mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 05:18:44 +00:00
1068 lines
33 KiB
C++
1068 lines
33 KiB
C++
/*
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
Author: Lev Nachmanson
|
|
*/
|
|
|
|
#include "math/lp/int_solver.h"
|
|
#include "math/lp/lar_solver.h"
|
|
#include "math/lp/lp_utils.h"
|
|
#include <utility>
|
|
#include "math/lp/monic.h"
|
|
#include "math/lp/gomory.h"
|
|
namespace lp {
|
|
|
|
|
|
std::ostream& int_solver::display_inf_rows(std::ostream& out) const {
|
|
unsigned num = m_lar_solver->A_r().column_count();
|
|
for (unsigned v = 0; v < num; v++) {
|
|
if (column_is_int(v) && !get_value(v).is_int()) {
|
|
display_column(out, v);
|
|
}
|
|
}
|
|
|
|
num = 0;
|
|
for (unsigned i = 0; i < m_lar_solver->A_r().row_count(); i++) {
|
|
unsigned j = m_lar_solver->m_mpq_lar_core_solver.m_r_basis[i];
|
|
if (column_is_int_inf(j)) {
|
|
num++;
|
|
m_lar_solver->print_row(m_lar_solver->A_r().m_rows[i], out);
|
|
out << "\n";
|
|
}
|
|
}
|
|
out << "num of int infeasible: " << num << "\n";
|
|
return out;
|
|
}
|
|
|
|
bool int_solver::has_inf_int() const {
|
|
return m_lar_solver->has_inf_int();
|
|
}
|
|
|
|
int int_solver::find_inf_int_base_column() {
|
|
unsigned inf_int_count = 0;
|
|
int j = find_inf_int_boxed_base_column_with_smallest_range(inf_int_count);
|
|
if (j != -1)
|
|
return j;
|
|
if (inf_int_count == 0)
|
|
return -1;
|
|
unsigned k = random() % inf_int_count;
|
|
return get_kth_inf_int(k);
|
|
}
|
|
|
|
int int_solver::get_kth_inf_int(unsigned k) const {
|
|
for (unsigned j : m_lar_solver->r_basis())
|
|
if (column_is_int_inf(j) && k-- == 0)
|
|
return j;
|
|
lp_assert(false);
|
|
return -1;
|
|
}
|
|
|
|
int int_solver::find_inf_int_nbasis_column() const {
|
|
for (unsigned j : m_lar_solver->r_nbasis())
|
|
if (!column_is_int_inf(j))
|
|
return j;
|
|
return -1;
|
|
}
|
|
|
|
int int_solver::find_inf_int_boxed_base_column_with_smallest_range(unsigned & inf_int_count) {
|
|
inf_int_count = 0;
|
|
int result = -1;
|
|
mpq range;
|
|
mpq new_range;
|
|
mpq small_range_thresold(1024);
|
|
unsigned n = 0;
|
|
lar_core_solver & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
|
|
|
for (unsigned j : m_lar_solver->r_basis()) {
|
|
if (!column_is_int_inf(j))
|
|
continue;
|
|
inf_int_count++;
|
|
if (!is_boxed(j))
|
|
continue;
|
|
lp_assert(!is_fixed(j));
|
|
new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_lower_bounds()[j].x;
|
|
if (new_range > small_range_thresold)
|
|
continue;
|
|
if (result == -1 || new_range < range) {
|
|
result = j;
|
|
range = new_range;
|
|
n = 1;
|
|
}
|
|
else if (new_range == range && settings().random_next() % (++n) == 0) {
|
|
lp_assert(n > 1);
|
|
result = j;
|
|
}
|
|
}
|
|
return result;
|
|
|
|
}
|
|
|
|
bool int_solver::is_gomory_cut_target(const row_strip<mpq>& row) {
|
|
// All non base variables must be at their bounds and assigned to rationals (that is, infinitesimals are not allowed).
|
|
unsigned j;
|
|
for (const auto & p : row) {
|
|
j = p.var();
|
|
if (!is_base(j) && (!at_bound(j) || !is_zero(get_value(j).y))) {
|
|
TRACE("gomory_cut", tout << "row is not gomory cut target:\n";
|
|
display_column(tout, j);
|
|
tout << "infinitesimal: " << !is_zero(get_value(j).y) << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
constraint_index int_solver::column_upper_bound_constraint(unsigned j) const {
|
|
return m_lar_solver->get_column_upper_bound_witness(j);
|
|
}
|
|
|
|
bool int_solver::current_solution_is_inf_on_cut() const {
|
|
const auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x;
|
|
impq v = m_t.apply(x);
|
|
mpq sign = m_upper ? one_of_type<mpq>() : -one_of_type<mpq>();
|
|
CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign,
|
|
tout << "m_upper = " << m_upper << std::endl;
|
|
tout << "v = " << v << ", k = " << m_k << std::endl;
|
|
);
|
|
return v * sign > impq(m_k) * sign;
|
|
}
|
|
|
|
constraint_index int_solver::column_lower_bound_constraint(unsigned j) const {
|
|
return m_lar_solver->get_column_lower_bound_witness(j);
|
|
}
|
|
|
|
lia_move int_solver::mk_gomory_cut( unsigned inf_col, const row_strip<mpq> & row) {
|
|
lp_assert(column_is_int_inf(inf_col));
|
|
gomory gc(m_t, m_k, m_ex, inf_col, row, *this);
|
|
return gc.create_cut();
|
|
}
|
|
|
|
lia_move int_solver::proceed_with_gomory_cut(unsigned j) {
|
|
const row_strip<mpq>& row = m_lar_solver->get_row(row_of_basic_column(j));
|
|
|
|
SASSERT(m_lar_solver->row_is_correct(row_of_basic_column(j)));
|
|
|
|
if (!is_gomory_cut_target(row))
|
|
return create_branch_on_column(j);
|
|
|
|
m_upper = true;
|
|
return mk_gomory_cut(j, row);
|
|
}
|
|
|
|
|
|
unsigned int_solver::row_of_basic_column(unsigned j) const {
|
|
return m_lar_solver->row_of_basic_column(j);
|
|
}
|
|
|
|
|
|
// this will allow to enable and disable tracking of the pivot rows
|
|
struct check_return_helper {
|
|
lar_solver * m_lar_solver;
|
|
bool m_track_pivoted_rows;
|
|
check_return_helper(lar_solver* ls) :
|
|
m_lar_solver(ls),
|
|
m_track_pivoted_rows(ls->get_track_pivoted_rows())
|
|
{
|
|
TRACE("pivoted_rows", tout << "pivoted rows = " << ls->m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows->size() << std::endl;);
|
|
m_lar_solver->set_track_pivoted_rows(false);
|
|
}
|
|
~check_return_helper() {
|
|
TRACE("pivoted_rows", tout << "pivoted rows = " << m_lar_solver->m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows->size() << std::endl;);
|
|
m_lar_solver->set_track_pivoted_rows(m_track_pivoted_rows);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
impq int_solver::get_cube_delta_for_term(const lar_term& t) const {
|
|
if (t.size() == 2) {
|
|
bool seen_minus = false;
|
|
bool seen_plus = false;
|
|
for(const auto & p : t) {
|
|
if (!column_is_int(p.var()))
|
|
goto usual_delta;
|
|
const mpq & c = p.coeff();
|
|
if (c == one_of_type<mpq>()) {
|
|
seen_plus = true;
|
|
} else if (c == -one_of_type<mpq>()) {
|
|
seen_minus = true;
|
|
} else {
|
|
goto usual_delta;
|
|
}
|
|
}
|
|
if (seen_minus && seen_plus)
|
|
return zero_of_type<impq>();
|
|
return impq(0, 1);
|
|
}
|
|
usual_delta:
|
|
mpq delta = zero_of_type<mpq>();
|
|
for (const auto & p : t)
|
|
if (column_is_int(p.var()))
|
|
delta += abs(p.coeff());
|
|
|
|
delta *= mpq(1, 2);
|
|
return impq(delta);
|
|
}
|
|
|
|
bool int_solver::tighten_term_for_cube(unsigned i) {
|
|
unsigned ti = i + m_lar_solver->terms_start_index();
|
|
if (!m_lar_solver->term_is_used_as_row(ti))
|
|
return true;
|
|
const lar_term* t = m_lar_solver->terms()[i];
|
|
impq delta = get_cube_delta_for_term(*t);
|
|
TRACE("cube", m_lar_solver->print_term_as_indices(*t, tout); tout << ", delta = " << delta;);
|
|
if (is_zero(delta))
|
|
return true;
|
|
return m_lar_solver->tighten_term_bounds_by_delta(i, delta);
|
|
}
|
|
|
|
bool int_solver::tighten_terms_for_cube() {
|
|
for (unsigned i = 0; i < m_lar_solver->terms().size(); i++)
|
|
if (!tighten_term_for_cube(i)) {
|
|
TRACE("cube", tout << "cannot tighten";);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool int_solver::should_find_cube() {
|
|
return m_number_of_calls % settings().m_int_find_cube_period == 0;
|
|
}
|
|
|
|
lia_move int_solver::find_cube() {
|
|
if (!should_find_cube())
|
|
return lia_move::undef;
|
|
|
|
settings().stats().m_cube_calls++;
|
|
TRACE("cube",
|
|
for (unsigned j = 0; j < m_lar_solver->A_r().column_count(); j++)
|
|
display_column(tout, j);
|
|
tout << m_lar_solver->constraints();
|
|
);
|
|
|
|
m_lar_solver->push();
|
|
if (!tighten_terms_for_cube()) {
|
|
m_lar_solver->pop();
|
|
return lia_move::undef;
|
|
}
|
|
|
|
lp_status st = m_lar_solver->find_feasible_solution();
|
|
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
|
|
TRACE("cube", tout << "cannot find a feasiblie solution";);
|
|
m_lar_solver->pop();
|
|
m_lar_solver->move_non_basic_columns_to_bounds();
|
|
find_feasible_solution();
|
|
// it can happen that we found an integer solution here
|
|
return !m_lar_solver->r_basis_has_inf_int()? lia_move::sat: lia_move::undef;
|
|
}
|
|
m_lar_solver->pop();
|
|
m_lar_solver->round_to_integer_solution();
|
|
m_lar_solver->set_status(lp_status::FEASIBLE);
|
|
lp_assert(settings().get_cancel_flag() || is_feasible());
|
|
TRACE("cube", tout << "success";);
|
|
settings().stats().m_cube_success++;
|
|
return lia_move::sat;
|
|
}
|
|
|
|
void int_solver::find_feasible_solution() {
|
|
m_lar_solver->find_feasible_solution();
|
|
lp_assert(lp_status::OPTIMAL == m_lar_solver->get_status() || lp_status::FEASIBLE == m_lar_solver->get_status());
|
|
}
|
|
|
|
bool int_solver::should_run_gcd_test() {
|
|
return settings().m_int_run_gcd_test;
|
|
}
|
|
|
|
lia_move int_solver::run_gcd_test() {
|
|
if (should_run_gcd_test()) {
|
|
settings().stats().m_gcd_calls++;
|
|
TRACE("int_solver", tout << "gcd-test " << settings().stats().m_gcd_calls << "\n";);
|
|
if (!gcd_test()) {
|
|
settings().stats().m_gcd_conflicts++;
|
|
TRACE("gcd_test", tout << "gcd conflict\n";);
|
|
return lia_move::conflict;
|
|
}
|
|
}
|
|
return lia_move::undef;
|
|
}
|
|
|
|
bool int_solver::should_gomory_cut() {
|
|
return m_number_of_calls % settings().m_int_gomory_cut_period == 0;
|
|
}
|
|
|
|
lia_move int_solver::gomory_cut() {
|
|
TRACE("int_solver", tout << "gomory " << m_number_of_calls << "\n";);
|
|
if (!should_gomory_cut())
|
|
return lia_move::undef;
|
|
|
|
if (m_lar_solver->move_non_basic_columns_to_bounds()) {
|
|
lp_status st = m_lar_solver->find_feasible_solution();
|
|
(void)st;
|
|
lp_assert(st == lp_status::FEASIBLE || st == lp_status::OPTIMAL);
|
|
}
|
|
|
|
int j = find_inf_int_base_column();
|
|
if (j == -1) {
|
|
j = find_inf_int_nbasis_column();
|
|
return j == -1? lia_move::sat : create_branch_on_column(j);
|
|
}
|
|
return proceed_with_gomory_cut(j);
|
|
}
|
|
|
|
void int_solver::try_add_term_to_A_for_hnf(unsigned i) {
|
|
mpq rs;
|
|
const lar_term* t = m_lar_solver->terms()[i];
|
|
constraint_index ci;
|
|
bool upper_bound;
|
|
if (!hnf_cutter_is_full() && m_lar_solver->get_equality_and_right_side_for_term_on_current_x(i, rs, ci, upper_bound)) {
|
|
m_hnf_cutter.add_term(t, rs, ci, upper_bound);
|
|
}
|
|
}
|
|
|
|
bool int_solver::hnf_cutter_is_full() const {
|
|
return
|
|
m_hnf_cutter.terms_count() >= settings().limit_on_rows_for_hnf_cutter
|
|
||
|
|
m_hnf_cutter.vars().size() >= settings().limit_on_columns_for_hnf_cutter;
|
|
}
|
|
|
|
lp_settings& int_solver::settings() {
|
|
return m_lar_solver->settings();
|
|
}
|
|
|
|
const lp_settings& int_solver::settings() const {
|
|
return m_lar_solver->settings();
|
|
}
|
|
|
|
bool int_solver::hnf_has_var_with_non_integral_value() const {
|
|
for (unsigned j : m_hnf_cutter.vars())
|
|
if (!get_value(j).is_int())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool int_solver::init_terms_for_hnf_cut() {
|
|
m_hnf_cutter.clear();
|
|
for (unsigned i = 0; i < m_lar_solver->terms().size() && !hnf_cutter_is_full(); i++) {
|
|
try_add_term_to_A_for_hnf(i);
|
|
}
|
|
return hnf_has_var_with_non_integral_value();
|
|
}
|
|
|
|
lia_move int_solver::make_hnf_cut() {
|
|
if (!init_terms_for_hnf_cut()) {
|
|
return lia_move::undef;
|
|
}
|
|
settings().stats().m_hnf_cutter_calls++;
|
|
TRACE("hnf_cut", tout << "settings().stats().m_hnf_cutter_calls = " << settings().stats().m_hnf_cutter_calls << "\n";
|
|
for (unsigned i : m_hnf_cutter.constraints_for_explanation()) {
|
|
m_lar_solver->constraints().display(tout, i);
|
|
}
|
|
tout << m_lar_solver->constraints();
|
|
);
|
|
#ifdef Z3DEBUG
|
|
vector<mpq> x0 = m_hnf_cutter.transform_to_local_columns(m_lar_solver->m_mpq_lar_core_solver.m_r_x);
|
|
#else
|
|
vector<mpq> x0;
|
|
#endif
|
|
lia_move r = m_hnf_cutter.create_cut(m_t, m_k, m_ex, m_upper, x0);
|
|
|
|
if (r == lia_move::cut) {
|
|
TRACE("hnf_cut",
|
|
m_lar_solver->print_term(m_t, tout << "cut:");
|
|
tout << " <= " << m_k << std::endl;
|
|
for (unsigned i : m_hnf_cutter.constraints_for_explanation()) {
|
|
m_lar_solver->constraints().display(tout, i);
|
|
}
|
|
);
|
|
lp_assert(current_solution_is_inf_on_cut());
|
|
settings().stats().m_hnf_cuts++;
|
|
m_ex->clear();
|
|
for (unsigned i : m_hnf_cutter.constraints_for_explanation()) {
|
|
m_ex->push_justification(i);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
bool int_solver::should_hnf_cut() {
|
|
return settings().m_enable_hnf && m_number_of_calls % m_hnf_cut_period == 0;
|
|
}
|
|
|
|
lia_move int_solver::hnf_cut() {
|
|
lia_move r = lia_move::undef;
|
|
if (should_hnf_cut()) {
|
|
r = make_hnf_cut();
|
|
if (r == lia_move::undef) {
|
|
m_hnf_cut_period *= 2;
|
|
}
|
|
else {
|
|
m_hnf_cut_period = settings().hnf_cut_period();
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
lia_move int_solver::check(lp::explanation * e) {
|
|
SASSERT(m_lar_solver->ax_is_correct());
|
|
if (!has_inf_int()) return lia_move::sat;
|
|
|
|
#define CHECK_RET(fn) \
|
|
r = fn; \
|
|
if (r != lia_move::undef) { TRACE("int_solver", tout << #fn << "\n";); return r; }
|
|
|
|
m_t.clear();
|
|
m_k.reset();
|
|
m_ex = e;
|
|
m_ex->clear();
|
|
m_upper = false;
|
|
lia_move r;
|
|
|
|
CHECK_RET(run_gcd_test());
|
|
|
|
check_return_helper pc(m_lar_solver);
|
|
|
|
if (settings().m_int_pivot_fixed_vars_from_basis)
|
|
m_lar_solver->pivot_fixed_vars_from_basis();
|
|
|
|
CHECK_RET(patch_nbasic_columns());
|
|
++m_number_of_calls;
|
|
CHECK_RET(find_cube());
|
|
CHECK_RET(hnf_cut());
|
|
CHECK_RET(gomory_cut());
|
|
CHECK_RET(branch_or_sat());
|
|
return r;
|
|
}
|
|
|
|
lia_move int_solver::branch_or_sat() {
|
|
int j = find_any_inf_int_column_basis_first();
|
|
return j == -1? lia_move::sat : create_branch_on_column(j);
|
|
}
|
|
|
|
int int_solver::find_any_inf_int_column_basis_first() {
|
|
int j = find_inf_int_base_column();
|
|
return j != -1 ? j : find_inf_int_nbasis_column();
|
|
}
|
|
|
|
void int_solver::set_value_for_nbasic_column_ignore_old_values(unsigned j, const impq & new_val) {
|
|
lp_assert(!is_base(j));
|
|
auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
|
|
auto delta = new_val - x;
|
|
x = new_val;
|
|
m_lar_solver->change_basic_columns_dependend_on_a_given_nb_column(j, delta);
|
|
}
|
|
|
|
void int_solver::patch_nbasic_column(unsigned j, bool patch_only_int_vals) {
|
|
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
|
impq & val = lcs.m_r_x[j];
|
|
bool val_is_int = val.is_int();
|
|
if (patch_only_int_vals && !val_is_int)
|
|
return;
|
|
|
|
bool inf_l, inf_u;
|
|
impq l, u;
|
|
mpq m;
|
|
if (!get_freedom_interval_for_column(j, val_is_int, inf_l, l, inf_u, u, m)) {
|
|
return;
|
|
}
|
|
bool m_is_one = m.is_one();
|
|
if (m.is_one() && val_is_int) {
|
|
return;
|
|
}
|
|
// check whether value of j is already a multiple of m.
|
|
if (val_is_int && (val.x / m).is_int()) {
|
|
return;
|
|
}
|
|
TRACE("patch_int",
|
|
tout << "TARGET j" << j << " -> [";
|
|
if (inf_l) tout << "-oo"; else tout << l;
|
|
tout << ", ";
|
|
if (inf_u) tout << "oo"; else tout << u;
|
|
tout << "]";
|
|
tout << ", m: " << m << ", val: " << val << ", is_int: " << m_lar_solver->column_is_int(j) << "\n";);
|
|
if (!inf_l) {
|
|
l = impq(m_is_one ? ceil(l) : m * ceil(l / m));
|
|
if (inf_u || l <= u) {
|
|
TRACE("patch_int", tout << "patching with l: " << l << '\n';);
|
|
m_lar_solver->set_value_for_nbasic_column(j, l);
|
|
}
|
|
else {
|
|
TRACE("patch_int", tout << "not patching " << l << "\n";);
|
|
}
|
|
}
|
|
else if (!inf_u) {
|
|
u = impq(m_is_one ? floor(u) : m * floor(u / m));
|
|
m_lar_solver->set_value_for_nbasic_column(j, u);
|
|
TRACE("patch_int", tout << "patching with u: " << u << '\n';);
|
|
}
|
|
else {
|
|
m_lar_solver->set_value_for_nbasic_column(j, impq(0));
|
|
TRACE("patch_int", tout << "patching with 0\n";);
|
|
}
|
|
}
|
|
|
|
lia_move int_solver::patch_nbasic_columns() {
|
|
settings().stats().m_patches++;
|
|
lp_assert(is_feasible());
|
|
for (unsigned j : m_lar_solver->m_mpq_lar_core_solver.m_r_nbasis) {
|
|
patch_nbasic_column(j, settings().m_int_patch_only_integer_values);
|
|
}
|
|
lp_assert(is_feasible());
|
|
if (!has_inf_int()) {
|
|
settings().stats().m_patches_success++;
|
|
return lia_move::sat;
|
|
}
|
|
return lia_move::undef;
|
|
}
|
|
|
|
mpq get_denominators_lcm(const row_strip<mpq> & row) {
|
|
mpq r(1);
|
|
for (auto & c : row) {
|
|
r = lcm(r, denominator(c.coeff()));
|
|
}
|
|
return r;
|
|
}
|
|
|
|
bool int_solver::gcd_test_for_row(static_matrix<mpq, numeric_pair<mpq>> & A, unsigned i) {
|
|
auto const& row = A.m_rows[i];
|
|
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
|
unsigned basic_var = lcs.m_r_basis[i];
|
|
|
|
if (!column_is_int(basic_var) || get_value(basic_var).is_int())
|
|
return true;
|
|
mpq lcm_den = get_denominators_lcm(row);
|
|
mpq consts(0);
|
|
mpq gcds(0);
|
|
mpq least_coeff(0);
|
|
bool least_coeff_is_bounded = false;
|
|
unsigned j;
|
|
for (auto &c : A.m_rows[i]) {
|
|
j = c.var();
|
|
const mpq& a = c.coeff();
|
|
if (m_lar_solver->column_is_fixed(j)) {
|
|
mpq aux = lcm_den * a;
|
|
consts += aux * m_lar_solver->column_lower_bound(j).x;
|
|
}
|
|
else if (m_lar_solver->column_is_real(j)) {
|
|
return true;
|
|
}
|
|
else if (gcds.is_zero()) {
|
|
gcds = abs(lcm_den * a);
|
|
least_coeff = gcds;
|
|
least_coeff_is_bounded = m_lar_solver->column_is_bounded(j);
|
|
}
|
|
else {
|
|
mpq aux = abs(lcm_den * a);
|
|
gcds = gcd(gcds, aux);
|
|
if (aux < least_coeff) {
|
|
least_coeff = aux;
|
|
least_coeff_is_bounded = m_lar_solver->column_is_bounded(j);
|
|
}
|
|
else if (least_coeff_is_bounded && aux == least_coeff) {
|
|
least_coeff_is_bounded = m_lar_solver->column_is_bounded(j);
|
|
}
|
|
}
|
|
SASSERT(gcds.is_int());
|
|
SASSERT(least_coeff.is_int());
|
|
TRACE("gcd_test_bug", tout << "coeff: " << a << ", gcds: " << gcds
|
|
<< " least_coeff: " << least_coeff << " consts: " << consts << "\n";);
|
|
|
|
}
|
|
|
|
if (gcds.is_zero()) {
|
|
// All variables are fixed.
|
|
// This theory guarantees that the assignment satisfies each row, and
|
|
// fixed integer variables are assigned to integer values.
|
|
return true;
|
|
}
|
|
|
|
if (!(consts / gcds).is_int()) {
|
|
TRACE("gcd_test", tout << "row failed the GCD test:\n"; display_row_info(tout, i););
|
|
fill_explanation_from_fixed_columns(A.m_rows[i]);
|
|
return false;
|
|
}
|
|
|
|
if (least_coeff.is_one() && !least_coeff_is_bounded) {
|
|
SASSERT(gcds.is_one());
|
|
return true;
|
|
}
|
|
|
|
if (least_coeff_is_bounded) {
|
|
return ext_gcd_test(A.m_rows[i], least_coeff, lcm_den, consts);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void int_solver::add_to_explanation_from_fixed_or_boxed_column(unsigned j) {
|
|
constraint_index lc, uc;
|
|
m_lar_solver->get_bound_constraint_witnesses_for_column(j, lc, uc);
|
|
m_ex->push_justification(lc);
|
|
m_ex->push_justification(uc);
|
|
}
|
|
void int_solver::fill_explanation_from_fixed_columns(const row_strip<mpq> & row) {
|
|
for (const auto & c : row) {
|
|
if (!m_lar_solver->column_is_fixed(c.var()))
|
|
continue;
|
|
add_to_explanation_from_fixed_or_boxed_column(c.var());
|
|
}
|
|
}
|
|
|
|
bool int_solver::gcd_test() {
|
|
auto & A = m_lar_solver->A_r(); // getting the matrix
|
|
for (unsigned i = 0; i < A.row_count(); i++)
|
|
if (!gcd_test_for_row(A, i))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool int_solver::ext_gcd_test(const row_strip<mpq> & row,
|
|
mpq const & least_coeff,
|
|
mpq const & lcm_den,
|
|
mpq const & consts) {
|
|
TRACE("ext_gcd_test", tout << "row = "; m_lar_solver->print_row(row, tout););
|
|
mpq gcds(0);
|
|
mpq l(consts);
|
|
mpq u(consts);
|
|
|
|
mpq a;
|
|
unsigned j;
|
|
for (const auto & c : row) {
|
|
j = c.var();
|
|
TRACE("ext_gcd_test", tout << "col = "; m_lar_solver->m_mpq_lar_core_solver.m_r_solver.print_column_bound_info(j, tout););
|
|
const mpq & a = c.coeff();
|
|
if (m_lar_solver->column_is_fixed(j))
|
|
continue;
|
|
SASSERT(!m_lar_solver->column_is_real(j));
|
|
mpq ncoeff = lcm_den * a;
|
|
SASSERT(ncoeff.is_int());
|
|
mpq abs_ncoeff = abs(ncoeff);
|
|
if (abs_ncoeff == least_coeff) {
|
|
SASSERT(m_lar_solver->column_is_bounded(j));
|
|
if (ncoeff.is_pos()) {
|
|
// l += ncoeff * m_lar_solver->column_lower_bound(j).x;
|
|
l.addmul(ncoeff, m_lar_solver->column_lower_bound(j).x);
|
|
// u += ncoeff * m_lar_solver->column_upper_bound(j).x;
|
|
u.addmul(ncoeff, m_lar_solver->column_upper_bound(j).x);
|
|
}
|
|
else {
|
|
// l += ncoeff * upper_bound(j).get_rational();
|
|
l.addmul(ncoeff, m_lar_solver->column_upper_bound(j).x);
|
|
// u += ncoeff * lower_bound(j).get_rational();
|
|
u.addmul(ncoeff, m_lar_solver->column_lower_bound(j).x);
|
|
}
|
|
add_to_explanation_from_fixed_or_boxed_column(j);
|
|
}
|
|
else if (gcds.is_zero()) {
|
|
gcds = abs_ncoeff;
|
|
}
|
|
else {
|
|
gcds = gcd(gcds, abs_ncoeff);
|
|
}
|
|
SASSERT(gcds.is_int());
|
|
}
|
|
|
|
if (gcds.is_zero()) {
|
|
return true;
|
|
}
|
|
|
|
mpq l1 = ceil(l/gcds);
|
|
mpq u1 = floor(u/gcds);
|
|
|
|
if (u1 < l1) {
|
|
fill_explanation_from_fixed_columns(row);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
/*
|
|
linear_combination_iterator<mpq> * int_solver::get_column_iterator(unsigned j) {
|
|
if (m_lar_solver->use_tableau())
|
|
return new iterator_on_column<mpq, impq>(m_lar_solver->A_r().m_columns[j], m_lar_solver->A_r());
|
|
return new iterator_on_indexed_vector<mpq>(m_lar_solver->get_column_in_lu_mode(j));
|
|
}
|
|
*/
|
|
|
|
|
|
int_solver::int_solver(lar_solver* lar_slv) :
|
|
m_lar_solver(lar_slv),
|
|
m_number_of_calls(0),
|
|
m_hnf_cutter(settings()),
|
|
m_hnf_cut_period(settings().hnf_cut_period()) {
|
|
m_lar_solver->set_int_solver(this);
|
|
}
|
|
|
|
|
|
bool int_solver::has_lower(unsigned j) const {
|
|
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
case column_type::lower_bound:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool int_solver::has_upper(unsigned j) const {
|
|
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
case column_type::upper_bound:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
static void set_lower(impq & l, bool & inf_l, impq const & v ) {
|
|
if (inf_l || v > l) {
|
|
l = v;
|
|
inf_l = false;
|
|
}
|
|
}
|
|
|
|
|
|
static void set_upper(impq & u, bool & inf_u, impq const & v) {
|
|
if (inf_u || v < u) {
|
|
u = v;
|
|
inf_u = false;
|
|
}
|
|
}
|
|
|
|
bool int_solver::get_freedom_interval_for_column(unsigned j, bool val_is_int, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) {
|
|
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
|
if (lcs.m_r_heading[j] >= 0) // the basic var
|
|
return false;
|
|
|
|
impq const & xj = get_value(j);
|
|
|
|
inf_l = true;
|
|
inf_u = true;
|
|
l = u = zero_of_type<impq>();
|
|
m = mpq(1);
|
|
|
|
if (has_lower(j)) {
|
|
set_lower(l, inf_l, lower_bound(j) - xj);
|
|
}
|
|
if (has_upper(j)) {
|
|
set_upper(u, inf_u, upper_bound(j) - xj);
|
|
}
|
|
|
|
mpq a; // the coefficient in the column
|
|
unsigned row_index;
|
|
lp_assert(settings().use_tableau());
|
|
const auto & A = m_lar_solver->A_r();
|
|
unsigned rounds = 0;
|
|
for (const auto &c : A.column(j)) {
|
|
row_index = c.var();
|
|
const mpq & a = c.coeff();
|
|
unsigned i = lcs.m_r_basis[row_index];
|
|
if (column_is_int(i) && column_is_int(j) && !a.is_int())
|
|
m = lcm(m, denominator(a));
|
|
}
|
|
if (val_is_int && m.is_one())
|
|
return false;
|
|
|
|
for (const auto &c : A.column(j)) {
|
|
if (!inf_l && !inf_u && l >= u) break;
|
|
row_index = c.var();
|
|
const mpq & a = c.coeff();
|
|
unsigned i = lcs.m_r_basis[row_index];
|
|
impq const & xi = get_value(i);
|
|
|
|
#define SET_BOUND(_fn_, a, b, x, y, z) \
|
|
if (x.is_one()) \
|
|
_fn_(a, b, y - z); \
|
|
else if (x.is_minus_one()) \
|
|
_fn_(a, b, z - y); \
|
|
else if (z == y) \
|
|
_fn_(a, b, zero_of_type<impq>()); \
|
|
else \
|
|
{ _fn_(a, b, (y - z)/x); } \
|
|
|
|
|
|
if (a.is_neg()) {
|
|
if (has_lower(i)) {
|
|
SET_BOUND(set_lower, l, inf_l, a, xi, lcs.m_r_lower_bounds()[i]);
|
|
}
|
|
if (has_upper(i)) {
|
|
SET_BOUND(set_upper, u, inf_u, a, xi, lcs.m_r_upper_bounds()[i]);
|
|
}
|
|
}
|
|
else {
|
|
if (has_upper(i)) {
|
|
SET_BOUND(set_lower, l, inf_l, a, xi, lcs.m_r_upper_bounds()[i]);
|
|
}
|
|
if (has_lower(i)) {
|
|
SET_BOUND(set_upper, u, inf_u, a, xi, lcs.m_r_lower_bounds()[i]);
|
|
}
|
|
}
|
|
++rounds;
|
|
}
|
|
|
|
l += xj;
|
|
u += xj;
|
|
|
|
TRACE("freedom_interval",
|
|
tout << "freedom variable for:\n";
|
|
tout << m_lar_solver->get_variable_name(j);
|
|
tout << "[";
|
|
if (inf_l) tout << "-oo"; else tout << l;
|
|
tout << "; ";
|
|
if (inf_u) tout << "oo"; else tout << u;
|
|
tout << "]\n";
|
|
tout << "val = " << get_value(j) << "\n";
|
|
tout << "return " << (inf_l || inf_u || l <= u);
|
|
);
|
|
return (inf_l || inf_u || l <= u);
|
|
}
|
|
|
|
bool int_solver::column_is_int(unsigned j) const {
|
|
return m_lar_solver->column_is_int(j);
|
|
}
|
|
|
|
bool int_solver::is_real(unsigned j) const {
|
|
return !column_is_int(j);
|
|
}
|
|
|
|
bool int_solver::value_is_int(unsigned j) const {
|
|
return m_lar_solver->column_value_is_int(j);
|
|
}
|
|
|
|
bool int_solver::is_feasible() const {
|
|
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
|
lp_assert(
|
|
lcs.m_r_solver.calc_current_x_is_feasible_include_non_basis() ==
|
|
lcs.m_r_solver.current_x_is_feasible());
|
|
return lcs.m_r_solver.current_x_is_feasible();
|
|
}
|
|
const impq & int_solver::get_value(unsigned j) const {
|
|
return m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
|
|
}
|
|
|
|
void int_solver::display_column(std::ostream & out, unsigned j) const {
|
|
m_lar_solver->m_mpq_lar_core_solver.m_r_solver.print_column_info(j, out);
|
|
}
|
|
|
|
bool int_solver::column_is_int_inf(unsigned j) const {
|
|
return column_is_int(j) && (!value_is_int(j));
|
|
}
|
|
|
|
bool int_solver::is_base(unsigned j) const {
|
|
return m_lar_solver->m_mpq_lar_core_solver.m_r_heading[j] >= 0;
|
|
}
|
|
|
|
bool int_solver::is_boxed(unsigned j) const {
|
|
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::boxed;
|
|
}
|
|
|
|
bool int_solver::is_fixed(unsigned j) const {
|
|
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::fixed;
|
|
}
|
|
|
|
bool int_solver::is_free(unsigned j) const {
|
|
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::free_column;
|
|
}
|
|
|
|
bool int_solver::at_bound(unsigned j) const {
|
|
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
|
switch (mpq_solver.m_column_types[j] ) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
return
|
|
mpq_solver.m_lower_bounds[j] == get_value(j) ||
|
|
mpq_solver.m_upper_bounds[j] == get_value(j);
|
|
case column_type::lower_bound:
|
|
return mpq_solver.m_lower_bounds[j] == get_value(j);
|
|
case column_type::upper_bound:
|
|
return mpq_solver.m_upper_bounds[j] == get_value(j);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool int_solver::at_lower(unsigned j) const {
|
|
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
|
switch (mpq_solver.m_column_types[j] ) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
case column_type::lower_bound:
|
|
return mpq_solver.m_lower_bounds[j] == get_value(j);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool int_solver::at_upper(unsigned j) const {
|
|
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
|
switch (mpq_solver.m_column_types[j] ) {
|
|
case column_type::fixed:
|
|
case column_type::boxed:
|
|
case column_type::upper_bound:
|
|
return mpq_solver.m_upper_bounds[j] == get_value(j);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void int_solver::display_row_info(std::ostream & out, unsigned row_index) const {
|
|
auto & rslv = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
|
for (const auto &c: rslv.m_A.m_rows[row_index]) {
|
|
if (numeric_traits<mpq>::is_pos(c.coeff()))
|
|
out << "+";
|
|
out << c.coeff() << rslv.column_name(c.var()) << " ";
|
|
}
|
|
|
|
for (const auto& c: rslv.m_A.m_rows[row_index]) {
|
|
rslv.print_column_bound_info(c.var(), out);
|
|
}
|
|
rslv.print_column_bound_info(rslv.m_basis[row_index], out);
|
|
}
|
|
|
|
unsigned int_solver::random() {
|
|
return m_lar_solver->get_core_solver().settings().random_next();
|
|
}
|
|
|
|
bool int_solver::shift_var(unsigned j, unsigned range) {
|
|
if (is_fixed(j) || is_base(j))
|
|
return false;
|
|
|
|
bool inf_l, inf_u;
|
|
impq l, u;
|
|
mpq m;
|
|
get_freedom_interval_for_column(j, false, inf_l, l, inf_u, u, m);
|
|
if (inf_l && inf_u) {
|
|
impq new_val = impq(random() % (range + 1));
|
|
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
|
return true;
|
|
}
|
|
if (column_is_int(j)) {
|
|
if (!inf_l) {
|
|
l = impq(ceil(l));
|
|
if (!m.is_one())
|
|
l = impq(m*ceil(l/m));
|
|
}
|
|
if (!inf_u) {
|
|
u = impq(floor(u));
|
|
if (!m.is_one())
|
|
u = impq(m*floor(u/m));
|
|
}
|
|
}
|
|
if (!inf_l && !inf_u && l >= u)
|
|
return false;
|
|
if (inf_u) {
|
|
SASSERT(!inf_l);
|
|
impq delta = impq(random() % (range + 1));
|
|
impq new_val = l + m*delta;
|
|
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
|
return true;
|
|
}
|
|
if (inf_l) {
|
|
SASSERT(!inf_u);
|
|
impq delta = impq(random() % (range + 1));
|
|
impq new_val = u - m*delta;
|
|
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
|
return true;
|
|
}
|
|
if (!column_is_int(j)) {
|
|
SASSERT(!inf_l && !inf_u);
|
|
mpq delta = mpq(random() % (range + 1));
|
|
impq new_val = l + ((delta * (u - l)) / mpq(range));
|
|
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
|
return true;
|
|
}
|
|
else {
|
|
mpq r = (u.x - l.x) / m;
|
|
if (r < mpq(range))
|
|
range = static_cast<unsigned>(r.get_uint64());
|
|
impq new_val = l + m * (impq(random() % (range + 1)));
|
|
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool int_solver::non_basic_columns_are_at_bounds() const {
|
|
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
|
for (unsigned j :lcs.m_r_nbasis) {
|
|
auto & val = lcs.m_r_x[j];
|
|
switch (lcs.m_column_types()[j]) {
|
|
case column_type::boxed:
|
|
if (val != lcs.m_r_lower_bounds()[j] && val != lcs.m_r_upper_bounds()[j])
|
|
return false;
|
|
break;
|
|
case column_type::lower_bound:
|
|
if (val != lcs.m_r_lower_bounds()[j])
|
|
return false;
|
|
break;
|
|
case column_type::upper_bound:
|
|
if (val != lcs.m_r_upper_bounds()[j])
|
|
return false;
|
|
break;
|
|
default:
|
|
if (column_is_int(j) && !val.is_int()) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const impq& int_solver::lower_bound(unsigned j) const {
|
|
return m_lar_solver->column_lower_bound(j);
|
|
}
|
|
|
|
lia_move int_solver::create_branch_on_column(int j) {
|
|
TRACE("check_main_int", tout << "branching" << std::endl;);
|
|
lp_assert(m_t.is_empty());
|
|
lp_assert(j != -1);
|
|
m_t.add_monomial(mpq(1), m_lar_solver->adjust_column_index_to_term_index(j));
|
|
if (is_free(j)) {
|
|
m_upper = random() % 2;
|
|
m_k = mpq(0);
|
|
} else {
|
|
m_upper = left_branch_is_more_narrow_than_right(j);
|
|
m_k = m_upper? floor(get_value(j)) : ceil(get_value(j));
|
|
}
|
|
|
|
TRACE("int_solver",
|
|
display_column(tout << "branching v" << j << " = " << get_value(j) << "\n", j);
|
|
tout << "k = " << m_k << std::endl;);
|
|
return lia_move::branch;
|
|
|
|
}
|
|
|
|
bool int_solver::left_branch_is_more_narrow_than_right(unsigned j) {
|
|
switch (m_lar_solver->m_mpq_lar_core_solver.m_r_solver.m_column_types[j] ) {
|
|
case column_type::fixed:
|
|
return false;
|
|
case column_type::boxed:
|
|
{
|
|
auto k = floor(get_value(j));
|
|
return k - lower_bound(j).x < upper_bound(j).x - (k + mpq(1));
|
|
}
|
|
case column_type::lower_bound:
|
|
return true;
|
|
case column_type::upper_bound:
|
|
return false;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const impq& int_solver::upper_bound(unsigned j) const {
|
|
return m_lar_solver->column_upper_bound(j);
|
|
}
|
|
|
|
bool int_solver::is_term(unsigned j) const {
|
|
return m_lar_solver->column_corresponds_to_term(j);
|
|
}
|
|
|
|
unsigned int_solver::column_count() const { return m_lar_solver->column_count(); }
|
|
|
|
}
|