bool_var bv = m_asserted_atoms[i].m_bv;
|
|
assert_bound(bv, m_asserted_atoms[i].m_is_true, *m_bool_var2bound.find(bv));
|
|
}
|
|
for (unsigned i = 0; i < m_delayed_terms.size(); ++i) {
|
|
internalize_def(m_delayed_terms[i].get());
|
|
}
|
|
for (unsigned i = 0; i < m_delayed_defs.size(); ++i) {
|
|
internalize_eq(m_delayed_defs[i]);
|
|
}
|
|
for (unsigned i = 0; i < m_delayed_equalities.size(); ++i) {
|
|
std::pair<theory_var, theory_var> const& eq = m_delayed_equalities[i];
|
|
internalize_eq(eq.first, eq.second);
|
|
}
|
|
is_sat = make_feasible();
|
|
}
|
|
else if (m_solver->get_status() != lean::lp_status::OPTIMAL) {
|
|
is_sat = make_feasible();
|
|
}
|
|
switch (is_sat) {
|
|
case l_true:
|
|
if (delayed_assume_eqs()) {
|
|
return FC_CONTINUE;
|
|
}
|
|
if (assume_eqs()) {
|
|
return FC_CONTINUE;
|
|
}
|
|
if (m_not_handled != 0) {
|
|
return FC_GIVEUP;
|
|
}
|
|
return FC_DONE;
|
|
case l_false:
|
|
set_conflict();
|
|
return FC_CONTINUE;
|
|
case l_undef:
|
|
return m.canceled() ? FC_CONTINUE : FC_GIVEUP;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return FC_GIVEUP;
|
|
}
|
|
|
|
|
|
/**
|
|
\brief We must redefine this method, because theory of arithmetic contains
|
|
underspecified operators such as division by 0.
|
|
(/ a b) is essentially an uninterpreted function when b = 0.
|
|
Thus, 'a' must be considered a shared var if it is the child of an underspecified operator.
|
|
|
|
if merge(a / b, x + y) and a / b is root, then x + y become shared and all z + u in equivalence class of x + y.
|
|
|
|
|
|
TBD: when the set of underspecified subterms is small, compute the shared variables below it.
|
|
Recompute the set if there are merges that invalidate it.
|
|
Use the set to determine if a variable is shared.
|
|
*/
|
|
bool is_shared(theory_var v) const {
|
|
if (m_underspecified.empty()) {
|
|
return false;
|
|
}
|
|
enode * n = get_enode(v);
|
|
enode * r = n->get_root();
|
|
unsigned usz = m_underspecified.size();
|
|
TRACE("shared", tout << ctx().get_scope_level() << " " << v << " " << r->get_num_parents() << "\n";);
|
|
if (r->get_num_parents() > 2*usz) {
|
|
for (unsigned i = 0; i < usz; ++i) {
|
|
app* u = m_underspecified[i];
|
|
unsigned sz = u->get_num_args();
|
|
for (unsigned j = 0; j < sz; ++j) {
|
|
if (ctx().get_enode(u->get_arg(j))->get_root() == r) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
enode_vector::const_iterator it = r->begin_parents();
|
|
enode_vector::const_iterator end = r->end_parents();
|
|
for (; it != end; ++it) {
|
|
enode * parent = *it;
|
|
if (is_underspecified(parent->get_owner())) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool can_propagate() {
|
|
#if 0
|
|
if (ctx().at_base_level() && has_delayed_constraints()) {
|
|
// we could add the delayed constraints here directly to the tableau instead of using bounds variables.
|
|
}
|
|
#endif
|
|
return m_asserted_atoms.size() > m_asserted_qhead;
|
|
}
|
|
|
|
void propagate() {
|
|
flush_bound_axioms();
|
|
if (!can_propagate()) {
|
|
return;
|
|
}
|
|
while (m_asserted_qhead < m_asserted_atoms.size() && !ctx().inconsistent()) {
|
|
bool_var bv = m_asserted_atoms[m_asserted_qhead].m_bv;
|
|
bool is_true = m_asserted_atoms[m_asserted_qhead].m_is_true;
|
|
|
|
#if 1
|
|
m_to_check.push_back(bv);
|
|
#else
|
|
propagate_bound(bv, is_true, b);
|
|
#endif
|
|
if (!m_delay_constraints) {
|
|
lp::bound& b = *m_bool_var2bound.find(bv);
|
|
assert_bound(bv, is_true, b);
|
|
}
|
|
|
|
++m_asserted_qhead;
|
|
}
|
|
if (m_delay_constraints || ctx().inconsistent()) {
|
|
m_to_check.reset();
|
|
return;
|
|
}
|
|
/*for (; qhead < m_asserted_atoms.size() && !ctx().inconsistent(); ++qhead) {
|
|
bool_var bv = m_asserted_atoms[qhead].m_bv;
|
|
bool is_true = m_asserted_atoms[qhead].m_is_true;
|
|
lp::bound& b = *m_bool_var2bound.find(bv);
|
|
propagate_bound_compound(bv, is_true, b);
|
|
}*/
|
|
|
|
lbool lbl = make_feasible();
|
|
|
|
switch(lbl) {
|
|
case l_false:
|
|
TRACE("arith", tout << "propagation conflict\n";);
|
|
set_conflict();
|
|
break;
|
|
case l_true:
|
|
propagate_basic_bounds();
|
|
propagate_bounds_with_lp_solver();
|
|
break;
|
|
case l_undef:
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
void propagate_bounds_with_lp_solver() {
|
|
if (BP_NONE == propagation_mode()) {
|
|
return;
|
|
}
|
|
int num_of_p = m_solver->settings().st().m_num_of_implied_bounds;
|
|
local_bound_propagator bp(*this);
|
|
m_solver->propagate_bounds_for_touched_rows(bp);
|
|
if (m.canceled()) {
|
|
return;
|
|
}
|
|
int new_num_of_p = m_solver->settings().st().m_num_of_implied_bounds;
|
|
CTRACE("arith", new_num_of_p > num_of_p, tout << "found " << new_num_of_p << " implied bounds\n";);
|
|
if (m_solver->get_status() == lean::lp_status::INFEASIBLE) {
|
|
set_conflict();
|
|
}
|
|
else {
|
|
for (unsigned i = 0; !m.canceled() && !ctx().inconsistent() && i < bp.m_ibounds.size(); ++i) {
|
|
propagate_lp_solver_bound(bp.m_ibounds[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool bound_is_interesting(unsigned vi, lean::lconstraint_kind kind, const rational & bval) const {
|
|
theory_var v;
|
|
if (m_solver->is_term(vi)) {
|
|
v = m_term_index2theory_var.get(m_solver->adjust_term_index(vi), null_theory_var);
|
|
}
|
|
else {
|
|
v = m_var_index2theory_var.get(vi, null_theory_var);
|
|
}
|
|
|
|
if (v == null_theory_var) return false;
|
|
|
|
if (m_unassigned_bounds[v] == 0 || m_bounds.size() <= static_cast<unsigned>(v)) {
|
|
TRACE("arith", tout << "return\n";);
|
|
return false;
|
|
}
|
|
lp_bounds const& bounds = m_bounds[v];
|
|
for (unsigned i = 0; i < bounds.size(); ++i) {
|
|
lp::bound* b = bounds[i];
|
|
if (ctx().get_assignment(b->get_bv()) != l_undef) {
|
|
continue;
|
|
}
|
|
literal lit = is_bound_implied(kind, bval, *b);
|
|
if (lit == null_literal) {
|
|
continue;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct local_bound_propagator: public lean::bound_propagator {
|
|
imp & m_imp;
|
|
local_bound_propagator(imp& i) : bound_propagator(*i.m_solver), m_imp(i) {}
|
|
|
|
bool bound_is_interesting(unsigned j, lean::lconstraint_kind kind, const rational & v) {
|
|
return m_imp.bound_is_interesting(j, kind, v);
|
|
}
|
|
|
|
virtual void consume(rational const& v, unsigned j) {
|
|
m_imp.set_evidence(j);
|
|
}
|
|
};
|
|
|
|
|
|
void propagate_lp_solver_bound(lean::implied_bound& be) {
|
|
|
|
theory_var v;
|
|
lean::var_index vi = be.m_j;
|
|
if (m_solver->is_term(vi)) {
|
|
v = m_term_index2theory_var.get(m_solver->adjust_term_index(vi), null_theory_var);
|
|
}
|
|
else {
|
|
v = m_var_index2theory_var.get(vi, null_theory_var);
|
|
}
|
|
|
|
if (v == null_theory_var) return;
|
|
TRACE("arith", tout << "v" << v << " " << be.kind() << " " << be.m_bound << "\n";
|
|
// if (m_unassigned_bounds[v] == 0) m_solver->print_bound_evidence(be, tout);
|
|
);
|
|
|
|
|
|
if (m_unassigned_bounds[v] == 0 || m_bounds.size() <= static_cast<unsigned>(v)) {
|
|
TRACE("arith", tout << "return\n";);
|
|
return;
|
|
}
|
|
lp_bounds const& bounds = m_bounds[v];
|
|
bool first = true;
|
|
for (unsigned i = 0; i < bounds.size(); ++i) {
|
|
lp::bound* b = bounds[i];
|
|
if (ctx().get_assignment(b->get_bv()) != l_undef) {
|
|
continue;
|
|
}
|
|
literal lit = is_bound_implied(be.kind(), be.m_bound, *b);
|
|
if (lit == null_literal) {
|
|
continue;
|
|
}
|
|
|
|
m_solver->settings().st().m_num_of_implied_bounds ++;
|
|
if (first) {
|
|
first = false;
|
|
m_core.reset();
|
|
m_eqs.reset();
|
|
m_params.reset();
|
|
local_bound_propagator bp(*this);
|
|
m_solver->explain_implied_bound(be, bp);
|
|
}
|
|
CTRACE("arith", m_unassigned_bounds[v] == 0, tout << "missed bound\n";);
|
|
updt_unassigned_bounds(v, -1);
|
|
TRACE("arith",
|
|
ctx().display_literals_verbose(tout, m_core);
|
|
tout << "\n --> ";
|
|
ctx().display_literal_verbose(tout, lit);
|
|
tout << "\n";
|
|
// display_evidence(tout, m_explanation);
|
|
m_solver->print_implied_bound(be, tout);
|
|
);
|
|
DEBUG_CODE(
|
|
for (auto& lit : m_core) {
|
|
SASSERT(ctx().get_assignment(lit) == l_true);
|
|
});
|
|
++m_stats.m_bound_propagations1;
|
|
assign(lit);
|
|
}
|
|
}
|
|
|
|
literal_vector m_core2;
|
|
|
|
void assign(literal lit) {
|
|
SASSERT(validate_assign(lit));
|
|
if (m_core.size() < small_lemma_size() && m_eqs.empty()) {
|
|
m_core2.reset();
|
|
for (unsigned i = 0; i < m_core.size(); ++i) {
|
|
m_core2.push_back(~m_core[i]);
|
|
}
|
|
m_core2.push_back(lit);
|
|
justification * js = 0;
|
|
if (proofs_enabled()) {
|
|
js = alloc(theory_lemma_justification, get_id(), ctx(), m_core2.size(), m_core2.c_ptr(),
|
|
m_params.size(), m_params.c_ptr());
|
|
}
|
|
ctx().mk_clause(m_core2.size(), m_core2.c_ptr(), js, CLS_AUX_LEMMA, 0);
|
|
}
|
|
else {
|
|
ctx().assign(
|
|
lit, ctx().mk_justification(
|
|
ext_theory_propagation_justification(
|
|
get_id(), ctx().get_region(), m_core.size(), m_core.c_ptr(),
|
|
m_eqs.size(), m_eqs.c_ptr(), lit, m_params.size(), m_params.c_ptr())));
|
|
}
|
|
}
|
|
|
|
literal is_bound_implied(lean::lconstraint_kind k, rational const& value, lp::bound const& b) const {
|
|
if ((k == lean::LE || k == lean::LT) && b.get_bound_kind() == lp::upper_t && value <= b.get_value()) {
|
|
// v <= value <= b.get_value() => v <= b.get_value()
|
|
return literal(b.get_bv(), false);
|
|
}
|
|
if ((k == lean::GE || k == lean::GT) && b.get_bound_kind() == lp::lower_t && b.get_value() <= value) {
|
|
// b.get_value() <= value <= v => b.get_value() <= v
|
|
return literal(b.get_bv(), false);
|
|
}
|
|
if (k == lean::LE && b.get_bound_kind() == lp::lower_t && value < b.get_value()) {
|
|
// v <= value < b.get_value() => v < b.get_value()
|
|
return literal(b.get_bv(), true);
|
|
}
|
|
if (k == lean::LT && b.get_bound_kind() == lp::lower_t && value <= b.get_value()) {
|
|
// v < value <= b.get_value() => v < b.get_value()
|
|
return literal(b.get_bv(), true);
|
|
}
|
|
if (k == lean::GE && b.get_bound_kind() == lp::upper_t && b.get_value() < value) {
|
|
// b.get_value() < value <= v => b.get_value() < v
|
|
return literal(b.get_bv(), true);
|
|
}
|
|
if (k == lean::GT && b.get_bound_kind() == lp::upper_t && b.get_value() <= value) {
|
|
// b.get_value() <= value < v => b.get_value() < v
|
|
return literal(b.get_bv(), true);
|
|
}
|
|
|
|
return null_literal;
|
|
}
|
|
|
|
void mk_bound_axioms(lp::bound& b) {
|
|
if (!ctx().is_searching()) {
|
|
//
|
|
// NB. We make an assumption that user push calls propagation
|
|
// before internal scopes are pushed. This flushes all newly
|
|
// asserted atoms into the right context.
|
|
//
|
|
m_new_bounds.push_back(&b);
|
|
return;
|
|
}
|
|
theory_var v = b.get_var();
|
|
lp::bound_kind kind1 = b.get_bound_kind();
|
|
rational const& k1 = b.get_value();
|
|
lp_bounds & bounds = m_bounds[v];
|
|
|
|
lp::bound* end = 0;
|
|
lp::bound* lo_inf = end, *lo_sup = end;
|
|
lp::bound* hi_inf = end, *hi_sup = end;
|
|
|
|
for (unsigned i = 0; i < bounds.size(); ++i) {
|
|
lp::bound& other = *bounds[i];
|
|
if (&other == &b) continue;
|
|
if (b.get_bv() == other.get_bv()) continue;
|
|
lp::bound_kind kind2 = other.get_bound_kind();
|
|
rational const& k2 = other.get_value();
|
|
if (k1 == k2 && kind1 == kind2) {
|
|
// the bounds are equivalent.
|
|
continue;
|
|
}
|
|
|
|
SASSERT(k1 != k2 || kind1 != kind2);
|
|
if (kind2 == lp::lower_t) {
|
|
if (k2 < k1) {
|
|
if (lo_inf == end || k2 > lo_inf->get_value()) {
|
|
lo_inf = &other;
|
|
}
|
|
}
|
|
else if (lo_sup == end || k2 < lo_sup->get_value()) {
|
|
lo_sup = &other;
|
|
}
|
|
}
|
|
else if (k2 < k1) {
|
|
if (hi_inf == end || k2 > hi_inf->get_value()) {
|
|
hi_inf = &other;
|
|
}
|
|
}
|
|
else if (hi_sup == end || k2 < hi_sup->get_value()) {
|
|
hi_sup = &other;
|
|
}
|
|
}
|
|
if (lo_inf != end) mk_bound_axiom(b, *lo_inf);
|
|
if (lo_sup != end) mk_bound_axiom(b, *lo_sup);
|
|
if (hi_inf != end) mk_bound_axiom(b, *hi_inf);
|
|
if (hi_sup != end) mk_bound_axiom(b, *hi_sup);
|
|
}
|
|
|
|
|
|
void mk_bound_axiom(lp::bound& b1, lp::bound& b2) {
|
|
theory_var v = b1.get_var();
|
|
literal l1(b1.get_bv());
|
|
literal l2(b2.get_bv());
|
|
rational const& k1 = b1.get_value();
|
|
rational const& k2 = b2.get_value();
|
|
lp::bound_kind kind1 = b1.get_bound_kind();
|
|
lp::bound_kind kind2 = b2.get_bound_kind();
|
|
bool v_is_int = is_int(v);
|
|
SASSERT(v == b2.get_var());
|
|
if (k1 == k2 && kind1 == kind2) return;
|
|
SASSERT(k1 != k2 || kind1 != kind2);
|
|
parameter coeffs[3] = { parameter(symbol("farkas")),
|
|
parameter(rational(1)), parameter(rational(1)) };
|
|
|
|
if (kind1 == lp::lower_t) {
|
|
if (kind2 == lp::lower_t) {
|
|
if (k2 <= k1) {
|
|
mk_clause(~l1, l2, 3, coeffs);
|
|
}
|
|
else {
|
|
mk_clause(l1, ~l2, 3, coeffs);
|
|
}
|
|
}
|
|
else if (k1 <= k2) {
|
|
// k1 <= k2, k1 <= x or x <= k2
|
|
mk_clause(l1, l2, 3, coeffs);
|
|
}
|
|
else {
|
|
// k1 > hi_inf, k1 <= x => ~(x <= hi_inf)
|
|
mk_clause(~l1, ~l2, 3, coeffs);
|
|
if (v_is_int && k1 == k2 + rational(1)) {
|
|
// k1 <= x or x <= k1-1
|
|
mk_clause(l1, l2, 3, coeffs);
|
|
}
|
|
}
|
|
}
|
|
else if (kind2 == lp::lower_t) {
|
|
if (k1 >= k2) {
|
|
// k1 >= lo_inf, k1 >= x or lo_inf <= x
|
|
mk_clause(l1, l2, 3, coeffs);
|
|
}
|
|
else {
|
|
// k1 < k2, k2 <= x => ~(x <= k1)
|
|
mk_clause(~l1, ~l2, 3, coeffs);
|
|
if (v_is_int && k1 == k2 - rational(1)) {
|
|
// x <= k1 or k1+l <= x
|
|
mk_clause(l1, l2, 3, coeffs);
|
|
}
|
|
|
|
}
|
|
}
|
|
else {
|
|
// kind1 == A_UPPER, kind2 == A_UPPER
|
|
if (k1 >= k2) {
|
|
// k1 >= k2, x <= k2 => x <= k1
|
|
mk_clause(l1, ~l2, 3, coeffs);
|
|
}
|
|
else {
|
|
// k1 <= hi_sup , x <= k1 => x <= hi_sup
|
|
mk_clause(~l1, l2, 3, coeffs);
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef lp_bounds::iterator iterator;
|
|
|
|
void flush_bound_axioms() {
|
|
CTRACE("arith", !m_new_bounds.empty(), tout << "flush bound axioms\n";);
|
|
|
|
while (!m_new_bounds.empty()) {
|
|
lp_bounds atoms;
|
|
atoms.push_back(m_new_bounds.back());
|
|
m_new_bounds.pop_back();
|
|
theory_var v = atoms.back()->get_var();
|
|
for (unsigned i = 0; i < m_new_bounds.size(); ++i) {
|
|
if (m_new_bounds[i]->get_var() == v) {
|
|
atoms.push_back(m_new_bounds[i]);
|
|
m_new_bounds[i] = m_new_bounds.back();
|
|
m_new_bounds.pop_back();
|
|
--i;
|
|
}
|
|
}
|
|
CTRACE("arith_verbose", !atoms.empty(),
|
|
for (unsigned i = 0; i < atoms.size(); ++i) {
|
|
atoms[i]->display(tout); tout << "\n";
|
|
});
|
|
lp_bounds occs(m_bounds[v]);
|
|
|
|
std::sort(atoms.begin(), atoms.end(), compare_bounds());
|
|
std::sort(occs.begin(), occs.end(), compare_bounds());
|
|
|
|
iterator begin1 = occs.begin();
|
|
iterator begin2 = occs.begin();
|
|
iterator end = occs.end();
|
|
begin1 = first(lp::lower_t, begin1, end);
|
|
begin2 = first(lp::upper_t, begin2, end);
|
|
|
|
iterator lo_inf = begin1, lo_sup = begin1;
|
|
iterator hi_inf = begin2, hi_sup = begin2;
|
|
iterator lo_inf1 = begin1, lo_sup1 = begin1;
|
|
iterator hi_inf1 = begin2, hi_sup1 = begin2;
|
|
bool flo_inf, fhi_inf, flo_sup, fhi_sup;
|
|
ptr_addr_hashtable<lp::bound> visited;
|
|
for (unsigned i = 0; i < atoms.size(); ++i) {
|
|
lp::bound* a1 = atoms[i];
|
|
lo_inf1 = next_inf(a1, lp::lower_t, lo_inf, end, flo_inf);
|
|
hi_inf1 = next_inf(a1, lp::upper_t, hi_inf, end, fhi_inf);
|
|
lo_sup1 = next_sup(a1, lp::lower_t, lo_sup, end, flo_sup);
|
|
hi_sup1 = next_sup(a1, lp::upper_t, hi_sup, end, fhi_sup);
|
|
if (lo_inf1 != end) lo_inf = lo_inf1;
|
|
if (lo_sup1 != end) lo_sup = lo_sup1;
|
|
if (hi_inf1 != end) hi_inf = hi_inf1;
|
|
if (hi_sup1 != end) hi_sup = hi_sup1;
|
|
if (!flo_inf) lo_inf = end;
|
|
if (!fhi_inf) hi_inf = end;
|
|
if (!flo_sup) lo_sup = end;
|
|
if (!fhi_sup) hi_sup = end;
|
|
visited.insert(a1);
|
|
if (lo_inf1 != end && lo_inf != end && !visited.contains(*lo_inf)) mk_bound_axiom(*a1, **lo_inf);
|
|
if (lo_sup1 != end && lo_sup != end && !visited.contains(*lo_sup)) mk_bound_axiom(*a1, **lo_sup);
|
|
if (hi_inf1 != end && hi_inf != end && !visited.contains(*hi_inf)) mk_bound_axiom(*a1, **hi_inf);
|
|
if (hi_sup1 != end && hi_sup != end && !visited.contains(*hi_sup)) mk_bound_axiom(*a1, **hi_sup);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct compare_bounds {
|
|
bool operator()(lp::bound* a1, lp::bound* a2) const { return a1->get_value() < a2->get_value(); }
|
|
};
|
|
|
|
|
|
lp_bounds::iterator first(
|
|
lp::bound_kind kind,
|
|
iterator it,
|
|
iterator end) {
|
|
for (; it != end; ++it) {
|
|
lp::bound* a = *it;
|
|
if (a->get_bound_kind() == kind) return it;
|
|
}
|
|
return end;
|
|
}
|
|
|
|
lp_bounds::iterator next_inf(
|
|
lp::bound* a1,
|
|
lp::bound_kind kind,
|
|
iterator it,
|
|
iterator end,
|
|
bool& found_compatible) {
|
|
rational const & k1(a1->get_value());
|
|
iterator result = end;
|
|
found_compatible = false;
|
|
for (; it != end; ++it) {
|
|
lp::bound * a2 = *it;
|
|
if (a1 == a2) continue;
|
|
if (a2->get_bound_kind() != kind) continue;
|
|
rational const & k2(a2->get_value());
|
|
found_compatible = true;
|
|
if (k2 <= k1) {
|
|
result = it;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
lp_bounds::iterator next_sup(
|
|
lp::bound* a1,
|
|
lp::bound_kind kind,
|
|
iterator it,
|
|
iterator end,
|
|
bool& found_compatible) {
|
|
rational const & k1(a1->get_value());
|
|
found_compatible = false;
|
|
for (; it != end; ++it) {
|
|
lp::bound * a2 = *it;
|
|
if (a1 == a2) continue;
|
|
if (a2->get_bound_kind() != kind) continue;
|
|
rational const & k2(a2->get_value());
|
|
found_compatible = true;
|
|
if (k1 < k2) {
|
|
return it;
|
|
}
|
|
}
|
|
return end;
|
|
}
|
|
|
|
void propagate_basic_bounds() {
|
|
for (auto const& bv : m_to_check) {
|
|
lp::bound& b = *m_bool_var2bound.find(bv);
|
|
propagate_bound(bv, ctx().get_assignment(bv) == l_true, b);
|
|
if (ctx().inconsistent()) break;
|
|
|
|
}
|
|
m_to_check.reset();
|
|
}
|
|
|
|
// for glb lo': lo' < lo:
|
|
// lo <= x -> lo' <= x
|
|
// lo <= x -> ~(x <= lo')
|
|
// for lub hi': hi' > hi
|
|
// x <= hi -> x <= hi'
|
|
// x <= hi -> ~(x >= hi')
|
|
|
|
void propagate_bound(bool_var bv, bool is_true, lp::bound& b) {
|
|
if (BP_NONE == propagation_mode()) {
|
|
return;
|
|
}
|
|
lp::bound_kind k = b.get_bound_kind();
|
|
theory_var v = b.get_var();
|
|
inf_rational val = b.get_value(is_true);
|
|
lp_bounds const& bounds = m_bounds[v];
|
|
SASSERT(!bounds.empty());
|
|
if (bounds.size() == 1) return;
|
|
if (m_unassigned_bounds[v] == 0) return;
|
|
|
|
literal lit1(bv, !is_true);
|
|
literal lit2 = null_literal;
|
|
bool find_glb = (is_true == (k == lp::lower_t));
|
|
if (find_glb) {
|
|
rational glb;
|
|
lp::bound* lb = 0;
|
|
for (unsigned i = 0; i < bounds.size(); ++i) {
|
|
lp::bound* b2 = bounds[i];
|
|
if (b2 == &b) continue;
|
|
rational const& val2 = b2->get_value();
|
|
if ((is_true ? val2 < val : val2 <= val) && (!lb || glb < val2)) {
|
|
lb = b2;
|
|
glb = val2;
|
|
}
|
|
}
|
|
if (!lb) return;
|
|
bool sign = lb->get_bound_kind() != lp::lower_t;
|
|
lit2 = literal(lb->get_bv(), sign);
|
|
}
|
|
else {
|
|
rational lub;
|
|
lp::bound* ub = 0;
|
|
for (unsigned i = 0; i < bounds.size(); ++i) {
|
|
lp::bound* b2 = bounds[i];
|
|
if (b2 == &b) continue;
|
|
rational const& val2 = b2->get_value();
|
|
if ((is_true ? val < val2 : val <= val2) && (!ub || val2 < lub)) {
|
|
ub = b2;
|
|
lub = val2;
|
|
}
|
|
}
|
|
if (!ub) return;
|
|
bool sign = ub->get_bound_kind() != lp::upper_t;
|
|
lit2 = literal(ub->get_bv(), sign);
|
|
}
|
|
TRACE("arith",
|
|
ctx().display_literal_verbose(tout, lit1);
|
|
ctx().display_literal_verbose(tout << " => ", lit2);
|
|
tout << "\n";);
|
|
updt_unassigned_bounds(v, -1);
|
|
++m_stats.m_bound_propagations2;
|
|
m_params.reset();
|
|
m_core.reset();
|
|
m_eqs.reset();
|
|
m_core.push_back(lit2);
|
|
m_params.push_back(parameter(symbol("farkas")));
|
|
m_params.push_back(parameter(rational(1)));
|
|
m_params.push_back(parameter(rational(1)));
|
|
assign(lit2);
|
|
++m_stats.m_bounds_propagations;
|
|
}
|
|
|
|
void add_use_lists(lp::bound* b) {
|
|
theory_var v = b->get_var();
|
|
lean::var_index vi = get_var_index(v);
|
|
if (m_solver->is_term(vi)) {
|
|
lean::lar_term const& term = m_solver->get_term(vi);
|
|
for (auto i = term.m_coeffs.begin(); i != term.m_coeffs.end(); ++i) {
|
|
lean::var_index wi = i->first;
|
|
unsigned w = m_var_index2theory_var[wi];
|
|
m_use_list.reserve(w + 1, ptr_vector<lp::bound>());
|
|
m_use_list[w].push_back(b);
|
|
}
|
|
}
|
|
}
|
|
|
|
void del_use_lists(lp::bound* b) {
|
|
theory_var v = b->get_var();
|
|
lean::var_index vi = m_theory_var2var_index[v];
|
|
if (m_solver->is_term(vi)) {
|
|
lean::lar_term const& term = m_solver->get_term(vi);
|
|
for (auto i = term.m_coeffs.begin(); i != term.m_coeffs.end(); ++i) {
|
|
lean::var_index wi = i->first;
|
|
unsigned w = m_var_index2theory_var[wi];
|
|
SASSERT(m_use_list[w].back() == b);
|
|
m_use_list[w].pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// propagate bounds to compound terms
|
|
// The idea is that if bounds on all variables in an inequality ax + by + cz >= k
|
|
// have been assigned we may know the truth value of the inequality by using simple
|
|
// bounds propagation.
|
|
//
|
|
void propagate_bound_compound(bool_var bv, bool is_true, lp::bound& b) {
|
|
theory_var v = b.get_var();
|
|
TRACE("arith", tout << mk_pp(get_owner(v), m) << "\n";);
|
|
if (static_cast<unsigned>(v) >= m_use_list.size()) {
|
|
return;
|
|
}
|
|
for (auto const& vb : m_use_list[v]) {
|
|
if (ctx().get_assignment(vb->get_bv()) != l_undef) {
|
|
TRACE("arith_verbose", display_bound(tout << "assigned ", *vb) << "\n";);
|
|
continue;
|
|
}
|
|
inf_rational r;
|
|
// x + y
|
|
// x >= 0, y >= 1 -> x + y >= 1
|
|
// x <= 0, y <= 2 -> x + y <= 2
|
|
literal lit = null_literal;
|
|
if (lp::lower_t == vb->get_bound_kind()) {
|
|
if (get_glb(*vb, r) && r >= vb->get_value()) { // vb is assigned true
|
|
lit = literal(vb->get_bv(), false);
|
|
}
|
|
else if (get_lub(*vb, r) && r < vb->get_value()) { // vb is assigned false
|
|
lit = literal(vb->get_bv(), true);
|
|
}
|
|
}
|
|
else {
|
|
if (get_glb(*vb, r) && r > vb->get_value()) { // VB <= value < val(VB)
|
|
lit = literal(vb->get_bv(), true);
|
|
}
|
|
else if (get_lub(*vb, r) && r <= vb->get_value()) { // val(VB) <= value
|
|
lit = literal(vb->get_bv(), false);
|
|
}
|
|
}
|
|
|
|
if (lit != null_literal) {
|
|
TRACE("arith",
|
|
ctx().display_literals_verbose(tout, m_core);
|
|
tout << "\n --> ";
|
|
ctx().display_literal_verbose(tout, lit);
|
|
tout << "\n";
|
|
);
|
|
|
|
|
|
assign(lit);
|
|
}
|
|
else {
|
|
TRACE("arith_verbose", display_bound(tout << "skip ", *vb) << "\n";);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool get_lub(lp::bound const& b, inf_rational& lub) {
|
|
return get_bound(b, lub, true);
|
|
}
|
|
|
|
bool get_glb(lp::bound const& b, inf_rational& glb) {
|
|
return get_bound(b, glb, false);
|
|
}
|
|
|
|
std::ostream& display_bound(std::ostream& out, lp::bound const& b) {
|
|
return out << mk_pp(ctx().bool_var2expr(b.get_bv()), m);
|
|
}
|
|
|
|
bool get_bound(lp::bound const& b, inf_rational& r, bool is_lub) {
|
|
m_core.reset();
|
|
m_eqs.reset();
|
|
m_params.reset();
|
|
r.reset();
|
|
theory_var v = b.get_var();
|
|
lean::var_index vi = m_theory_var2var_index[v];
|
|
SASSERT(m_solver->is_term(vi));
|
|
lean::lar_term const& term = m_solver->get_term(vi);
|
|
for (auto const coeff : term.m_coeffs) {
|
|
lean::var_index wi = coeff.first;
|
|
lean::constraint_index ci;
|
|
rational value;
|
|
bool is_strict;
|
|
if (coeff.second.is_neg() == is_lub) {
|
|
// -3*x ... <= lub based on lower bound for x.
|
|
if (!m_solver->has_lower_bound(wi, ci, value, is_strict)) {
|
|
return false;
|
|
}
|
|
if (is_strict) {
|
|
r += inf_rational(rational::zero(), coeff.second.is_pos());
|
|
}
|
|
}
|
|
else {
|
|
if (!m_solver->has_upper_bound(wi, ci, value, is_strict)) {
|
|
return false;
|
|
}
|
|
if (is_strict) {
|
|
r += inf_rational(rational::zero(), coeff.second.is_pos());
|
|
}
|
|
}
|
|
r += value * coeff.second;
|
|
set_evidence(ci);
|
|
}
|
|
TRACE("arith_verbose", tout << (is_lub?"lub":"glb") << " is " << r << "\n";);
|
|
return true;
|
|
}
|
|
|
|
void assert_bound(bool_var bv, bool is_true, lp::bound& b) {
|
|
if (m_solver->get_status() == lean::lp_status::INFEASIBLE) {
|
|
return;
|
|
}
|
|
scoped_internalize_state st(*this);
|
|
st.vars().push_back(b.get_var());
|
|
st.coeffs().push_back(rational::one());
|
|
init_left_side(st);
|
|
lean::lconstraint_kind k = lean::EQ;
|
|
switch (b.get_bound_kind()) {
|
|
case lp::lower_t:
|
|
k = is_true ? lean::GE : lean::LT;
|
|
break;
|
|
case lp::upper_t:
|
|
k = is_true ? lean::LE : lean::GT;
|
|
break;
|
|
}
|
|
if (k == lean::LT || k == lean::LE) {
|
|
++m_stats.m_assert_lower;
|
|
}
|
|
else {
|
|
++m_stats.m_assert_upper;
|
|
}
|
|
auto vi = get_var_index(b.get_var());
|
|
auto ci = m_solver->add_var_bound(vi, k, b.get_value());
|
|
TRACE("arith", tout << "v" << b.get_var() << "\n";);
|
|
add_ineq_constraint(ci, literal(bv, !is_true));
|
|
|
|
propagate_eqs(vi, ci, k, b);
|
|
}
|
|
|
|
//
|
|
// fixed equalities.
|
|
// A fixed equality is inferred if there are two variables v1, v2 whose
|
|
// upper and lower bounds coincide.
|
|
// Then the equality v1 == v2 is propagated to the core.
|
|
//
|
|
|
|
typedef std::pair<lean::constraint_index, rational> constraint_bound;
|
|
vector<constraint_bound> m_lower_terms;
|
|
vector<constraint_bound> m_upper_terms;
|
|
typedef std::pair<rational, bool> value_sort_pair;
|
|
typedef pair_hash<obj_hash<rational>, bool_hash> value_sort_pair_hash;
|
|
typedef map<value_sort_pair, theory_var, value_sort_pair_hash, default_eq<value_sort_pair> > value2var;
|
|
value2var m_fixed_var_table;
|
|
|
|
void propagate_eqs(lean::var_index vi, lean::constraint_index ci, lean::lconstraint_kind k, lp::bound& b) {
|
|
if (propagate_eqs()) {
|
|
rational const& value = b.get_value();
|
|
if (k == lean::GE) {
|
|
set_lower_bound(vi, ci, value);
|
|
if (has_upper_bound(vi, ci, value)) {
|
|
fixed_var_eh(b.get_var(), value);
|
|
}
|
|
}
|
|
else if (k == lean::LE) {
|
|
set_upper_bound(vi, ci, value);
|
|
if (has_lower_bound(vi, ci, value)) {
|
|
fixed_var_eh(b.get_var(), value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool dump_lemmas() const { return m_arith_params.m_arith_dump_lemmas; }
|
|
|
|
bool propagate_eqs() const { return m_arith_params.m_arith_propagate_eqs && m_num_conflicts < m_arith_params.m_arith_propagation_threshold; }
|
|
|
|
bound_prop_mode propagation_mode() const { return m_num_conflicts < m_arith_params.m_arith_propagation_threshold ? m_arith_params.m_arith_bound_prop : BP_NONE; }
|
|
|
|
unsigned small_lemma_size() const { return m_arith_params.m_arith_small_lemma_size; }
|
|
|
|
bool proofs_enabled() const { return m.proofs_enabled(); }
|
|
|
|
bool use_tableau() const { return lp_params(ctx().get_params()).simplex_strategy() < 2; }
|
|
|
|
void set_upper_bound(lean::var_index vi, lean::constraint_index ci, rational const& v) { set_bound(vi, ci, v, false); }
|
|
|
|
void set_lower_bound(lean::var_index vi, lean::constraint_index ci, rational const& v) { set_bound(vi, ci, v, true); }
|
|
|
|
void set_bound(lean::var_index vi, lean::constraint_index ci, rational const& v, bool is_lower) {
|
|
if (!m_solver->is_term(vi)) {
|
|
// m_solver already tracks bounds on proper variables, but not on terms.
|
|
return;
|
|
}
|
|
lean::var_index ti = m_solver->adjust_term_index(vi);
|
|
auto& vec = is_lower ? m_lower_terms : m_upper_terms;
|
|
if (vec.size() <= ti) {
|
|
vec.resize(ti + 1, constraint_bound(UINT_MAX, rational()));
|
|
}
|
|
constraint_bound& b = vec[ti];
|
|
if (b.first == UINT_MAX || (is_lower? b.second < v : b.second > v)) {
|
|
ctx().push_trail(vector_value_trail<context, constraint_bound>(vec, ti));
|
|
b.first = ci;
|
|
b.second = v;
|
|
}
|
|
}
|
|
|
|
bool has_upper_bound(lean::var_index vi, lean::constraint_index& ci, rational const& bound) { return has_bound(vi, ci, bound, false); }
|
|
|
|
bool has_lower_bound(lean::var_index vi, lean::constraint_index& ci, rational const& bound) { return has_bound(vi, ci, bound, true); }
|
|
|
|
bool has_bound(lean::var_index vi, lean::constraint_index& ci, rational const& bound, bool is_lower) {
|
|
|
|
if (m_solver->is_term(vi)) {
|
|
|
|
lean::var_index ti = m_solver->adjust_term_index(vi);
|
|
theory_var v = m_term_index2theory_var.get(ti, null_theory_var);
|
|
rational val;
|
|
TRACE("arith", tout << vi << " " << v << "\n";);
|
|
if (v != null_theory_var && a.is_numeral(get_owner(v), val) && bound == val) {
|
|
ci = UINT_MAX;
|
|
return bound == val;
|
|
}
|
|
|
|
auto& vec = is_lower ? m_lower_terms : m_upper_terms;
|
|
if (vec.size() > ti) {
|
|
constraint_bound& b = vec[ti];
|
|
ci = b.first;
|
|
return ci != UINT_MAX && bound == b.second;
|
|
}
|
|
else {
|
|
return false;
|
|
|
|
}
|
|
}
|
|
else {
|
|
bool is_strict = false;
|
|
rational b;
|
|
if (is_lower) {
|
|
return m_solver->has_lower_bound(vi, ci, b, is_strict) && b == bound && !is_strict;
|
|
}
|
|
else {
|
|
return m_solver->has_upper_bound(vi, ci, b, is_strict) && b == bound && !is_strict;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool is_equal(theory_var x, theory_var y) const { return get_enode(x)->get_root() == get_enode(y)->get_root(); }
|
|
|
|
|
|
void fixed_var_eh(theory_var v1, rational const& bound) {
|
|
theory_var v2;
|
|
value_sort_pair key(bound, is_int(v1));
|
|
if (m_fixed_var_table.find(key, v2)) {
|
|
if (static_cast<unsigned>(v2) < th.get_num_vars() && !is_equal(v1, v2)) {
|
|
auto vi1 = get_var_index(v1);
|
|
auto vi2 = get_var_index(v2);
|
|
lean::constraint_index ci1, ci2, ci3, ci4;
|
|
TRACE("arith", tout << "fixed: " << mk_pp(get_owner(v1), m) << " " << mk_pp(get_owner(v2), m) << " " << bound << " " << has_lower_bound(vi2, ci3, bound) << "\n";);
|
|
if (has_lower_bound(vi2, ci3, bound) && has_upper_bound(vi2, ci4, bound)) {
|
|
VERIFY (has_lower_bound(vi1, ci1, bound));
|
|
VERIFY (has_upper_bound(vi1, ci2, bound));
|
|
++m_stats.m_fixed_eqs;
|
|
m_core.reset();
|
|
m_eqs.reset();
|
|
set_evidence(ci1);
|
|
set_evidence(ci2);
|
|
set_evidence(ci3);
|
|
set_evidence(ci4);
|
|
enode* x = get_enode(v1);
|
|
enode* y = get_enode(v2);
|
|
justification* js =
|
|
ctx().mk_justification(
|
|
ext_theory_eq_propagation_justification(
|
|
get_id(), ctx().get_region(), m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), x, y, 0, 0));
|
|
|
|
TRACE("arith",
|
|
for (unsigned i = 0; i < m_core.size(); ++i) {
|
|
ctx().display_detailed_literal(tout, m_core[i]);
|
|
tout << "\n";
|
|
}
|
|
for (unsigned i = 0; i < m_eqs.size(); ++i) {
|
|
tout << mk_pp(m_eqs[i].first->get_owner(), m) << " = " << mk_pp(m_eqs[i].second->get_owner(), m) << "\n";
|
|
}
|
|
tout << " ==> ";
|
|
tout << mk_pp(x->get_owner(), m) << " = " << mk_pp(y->get_owner(), m) << "\n";
|
|
);
|
|
|
|
// parameters are TBD.
|
|
SASSERT(validate_eq(x, y));
|
|
ctx().assign_eq(x, y, eq_justification(js));
|
|
}
|
|
}
|
|
else {
|
|
// bounds on v2 were changed.
|
|
m_fixed_var_table.insert(key, v1);
|
|
}
|
|
}
|
|
else {
|
|
m_fixed_var_table.insert(key, v1);
|
|
}
|
|
}
|
|
|
|
lbool make_feasible() {
|
|
reset_variable_values();
|
|
++m_stats.m_make_feasible;
|
|
if (m_solver->A_r().column_count() > m_stats.m_max_cols)
|
|
m_stats.m_max_cols = m_solver->A_r().column_count();
|
|
if (m_solver->A_r().row_count() > m_stats.m_max_rows)
|
|
m_stats.m_max_rows = m_solver->A_r().row_count();
|
|
TRACE("arith_verbose", display(tout););
|
|
lean::lp_status status = m_solver->find_feasible_solution();
|
|
m_stats.m_num_iterations = m_solver->settings().st().m_total_iterations;
|
|
m_stats.m_num_factorizations = m_solver->settings().st().m_num_factorizations;
|
|
m_stats.m_need_to_solve_inf = m_solver->settings().st().m_need_to_solve_inf;
|
|
|
|
switch (status) {
|
|
case lean::lp_status::INFEASIBLE:
|
|
return l_false;
|
|
case lean::lp_status::FEASIBLE:
|
|
case lean::lp_status::OPTIMAL:
|
|
// SASSERT(m_solver->all_constraints_hold());
|
|
return l_true;
|
|
case lean::lp_status::TIME_EXHAUSTED:
|
|
|
|
default:
|
|
TRACE("arith", tout << "status treated as inconclusive: " << status << "\n";);
|
|
// TENTATIVE_UNBOUNDED, UNBOUNDED, TENTATIVE_DUAL_UNBOUNDED, DUAL_UNBOUNDED,
|
|
// FLOATING_POINT_ERROR, TIME_EXAUSTED, ITERATIONS_EXHAUSTED, EMPTY, UNSTABLE
|
|
return l_undef;
|
|
}
|
|
}
|
|
|
|
vector<std::pair<rational, lean::constraint_index>> m_explanation;
|
|
literal_vector m_core;
|
|
svector<enode_pair> m_eqs;
|
|
vector<parameter> m_params;
|
|
|
|
// lean::constraint_index const null_constraint_index = UINT_MAX; // not sure what a correct fix is
|
|
|
|
void set_evidence(lean::constraint_index idx) {
|
|
if (idx == UINT_MAX) {
|
|
return;
|
|
}
|
|
switch (m_constraint_sources[idx]) {
|
|
case inequality_source: {
|
|
literal lit = m_inequalities[idx];
|
|
SASSERT(lit != null_literal);
|
|
m_core.push_back(lit);
|
|
break;
|
|
}
|
|
case equality_source: {
|
|
SASSERT(m_equalities[idx].first != nullptr);
|
|
SASSERT(m_equalities[idx].second != nullptr);
|
|
m_eqs.push_back(m_equalities[idx]);
|
|
break;
|
|
}
|
|
case definition_source: {
|
|
// skip definitions (these are treated as hard constraints)
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void set_conflict() {
|
|
m_eqs.reset();
|
|
m_core.reset();
|
|
m_params.reset();
|
|
m_explanation.clear();
|
|
m_solver->get_infeasibility_explanation(m_explanation);
|
|
// m_solver->shrink_explanation_to_minimum(m_explanation); // todo, enable when perf is fixed
|
|
/*
|
|
static unsigned cn = 0;
|
|
static unsigned num_l = 0;
|
|
num_l+=m_explanation.size();
|
|
std::cout << num_l / (++cn) << "\n";
|
|
*/
|
|
++m_num_conflicts;
|
|
++m_stats.m_conflicts;
|
|
TRACE("arith", tout << "scope: " << ctx().get_scope_level() << "\n"; display_evidence(tout, m_explanation); );
|
|
TRACE("arith", display(tout););
|
|
for (auto const& ev : m_explanation) {
|
|
if (!ev.first.is_zero()) {
|
|
set_evidence(ev.second);
|
|
}
|
|
}
|
|
SASSERT(validate_conflict());
|
|
ctx().set_conflict(
|
|
ctx().mk_justification(
|
|
ext_theory_conflict_justification(
|
|
get_id(), ctx().get_region(),
|
|
m_core.size(), m_core.c_ptr(),
|
|
m_eqs.size(), m_eqs.c_ptr(), m_params.size(), m_params.c_ptr())));
|
|
}
|
|
|
|
justification * why_is_diseq(theory_var v1, theory_var v2) {
|
|
return 0;
|
|
}
|
|
|
|
void reset_eh() {
|
|
m_arith_eq_adapter.reset_eh();
|
|
m_solver = 0;
|
|
m_not_handled = nullptr;
|
|
del_bounds(0);
|
|
m_unassigned_bounds.reset();
|
|
m_asserted_qhead = 0;
|
|
m_scopes.reset();
|
|
m_stats.reset();
|
|
m_to_check.reset();
|
|
}
|
|
|
|
void init_model(model_generator & mg) {
|
|
init_variable_values();
|
|
m_factory = alloc(arith_factory, m);
|
|
mg.register_factory(m_factory);
|
|
TRACE("arith", display(tout););
|
|
}
|
|
|
|
model_value_proc * mk_value(enode * n, model_generator & mg) {
|
|
theory_var v = n->get_th_var(get_id());
|
|
return alloc(expr_wrapper_proc, m_factory->mk_value(get_value(v), m.get_sort(n->get_owner())));
|
|
}
|
|
|
|
bool get_value(enode* n, expr_ref& r) {
|
|
theory_var v = n->get_th_var(get_id());
|
|
if (can_get_value(v)) {
|
|
r = a.mk_numeral(get_value(v), is_int(n));
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const {
|
|
SASSERT(v1 != null_theory_var);
|
|
SASSERT(v2 != null_theory_var);
|
|
return (get_value(v1) == get_value(v2)) == is_true;
|
|
}
|
|
|
|
// Auxiliary verification utilities.
|
|
|
|
bool validate_conflict() {
|
|
if (dump_lemmas()) {
|
|
ctx().display_lemma_as_smt_problem(m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), false_literal);
|
|
}
|
|
context nctx(m, ctx().get_fparams(), ctx().get_params());
|
|
add_background(nctx);
|
|
bool result = l_true != nctx.check();
|
|
CTRACE("arith", !result, ctx().display_lemma_as_smt_problem(tout, m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), false_literal);
|
|
display(tout););
|
|
return result;
|
|
}
|
|
|
|
bool validate_assign(literal lit) {
|
|
if (dump_lemmas()) {
|
|
ctx().display_lemma_as_smt_problem(m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), lit);
|
|
}
|
|
context nctx(m, ctx().get_fparams(), ctx().get_params());
|
|
m_core.push_back(~lit);
|
|
add_background(nctx);
|
|
m_core.pop_back();
|
|
bool result = l_true != nctx.check();
|
|
CTRACE("arith", !result, ctx().display_lemma_as_smt_problem(tout, m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), lit);
|
|
display(tout););
|
|
return result;
|
|
}
|
|
|
|
bool validate_eq(enode* x, enode* y) {
|
|
context nctx(m, ctx().get_fparams(), ctx().get_params());
|
|
add_background(nctx);
|
|
nctx.assert_expr(m.mk_not(m.mk_eq(x->get_owner(), y->get_owner())));
|
|
return l_true != nctx.check();
|
|
}
|
|
|
|
void add_background(context& nctx) {
|
|
for (unsigned i = 0; i < m_core.size(); ++i) {
|
|
expr_ref tmp(m);
|
|
ctx().literal2expr(m_core[i], tmp);
|
|
nctx.assert_expr(tmp);
|
|
}
|
|
for (unsigned i = 0; i < m_eqs.size(); ++i) {
|
|
nctx.assert_expr(m.mk_eq(m_eqs[i].first->get_owner(), m_eqs[i].second->get_owner()));
|
|
}
|
|
}
|
|
|
|
theory_lra::inf_eps value(theory_var v) {
|
|
lean::impq ival = get_ivalue(v);
|
|
return inf_eps(0, inf_rational(ival.x, ival.y));
|
|
}
|
|
|
|
theory_lra::inf_eps maximize(theory_var v, expr_ref& blocker, bool& has_shared) {
|
|
lean::var_index vi = m_theory_var2var_index.get(v, UINT_MAX);
|
|
vector<std::pair<rational, lean::var_index> > coeffs;
|
|
rational coeff;
|
|
if (m_solver->is_term(vi)) {
|
|
const lean::lar_term& term = m_solver->get_term(vi);
|
|
for (auto & ti : term.m_coeffs) {
|
|
coeffs.push_back(std::make_pair(ti.second, ti.first));
|
|
}
|
|
coeff = term.m_v;
|
|
}
|
|
else {
|
|
coeffs.push_back(std::make_pair(rational::one(), vi));
|
|
coeff = rational::zero();
|
|
}
|
|
lean::impq term_max;
|
|
if (m_solver->maximize_term(coeffs, term_max)) {
|
|
blocker = mk_gt(v);
|
|
inf_rational val(term_max.x + coeff, term_max.y);
|
|
return inf_eps(rational::zero(), val);
|
|
}
|
|
else {
|
|
TRACE("arith", tout << "Unbounded " << v << "\n";);
|
|
has_shared = false;
|
|
blocker = m.mk_false();
|
|
return inf_eps(rational::one(), inf_rational());
|
|
}
|
|
}
|
|
|
|
expr_ref mk_gt(theory_var v) {
|
|
lean::impq val = get_ivalue(v);
|
|
expr* obj = get_enode(v)->get_owner();
|
|
rational r = val.x;
|
|
expr_ref e(m);
|
|
if (a.is_int(m.get_sort(obj))) {
|
|
if (r.is_int()) {
|
|
r += rational::one();
|
|
}
|
|
else {
|
|
r = ceil(r);
|
|
}
|
|
e = a.mk_numeral(r, m.get_sort(obj));
|
|
e = a.mk_ge(obj, e);
|
|
}
|
|
else {
|
|
e = a.mk_numeral(r, m.get_sort(obj));
|
|
if (val.y.is_neg()) {
|
|
e = a.mk_ge(obj, e);
|
|
}
|
|
else {
|
|
e = a.mk_gt(obj, e);
|
|
}
|
|
}
|
|
TRACE("opt", tout << "v" << v << " " << val << " " << r << " " << e << "\n";);
|
|
return e;
|
|
}
|
|
|
|
theory_var add_objective(app* term) {
|
|
return internalize_def(term);
|
|
}
|
|
|
|
app_ref mk_obj(theory_var v) {
|
|
lean::var_index vi = m_theory_var2var_index[v];
|
|
if (m_solver->is_term(vi)) {
|
|
expr_ref_vector args(m);
|
|
const lean::lar_term& term = m_solver->get_term(vi);
|
|
for (auto & ti : term.m_coeffs) {
|
|
theory_var w = m_var_index2theory_var[ti.first];
|
|
expr* o = get_enode(w)->get_owner();
|
|
args.push_back(a.mk_mul(a.mk_numeral(ti.second, a.is_int(o)), o));
|
|
}
|
|
rational r = term.m_v;
|
|
args.push_back(a.mk_numeral(r, r.is_int()));
|
|
return app_ref(a.mk_add(args.size(), args.c_ptr()), m);
|
|
}
|
|
else {
|
|
theory_var w = m_var_index2theory_var[vi];
|
|
return app_ref(get_enode(w)->get_owner(), m);
|
|
}
|
|
}
|
|
|
|
expr_ref mk_ge(filter_model_converter& fm, theory_var v, inf_rational const& val) {
|
|
rational r = val.get_rational();
|
|
bool is_strict = val.get_infinitesimal().is_pos();
|
|
app_ref b(m);
|
|
if (is_strict) {
|
|
b = a.mk_le(mk_obj(v), a.mk_numeral(r, r.is_int()));
|
|
}
|
|
else {
|
|
b = a.mk_ge(mk_obj(v), a.mk_numeral(r, r.is_int()));
|
|
}
|
|
if (!ctx().b_internalized(b)) {
|
|
fm.insert(b->get_decl());
|
|
bool_var bv = ctx().mk_bool_var(b);
|
|
ctx().set_var_theory(bv, get_id());
|
|
// ctx().set_enode_flag(bv, true);
|
|
lp::bound_kind bkind = lp::bound_kind::lower_t;
|
|
if (is_strict) bkind = lp::bound_kind::upper_t;
|
|
lp::bound* a = alloc(lp::bound, bv, v, r, bkind);
|
|
mk_bound_axioms(*a);
|
|
updt_unassigned_bounds(v, +1);
|
|
m_bounds[v].push_back(a);
|
|
m_bounds_trail.push_back(v);
|
|
m_bool_var2bound.insert(bv, a);
|
|
TRACE("arith", tout << mk_pp(b, m) << "\n";);
|
|
}
|
|
if (is_strict) {
|
|
b = m.mk_not(b);
|
|
}
|
|
TRACE("arith", tout << b << "\n";);
|
|
return expr_ref(b, m);
|
|
|
|
}
|
|
|
|
|
|
void display(std::ostream & out) const {
|
|
if (m_solver) {
|
|
m_solver->print_constraints(out);
|
|
m_solver->print_terms(out);
|
|
}
|
|
unsigned nv = th.get_num_vars();
|
|
for (unsigned v = 0; v < nv; ++v) {
|
|
out << "v" << v;
|
|
if (can_get_value(v)) out << ", value: " << get_value(v);
|
|
out << ", shared: " << ctx().is_shared(get_enode(v))
|
|
<< ", rel: " << ctx().is_relevant(get_enode(v))
|
|
<< ", def: "; th.display_var_flat_def(out, v) << "\n";
|
|
}
|
|
}
|
|
|
|
void display_evidence(std::ostream& out, vector<std::pair<rational, lean::constraint_index>> const& evidence) {
|
|
for (auto const& ev : evidence) {
|
|
expr_ref e(m);
|
|
SASSERT(!ev.first.is_zero());
|
|
if (ev.first.is_zero()) {
|
|
continue;
|
|
}
|
|
unsigned idx = ev.second;
|
|
switch (m_constraint_sources.get(idx, null_source)) {
|
|
case inequality_source: {
|
|
literal lit = m_inequalities[idx];
|
|
ctx().literal2expr(lit, e);
|
|
out << e << " " << ctx().get_assignment(lit) << "\n";
|
|
break;
|
|
}
|
|
case equality_source:
|
|
out << mk_pp(m_equalities[idx].first->get_owner(), m) << " = "
|
|
<< mk_pp(m_equalities[idx].second->get_owner(), m) << "\n";
|
|
break;
|
|
case definition_source: {
|
|
theory_var v = m_definitions[idx];
|
|
out << "def: v" << v << " := " << mk_pp(th.get_enode(v)->get_owner(), m) << "\n";
|
|
break;
|
|
}
|
|
case null_source:
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
for (auto const& ev : evidence) {
|
|
m_solver->print_constraint(ev.second, out << ev.first << ": ");
|
|
}
|
|
}
|
|
|
|
void collect_statistics(::statistics & st) const {
|
|
m_arith_eq_adapter.collect_statistics(st);
|
|
st.update("arith-lower", m_stats.m_assert_lower);
|
|
st.update("arith-upper", m_stats.m_assert_upper);
|
|
st.update("arith-rows", m_stats.m_add_rows);
|
|
st.update("arith-propagations", m_stats.m_bounds_propagations);
|
|
st.update("arith-iterations", m_stats.m_num_iterations);
|
|
st.update("arith-factorizations", m_stats.m_num_factorizations);
|
|
st.update("arith-pivots", m_stats.m_need_to_solve_inf);
|
|
st.update("arith-plateau-iterations", m_stats.m_num_iterations_with_no_progress);
|
|
st.update("arith-fixed-eqs", m_stats.m_fixed_eqs);
|
|
st.update("arith-conflicts", m_stats.m_conflicts);
|
|
st.update("arith-bound-propagations-lp", m_stats.m_bound_propagations1);
|
|
st.update("arith-bound-propagations-cheap", m_stats.m_bound_propagations2);
|
|
st.update("arith-diseq", m_stats.m_assert_diseq);
|
|
st.update("arith-make-feasible", m_stats.m_make_feasible);
|
|
st.update("arith-max-columns", m_stats.m_max_cols);
|
|
st.update("arith-max-rows", m_stats.m_max_rows);
|
|
}
|
|
};
|
|
|
|
theory_lra::theory_lra(ast_manager& m, theory_arith_params& ap):
|
|
theory(m.get_family_id("arith")) {
|
|
m_imp = alloc(imp, *this, m, ap);
|
|
}
|
|
theory_lra::~theory_lra() {
|
|
dealloc(m_imp);
|
|
}
|
|
theory* theory_lra::mk_fresh(context* new_ctx) {
|
|
return alloc(theory_lra, new_ctx->get_manager(), new_ctx->get_fparams());
|
|
}
|
|
void theory_lra::init(context * ctx) {
|
|
theory::init(ctx);
|
|
m_imp->init(ctx);
|
|
}
|
|
bool theory_lra::internalize_atom(app * atom, bool gate_ctx) {
|
|
return m_imp->internalize_atom(atom, gate_ctx);
|
|
}
|
|
bool theory_lra::internalize_term(app * term) {
|
|
return m_imp->internalize_term(term);
|
|
}
|
|
void theory_lra::internalize_eq_eh(app * atom, bool_var v) {
|
|
m_imp->internalize_eq_eh(atom, v);
|
|
}
|
|
void theory_lra::assign_eh(bool_var v, bool is_true) {
|
|
m_imp->assign_eh(v, is_true);
|
|
}
|
|
void theory_lra::new_eq_eh(theory_var v1, theory_var v2) {
|
|
m_imp->new_eq_eh(v1, v2);
|
|
}
|
|
bool theory_lra::use_diseqs() const {
|
|
return m_imp->use_diseqs();
|
|
}
|
|
void theory_lra::new_diseq_eh(theory_var v1, theory_var v2) {
|
|
m_imp->new_diseq_eh(v1, v2);
|
|
}
|
|
void theory_lra::push_scope_eh() {
|
|
theory::push_scope_eh();
|
|
m_imp->push_scope_eh();
|
|
}
|
|
void theory_lra::pop_scope_eh(unsigned num_scopes) {
|
|
m_imp->pop_scope_eh(num_scopes);
|
|
theory::pop_scope_eh(num_scopes);
|
|
}
|
|
void theory_lra::restart_eh() {
|
|
m_imp->restart_eh();
|
|
}
|
|
void theory_lra::relevant_eh(app* e) {
|
|
m_imp->relevant_eh(e);
|
|
}
|
|
void theory_lra::init_search_eh() {
|
|
m_imp->init_search_eh();
|
|
}
|
|
final_check_status theory_lra::final_check_eh() {
|
|
return m_imp->final_check_eh();
|
|
}
|
|
bool theory_lra::is_shared(theory_var v) const {
|
|
return m_imp->is_shared(v);
|
|
}
|
|
bool theory_lra::can_propagate() {
|
|
return m_imp->can_propagate();
|
|
}
|
|
void theory_lra::propagate() {
|
|
m_imp->propagate();
|
|
}
|
|
justification * theory_lra::why_is_diseq(theory_var v1, theory_var v2) {
|
|
return m_imp->why_is_diseq(v1, v2);
|
|
}
|
|
void theory_lra::reset_eh() {
|
|
m_imp->reset_eh();
|
|
}
|
|
void theory_lra::init_model(model_generator & m) {
|
|
m_imp->init_model(m);
|
|
}
|
|
model_value_proc * theory_lra::mk_value(enode * n, model_generator & mg) {
|
|
return m_imp->mk_value(n, mg);
|
|
}
|
|
bool theory_lra::get_value(enode* n, expr_ref& r) {
|
|
return m_imp->get_value(n, r);
|
|
}
|
|
bool theory_lra::validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const {
|
|
return m_imp->validate_eq_in_model(v1, v2, is_true);
|
|
}
|
|
void theory_lra::display(std::ostream & out) const {
|
|
m_imp->display(out);
|
|
}
|
|
void theory_lra::collect_statistics(::statistics & st) const {
|
|
m_imp->collect_statistics(st);
|
|
}
|
|
theory_lra::inf_eps theory_lra::value(theory_var v) {
|
|
return m_imp->value(v);
|
|
}
|
|
theory_lra::inf_eps theory_lra::maximize(theory_var v, expr_ref& blocker, bool& has_shared) {
|
|
return m_imp->maximize(v, blocker, has_shared);
|
|
}
|
|
theory_var theory_lra::add_objective(app* term) {
|
|
return m_imp->add_objective(term);
|
|
}
|
|
expr_ref theory_lra::mk_ge(filter_model_converter& fm, theory_var v, inf_rational const& val) {
|
|
return m_imp->mk_ge(fm, v, val);
|
|
}
|
|
|
|
|
|
|
|
}
|