mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 11:17:07 +00:00
1678 lines
67 KiB
C#
1678 lines
67 KiB
C#
/*++
|
|
Copyright (<c>) 2012 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
Expr.cs
|
|
|
|
Abstract:
|
|
|
|
Z3 Managed API: Expressions
|
|
|
|
Author:
|
|
|
|
Christoph Wintersteiger (cwinter) 2012-03-20
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
|
|
using System;
|
|
using System.Diagnostics.Contracts;
|
|
|
|
namespace Microsoft.Z3
|
|
{
|
|
/// <summary>
|
|
/// Expressions are terms.
|
|
/// </summary>
|
|
[ContractVerification(true)]
|
|
public class Expr : AST
|
|
{
|
|
/// <summary>
|
|
/// Returns a simplified version of the expression.
|
|
/// </summary>
|
|
/// <param name="p">A set of parameters to configure the simplifier</param>
|
|
/// <seealso cref="Context.SimplifyHelp"/>
|
|
public Expr Simplify(Params p = null)
|
|
{
|
|
Contract.Ensures(Contract.Result<Expr>() != null);
|
|
|
|
if (p == null)
|
|
return Expr.Create(Context, Native.Z3_simplify(Context.nCtx, NativeObject));
|
|
else
|
|
return Expr.Create(Context, Native.Z3_simplify_ex(Context.nCtx, NativeObject, p.NativeObject));
|
|
}
|
|
|
|
/// <summary>
|
|
/// The function declaration of the function that is applied in this expression.
|
|
/// </summary>
|
|
public FuncDecl FuncDecl
|
|
{
|
|
get {
|
|
Contract.Ensures(Contract.Result<FuncDecl>() != null);
|
|
return new FuncDecl(Context, Native.Z3_get_app_decl(Context.nCtx, NativeObject)); }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the expression is the true or false expression
|
|
/// or something else (Z3_L_UNDEF).
|
|
/// </summary>
|
|
public Z3_lbool BoolValue
|
|
{
|
|
get { return (Z3_lbool)Native.Z3_get_bool_value(Context.nCtx, NativeObject); }
|
|
}
|
|
|
|
/// <summary>
|
|
/// The number of arguments of the expression.
|
|
/// </summary>
|
|
public uint NumArgs
|
|
{
|
|
get { return Native.Z3_get_app_num_args(Context.nCtx, NativeObject); }
|
|
}
|
|
|
|
/// <summary>
|
|
/// The arguments of the expression.
|
|
/// </summary>
|
|
public Expr[] Args
|
|
{
|
|
get
|
|
{
|
|
Contract.Ensures(Contract.Result<Expr[]>() != null);
|
|
|
|
uint n = NumArgs;
|
|
Expr[] res = new Expr[n];
|
|
for (uint i = 0; i < n; i++)
|
|
res[i] = Expr.Create(Context, Native.Z3_get_app_arg(Context.nCtx, NativeObject, i));
|
|
return res;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Update the arguments of the expression using the arguments <paramref name="args"/>
|
|
/// The number of new arguments should coincide with the current number of arguments.
|
|
/// </summary>
|
|
public void Update(Expr[] args)
|
|
{
|
|
Contract.Requires(args != null);
|
|
Contract.Requires(Contract.ForAll(args, a => a != null));
|
|
|
|
Context.CheckContextMatch(args);
|
|
if (args.Length != NumArgs)
|
|
throw new Z3Exception("Number of arguments does not match");
|
|
NativeObject = Native.Z3_update_term(Context.nCtx, NativeObject, (uint)args.Length, Expr.ArrayToNative(args));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Substitute every occurrence of <c>from[i]</c> in the expression with <c>to[i]</c>, for <c>i</c> smaller than <c>num_exprs</c>.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// The result is the new expression. The arrays <c>from</c> and <c>to</c> must have size <c>num_exprs</c>.
|
|
/// For every <c>i</c> smaller than <c>num_exprs</c>, we must have that
|
|
/// sort of <c>from[i]</c> must be equal to sort of <c>to[i]</c>.
|
|
/// </remarks>
|
|
public Expr Substitute(Expr[] from, Expr[] to)
|
|
{
|
|
Contract.Requires(from != null);
|
|
Contract.Requires(to != null);
|
|
Contract.Requires(Contract.ForAll(from, f => f != null));
|
|
Contract.Requires(Contract.ForAll(to, t => t != null));
|
|
Contract.Ensures(Contract.Result<Expr>() != null);
|
|
|
|
Context.CheckContextMatch(from);
|
|
Context.CheckContextMatch(to);
|
|
if (from.Length != to.Length)
|
|
throw new Z3Exception("Argument sizes do not match");
|
|
return Expr.Create(Context, Native.Z3_substitute(Context.nCtx, NativeObject, (uint)from.Length, Expr.ArrayToNative(from), Expr.ArrayToNative(to)));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Substitute every occurrence of <c>from</c> in the expression with <c>to</c>.
|
|
/// </summary>
|
|
/// <seealso cref="Substitute(Expr[],Expr[])"/>
|
|
public Expr Substitute(Expr from, Expr to)
|
|
{
|
|
Contract.Requires(from != null);
|
|
Contract.Requires(to != null);
|
|
Contract.Ensures(Contract.Result<Expr>() != null);
|
|
|
|
return Substitute(new Expr[] { from }, new Expr[] { to });
|
|
}
|
|
|
|
/// <summary>
|
|
/// Substitute the free variables in the expression with the expressions in <paramref name="to"/>
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// For every <c>i</c> smaller than <c>num_exprs</c>, the variable with de-Bruijn index <c>i</c> is replaced with term <c>to[i]</c>.
|
|
/// </remarks>
|
|
public Expr SubstituteVars(Expr[] to)
|
|
{
|
|
Contract.Requires(to != null);
|
|
Contract.Requires(Contract.ForAll(to, t => t != null));
|
|
Contract.Ensures(Contract.Result<Expr>() != null);
|
|
|
|
Context.CheckContextMatch(to);
|
|
return Expr.Create(Context, Native.Z3_substitute_vars(Context.nCtx, NativeObject, (uint)to.Length, Expr.ArrayToNative(to)));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Translates (copies) the term to the Context <paramref name="ctx"/>.
|
|
/// </summary>
|
|
/// <param name="ctx">A context</param>
|
|
/// <returns>A copy of the term which is associated with <paramref name="ctx"/></returns>
|
|
new public Expr Translate(Context ctx)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
Contract.Ensures(Contract.Result<Expr>() != null);
|
|
|
|
if (ReferenceEquals(Context, ctx))
|
|
return this;
|
|
else
|
|
return Expr.Create(ctx, Native.Z3_translate(Context.nCtx, NativeObject, ctx.nCtx));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a string representation of the expression.
|
|
/// </summary>
|
|
public override string ToString()
|
|
{
|
|
return base.ToString();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a numeral
|
|
/// </summary>
|
|
public bool IsNumeral
|
|
{
|
|
get { return Native.Z3_is_numeral_ast(Context.nCtx, NativeObject) != 0; }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is well-sorted.
|
|
/// </summary>
|
|
/// <returns>True if the term is well-sorted, false otherwise.</returns>
|
|
public bool IsWellSorted
|
|
{
|
|
get { return Native.Z3_is_well_sorted(Context.nCtx, NativeObject) != 0; }
|
|
}
|
|
|
|
/// <summary>
|
|
/// The Sort of the term.
|
|
/// </summary>
|
|
public Sort Sort
|
|
{
|
|
get {
|
|
Contract.Ensures(Contract.Result<Sort>() != null);
|
|
return Sort.Create(Context, Native.Z3_get_sort(Context.nCtx, NativeObject)); }
|
|
}
|
|
|
|
#region Constants
|
|
/// <summary>
|
|
/// Indicates whether the term represents a constant.
|
|
/// </summary>
|
|
public bool IsConst
|
|
{
|
|
get { return IsExpr && NumArgs == 0 && FuncDecl.DomainSize == 0; }
|
|
}
|
|
#endregion
|
|
|
|
#region Integer Numerals
|
|
/// <summary>
|
|
/// Indicates whether the term is an integer numeral.
|
|
/// </summary>
|
|
public bool IsIntNum
|
|
{
|
|
get { return IsNumeral && IsInt; }
|
|
}
|
|
#endregion
|
|
|
|
#region Real Numerals
|
|
/// <summary>
|
|
/// Indicates whether the term is a real numeral.
|
|
/// </summary>
|
|
public bool IsRatNum
|
|
{
|
|
get { return IsNumeral && IsReal; }
|
|
}
|
|
#endregion
|
|
|
|
#region Algebraic Numbers
|
|
/// <summary>
|
|
/// Indicates whether the term is an algebraic number
|
|
/// </summary>
|
|
public bool IsAlgebraicNumber
|
|
{
|
|
get { return Native.Z3_is_algebraic_number(Context.nCtx, NativeObject) != 0; }
|
|
}
|
|
#endregion
|
|
|
|
#region Term Kind Tests
|
|
|
|
#region Boolean Terms
|
|
/// <summary>
|
|
/// Indicates whether the term has Boolean sort.
|
|
/// </summary>
|
|
public bool IsBool
|
|
{
|
|
get
|
|
{
|
|
return (IsExpr &&
|
|
Native.Z3_is_eq_sort(Context.nCtx,
|
|
Native.Z3_mk_bool_sort(Context.nCtx),
|
|
Native.Z3_get_sort(Context.nCtx, NativeObject)) != 0);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is the constant true.
|
|
/// </summary>
|
|
public bool IsTrue { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TRUE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is the constant false.
|
|
/// </summary>
|
|
public bool IsFalse { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FALSE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an equality predicate.
|
|
/// </summary>
|
|
public bool IsEq { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EQ; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct).
|
|
/// </summary>
|
|
public bool IsDistinct { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DISTINCT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a ternary if-then-else term
|
|
/// </summary>
|
|
public bool IsITE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ITE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an n-ary conjunction
|
|
/// </summary>
|
|
public bool IsAnd { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AND; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an n-ary disjunction
|
|
/// </summary>
|
|
public bool IsOr { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an if-and-only-if (Boolean equivalence, binary)
|
|
/// </summary>
|
|
public bool IsIff { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IFF; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an exclusive or
|
|
/// </summary>
|
|
public bool IsXor { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a negation
|
|
/// </summary>
|
|
public bool IsNot { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_NOT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an implication
|
|
/// </summary>
|
|
public bool IsImplies { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IMPLIES; } }
|
|
#endregion
|
|
|
|
#region Arithmetic Terms
|
|
/// <summary>
|
|
/// Indicates whether the term is of integer sort.
|
|
/// </summary>
|
|
public bool IsInt
|
|
{
|
|
get
|
|
{
|
|
return (Native.Z3_is_numeral_ast(Context.nCtx, NativeObject) != 0 &&
|
|
Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_INT_SORT);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is of sort real.
|
|
/// </summary>
|
|
public bool IsReal
|
|
{
|
|
get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_REAL_SORT; }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an arithmetic numeral.
|
|
/// </summary>
|
|
public bool IsArithmeticNumeral { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ANUM; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a less-than-or-equal
|
|
/// </summary>
|
|
public bool IsLE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a greater-than-or-equal
|
|
/// </summary>
|
|
public bool IsGE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a less-than
|
|
/// </summary>
|
|
public bool IsLT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a greater-than
|
|
/// </summary>
|
|
public bool IsGT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is addition (binary)
|
|
/// </summary>
|
|
public bool IsAdd { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ADD; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is subtraction (binary)
|
|
/// </summary>
|
|
public bool IsSub { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SUB; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a unary minus
|
|
/// </summary>
|
|
public bool IsUMinus { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UMINUS; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is multiplication (binary)
|
|
/// </summary>
|
|
public bool IsMul { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MUL; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is division (binary)
|
|
/// </summary>
|
|
public bool IsDiv { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DIV; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is integer division (binary)
|
|
/// </summary>
|
|
public bool IsIDiv { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IDIV; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is remainder (binary)
|
|
/// </summary>
|
|
public bool IsRemainder { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REM; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is modulus (binary)
|
|
/// </summary>
|
|
public bool IsModulus { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MOD; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a coercion of integer to real (unary)
|
|
/// </summary>
|
|
public bool IsIntToReal { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_REAL; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a coercion of real to integer (unary)
|
|
/// </summary>
|
|
public bool IsRealToInt { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_INT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a check that tests whether a real is integral (unary)
|
|
/// </summary>
|
|
public bool IsRealIsInt { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IS_INT; } }
|
|
#endregion
|
|
|
|
#region Array Terms
|
|
/// <summary>
|
|
/// Indicates whether the term is of an array sort.
|
|
/// </summary>
|
|
public bool IsArray
|
|
{
|
|
get
|
|
{
|
|
return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
|
|
(Z3_sort_kind)Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == Z3_sort_kind.Z3_ARRAY_SORT);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an array store.
|
|
/// </summary>
|
|
/// <remarks>It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
|
|
/// Array store takes at least 3 arguments. </remarks>
|
|
public bool IsStore { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_STORE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an array select.
|
|
/// </summary>
|
|
public bool IsSelect { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SELECT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a constant array.
|
|
/// </summary>
|
|
/// <remarks>For example, select(const(v),i) = v holds for every v and i. The function is unary.</remarks>
|
|
public bool IsConstantArray { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONST_ARRAY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a default array.
|
|
/// </summary>
|
|
/// <remarks>For example default(const(v)) = v. The function is unary.</remarks>
|
|
public bool IsDefaultArray { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_DEFAULT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an array map.
|
|
/// </summary>
|
|
/// <remarks>It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.</remarks>
|
|
public bool IsArrayMap { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_MAP; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an as-array term.
|
|
/// </summary>
|
|
/// <remarks>An as-array term is n array value that behaves as the function graph of the
|
|
/// function passed as parameter.</remarks>
|
|
public bool IsAsArray { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AS_ARRAY; } }
|
|
#endregion
|
|
|
|
#region Set Terms
|
|
/// <summary>
|
|
/// Indicates whether the term is set union
|
|
/// </summary>
|
|
public bool IsSetUnion { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_UNION; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is set intersection
|
|
/// </summary>
|
|
public bool IsSetIntersect { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_INTERSECT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is set difference
|
|
/// </summary>
|
|
public bool IsSetDifference { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_DIFFERENCE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is set complement
|
|
/// </summary>
|
|
public bool IsSetComplement { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_COMPLEMENT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is set subset
|
|
/// </summary>
|
|
public bool IsSetSubset { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_SUBSET; } }
|
|
#endregion
|
|
|
|
#region Bit-vector terms
|
|
/// <summary>
|
|
/// Indicates whether the terms is of bit-vector sort.
|
|
/// </summary>
|
|
public bool IsBV
|
|
{
|
|
get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_BV_SORT; }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector numeral
|
|
/// </summary>
|
|
public bool IsBVNumeral { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNUM; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a one-bit bit-vector with value one
|
|
/// </summary>
|
|
public bool IsBVBitOne { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT1; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a one-bit bit-vector with value zero
|
|
/// </summary>
|
|
public bool IsBVBitZero { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT0; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector unary minus
|
|
/// </summary>
|
|
public bool IsBVUMinus { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNEG; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector addition (binary)
|
|
/// </summary>
|
|
public bool IsBVAdd { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BADD; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector subtraction (binary)
|
|
/// </summary>
|
|
public bool IsBVSub { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSUB; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector multiplication (binary)
|
|
/// </summary>
|
|
public bool IsBVMul { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BMUL; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector signed division (binary)
|
|
/// </summary>
|
|
public bool IsBVSDiv { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSDIV; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector unsigned division (binary)
|
|
/// </summary>
|
|
public bool IsBVUDiv { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUDIV; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector signed remainder (binary)
|
|
/// </summary>
|
|
public bool IsBVSRem { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSREM; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector unsigned remainder (binary)
|
|
/// </summary>
|
|
public bool IsBVURem { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUREM; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector signed modulus
|
|
/// </summary>
|
|
public bool IsBVSMod { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSMOD; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector signed division by zero
|
|
/// </summary>
|
|
internal bool IsBVSDiv0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSDIV0; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector unsigned division by zero
|
|
/// </summary>
|
|
internal bool IsBVUDiv0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUDIV0; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector signed remainder by zero
|
|
/// </summary>
|
|
internal bool IsBVSRem0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSREM0; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector unsigned remainder by zero
|
|
/// </summary>
|
|
internal bool IsBVURem0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUREM0; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector signed modulus by zero
|
|
/// </summary>
|
|
internal bool IsBVSMod0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSMOD0; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an unsigned bit-vector less-than-or-equal
|
|
/// </summary>
|
|
public bool IsBVULE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULEQ; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a signed bit-vector less-than-or-equal
|
|
/// </summary>
|
|
public bool IsBVSLE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLEQ; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an unsigned bit-vector greater-than-or-equal
|
|
/// </summary>
|
|
public bool IsBVUGE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGEQ; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a signed bit-vector greater-than-or-equal
|
|
/// </summary>
|
|
public bool IsBVSGE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGEQ; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an unsigned bit-vector less-than
|
|
/// </summary>
|
|
public bool IsBVULT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a signed bit-vector less-than
|
|
/// </summary>
|
|
public bool IsBVSLT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an unsigned bit-vector greater-than
|
|
/// </summary>
|
|
public bool IsBVUGT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a signed bit-vector greater-than
|
|
/// </summary>
|
|
public bool IsBVSGT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-wise AND
|
|
/// </summary>
|
|
public bool IsBVAND { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BAND; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-wise OR
|
|
/// </summary>
|
|
public bool IsBVOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BOR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-wise NOT
|
|
/// </summary>
|
|
public bool IsBVNOT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-wise XOR
|
|
/// </summary>
|
|
public bool IsBVXOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXOR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-wise NAND
|
|
/// </summary>
|
|
public bool IsBVNAND { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNAND; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-wise NOR
|
|
/// </summary>
|
|
public bool IsBVNOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-wise XNOR
|
|
/// </summary>
|
|
public bool IsBVXNOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXNOR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector concatenation (binary)
|
|
/// </summary>
|
|
public bool IsBVConcat { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONCAT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector sign extension
|
|
/// </summary>
|
|
public bool IsBVSignExtension { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SIGN_EXT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector zero extension
|
|
/// </summary>
|
|
public bool IsBVZeroExtension { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ZERO_EXT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector extraction
|
|
/// </summary>
|
|
public bool IsBVExtract { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXTRACT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector repetition
|
|
/// </summary>
|
|
public bool IsBVRepeat { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REPEAT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector reduce OR
|
|
/// </summary>
|
|
public bool IsBVReduceOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDOR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector reduce AND
|
|
/// </summary>
|
|
public bool IsBVReduceAND { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDAND; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector comparison
|
|
/// </summary>
|
|
public bool IsBVComp { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BCOMP; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector shift left
|
|
/// </summary>
|
|
public bool IsBVShiftLeft { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSHL; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector logical shift right
|
|
/// </summary>
|
|
public bool IsBVShiftRightLogical { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BLSHR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector arithmetic shift left
|
|
/// </summary>
|
|
public bool IsBVShiftRightArithmetic { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BASHR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector rotate left
|
|
/// </summary>
|
|
public bool IsBVRotateLeft { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_LEFT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector rotate right
|
|
/// </summary>
|
|
public bool IsBVRotateRight { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_RIGHT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector rotate left (extended)
|
|
/// </summary>
|
|
/// <remarks>Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.</remarks>
|
|
public bool IsBVRotateLeftExtended { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_LEFT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector rotate right (extended)
|
|
/// </summary>
|
|
/// <remarks>Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.</remarks>
|
|
public bool IsBVRotateRightExtended { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_RIGHT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a coercion from integer to bit-vector
|
|
/// </summary>
|
|
/// <remarks>This function is not supported by the decision procedures. Only the most
|
|
/// rudimentary simplification rules are applied to this function.</remarks>
|
|
public bool IsIntToBV { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_INT2BV; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a coercion from bit-vector to integer
|
|
/// </summary>
|
|
/// <remarks>This function is not supported by the decision procedures. Only the most
|
|
/// rudimentary simplification rules are applied to this function.</remarks>
|
|
public bool IsBVToInt { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BV2INT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector carry
|
|
/// </summary>
|
|
/// <remarks>Compute the carry bit in a full-adder. The meaning is given by the
|
|
/// equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))</remarks>
|
|
public bool IsBVCarry { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CARRY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a bit-vector ternary XOR
|
|
/// </summary>
|
|
/// <remarks>The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)</remarks>
|
|
public bool IsBVXOR3 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR3; } }
|
|
|
|
#endregion
|
|
|
|
#region Labels
|
|
/// <summary>
|
|
/// Indicates whether the term is a label (used by the Boogie Verification condition generator).
|
|
/// </summary>
|
|
/// <remarks>The label has two parameters, a string and a Boolean polarity. It takes one argument, a formula.</remarks>
|
|
public bool IsLabel { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a label literal (used by the Boogie Verification condition generator).
|
|
/// </summary>
|
|
/// <remarks>A label literal has a set of string parameters. It takes no arguments.</remarks>
|
|
public bool IsLabelLit { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL_LIT; } }
|
|
#endregion
|
|
|
|
#region Proof Terms
|
|
/// <summary>
|
|
/// Indicates whether the term is a binary equivalence modulo namings.
|
|
/// </summary>
|
|
/// <remarks>This binary predicate is used in proof terms.
|
|
/// It captures equisatisfiability and equivalence modulo renamings.</remarks>
|
|
public bool IsOEQ { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OEQ; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a Proof for the expression 'true'.
|
|
/// </summary>
|
|
public bool IsProofTrue { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRUE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for a fact asserted by the user.
|
|
/// </summary>
|
|
public bool IsProofAsserted { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ASSERTED; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user.
|
|
/// </summary>
|
|
public bool IsProofGoal { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_GOAL; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is proof via modus ponens
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Given a proof for p and a proof for (implies p q), produces a proof for q.
|
|
/// T1: p
|
|
/// T2: (implies p q)
|
|
/// [mp T1 T2]: q
|
|
/// The second antecedents may also be a proof for (iff p q).</remarks>
|
|
public bool IsProofModusPonens { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for (R t t), where R is a reflexive relation.
|
|
/// </summary>
|
|
/// <remarks>This proof object has no antecedents.
|
|
/// The only reflexive relations that are used are
|
|
/// equivalence modulo namings, equality and equivalence.
|
|
/// That is, R is either '~', '=' or 'iff'.</remarks>
|
|
public bool IsProofReflexivity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REFLEXIVITY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is proof by symmetricity of a relation
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
|
|
/// T1: (R t s)
|
|
/// [symmetry T1]: (R s t)
|
|
/// T1 is the antecedent of this proof object.
|
|
/// </remarks>
|
|
public bool IsProofSymmetry { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SYMMETRY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by transitivity of a relation
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
|
|
/// for (R t u).
|
|
/// T1: (R t s)
|
|
/// T2: (R s u)
|
|
/// [trans T1 T2]: (R t u)
|
|
/// </remarks>
|
|
public bool IsProofTransitivity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by condensed transitivity of a relation
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1.
|
|
/// It combines several symmetry and transitivity proofs.
|
|
/// Example:
|
|
/// T1: (R a b)
|
|
/// T2: (R c b)
|
|
/// T3: (R c d)
|
|
/// [trans* T1 T2 T3]: (R a d)
|
|
/// R must be a symmetric and transitive relation.
|
|
///
|
|
/// Assuming that this proof object is a proof for (R s t), then
|
|
/// a proof checker must check if it is possible to prove (R s t)
|
|
/// using the antecedents, symmetry and transitivity. That is,
|
|
/// if there is a path from s to t, if we view every
|
|
/// antecedent (R a b) as an edge between a and b.
|
|
/// </remarks>
|
|
public bool IsProofTransitivityStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY_STAR; } }
|
|
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a monotonicity proof object.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// T1: (R t_1 s_1)
|
|
/// ...
|
|
/// Tn: (R t_n s_n)
|
|
/// [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
|
|
/// Remark: if t_i == s_i, then the antecedent Ti is suppressed.
|
|
/// That is, reflexivity proofs are supressed to save space.
|
|
/// </remarks>
|
|
public bool IsProofMonotonicity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MONOTONICITY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a quant-intro proof
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).
|
|
/// T1: (~ p q)
|
|
/// [quant-intro T1]: (~ (forall (x) p) (forall (x) q))
|
|
/// </remarks>
|
|
public bool IsProofQuantIntro { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INTRO; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a distributivity proof object.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Given that f (= or) distributes over g (= and), produces a proof for
|
|
/// (= (f a (g c d))
|
|
/// (g (f a c) (f a d)))
|
|
/// If f and g are associative, this proof also justifies the following equality:
|
|
/// (= (f (g a b) (g c d))
|
|
/// (g (f a c) (f a d) (f b c) (f b d)))
|
|
/// where each f and g can have arbitrary number of arguments.
|
|
///
|
|
/// This proof object has no antecedents.
|
|
/// Remark. This rule is used by the CNF conversion pass and
|
|
/// instantiated by f = or, and g = and.
|
|
/// </remarks>
|
|
public bool IsProofDistributivity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DISTRIBUTIVITY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by elimination of AND
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Given a proof for (and l_1 ... l_n), produces a proof for l_i
|
|
/// T1: (and l_1 ... l_n)
|
|
/// [and-elim T1]: l_i
|
|
/// </remarks>
|
|
public bool IsProofAndElimination { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_AND_ELIM; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by eliminiation of not-or
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
|
|
/// T1: (not (or l_1 ... l_n))
|
|
/// [not-or-elim T1]: (not l_i)
|
|
/// </remarks>
|
|
public bool IsProofOrElimination { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NOT_OR_ELIM; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by rewriting
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof for a local rewriting step (= t s).
|
|
/// The head function symbol of t is interpreted.
|
|
///
|
|
/// This proof object has no antecedents.
|
|
/// The conclusion of a rewrite rule is either an equality (= t s),
|
|
/// an equivalence (iff t s), or equi-satisfiability (~ t s).
|
|
/// Remark: if f is bool, then = is iff.
|
|
///
|
|
/// Examples:
|
|
/// (= (+ x 0) x)
|
|
/// (= (+ x 1 2) (+ 3 x))
|
|
/// (iff (or x false) x)
|
|
/// </remarks>
|
|
public bool IsProofRewrite { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by rewriting
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof for rewriting an expression t into an expression s.
|
|
/// This proof object is used if the parameter PROOF_MODE is 1.
|
|
/// This proof object can have n antecedents.
|
|
/// The antecedents are proofs for equalities used as substitution rules.
|
|
/// The object is also used in a few cases if the parameter PROOF_MODE is 2.
|
|
/// The cases are:
|
|
/// - When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
|
|
/// - When converting bit-vectors to Booleans (BIT2BOOL=true)
|
|
/// - When pulling ite expression up (PULL_CHEAP_ITE_TREES=true)
|
|
/// </remarks>
|
|
public bool IsProofRewriteStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE_STAR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for pulling quantifiers out.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.
|
|
/// </remarks>
|
|
public bool IsProofPullQuant { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for pulling quantifiers out.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof for (iff P Q) where Q is in prenex normal form.
|
|
/// This proof object is only used if the parameter PROOF_MODE is 1.
|
|
/// This proof object has no antecedents
|
|
/// </remarks>
|
|
public bool IsProofPullQuantStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT_STAR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for pushing quantifiers in.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof for:
|
|
/// (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
|
|
/// (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
|
|
/// ...
|
|
/// (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
|
|
/// This proof object has no antecedents
|
|
/// </remarks>
|
|
public bool IsProofPushQuant { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PUSH_QUANT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for elimination of unused variables.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
|
|
/// (forall (x_1 ... x_n) p[x_1 ... x_n]))
|
|
///
|
|
/// It is used to justify the elimination of unused variables.
|
|
/// This proof object has no antecedents.
|
|
/// </remarks>
|
|
public bool IsProofElimUnusedVars { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ELIM_UNUSED_VARS; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for destructive equality resolution
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof for destructive equality resolution:
|
|
/// (iff (forall (x) (or (not (= x t)) P[x])) P[t])
|
|
/// if x does not occur in t.
|
|
///
|
|
/// This proof object has no antecedents.
|
|
///
|
|
/// Several variables can be eliminated simultaneously.
|
|
/// </remarks>
|
|
public bool IsProofDER { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DER; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for quantifier instantiation
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof of (or (not (forall (x) (P x))) (P a))
|
|
/// </remarks>
|
|
public bool IsProofQuantInst { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INST; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a hypthesis marker.
|
|
/// </summary>
|
|
/// <remarks>Mark a hypothesis in a natural deduction style proof.</remarks>
|
|
public bool IsProofHypothesis { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_HYPOTHESIS; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by lemma
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// T1: false
|
|
/// [lemma T1]: (or (not l_1) ... (not l_n))
|
|
///
|
|
/// This proof object has one antecedent: a hypothetical proof for false.
|
|
/// It converts the proof in a proof for (or (not l_1) ... (not l_n)),
|
|
/// when T1 contains the hypotheses: l_1, ..., l_n.
|
|
/// </remarks>
|
|
public bool IsProofLemma { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_LEMMA; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by unit resolution
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// T1: (or l_1 ... l_n l_1' ... l_m')
|
|
/// T2: (not l_1)
|
|
/// ...
|
|
/// T(n+1): (not l_n)
|
|
/// [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')
|
|
/// </remarks>
|
|
public bool IsProofUnitResolution { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_UNIT_RESOLUTION; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by iff-true
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// T1: p
|
|
/// [iff-true T1]: (iff p true)
|
|
/// </remarks>
|
|
public bool IsProofIFFTrue { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_TRUE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by iff-false
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// T1: (not p)
|
|
/// [iff-false T1]: (iff p false)
|
|
/// </remarks>
|
|
public bool IsProofIFFFalse { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_FALSE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by commutativity
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// [comm]: (= (f a b) (f b a))
|
|
///
|
|
/// f is a commutative operator.
|
|
///
|
|
/// This proof object has no antecedents.
|
|
/// Remark: if f is bool, then = is iff.
|
|
/// </remarks>
|
|
public bool IsProofCommutativity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_COMMUTATIVITY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for Tseitin-like axioms
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Proof object used to justify Tseitin's like axioms:
|
|
///
|
|
/// (or (not (and p q)) p)
|
|
/// (or (not (and p q)) q)
|
|
/// (or (not (and p q r)) p)
|
|
/// (or (not (and p q r)) q)
|
|
/// (or (not (and p q r)) r)
|
|
/// ...
|
|
/// (or (and p q) (not p) (not q))
|
|
/// (or (not (or p q)) p q)
|
|
/// (or (or p q) (not p))
|
|
/// (or (or p q) (not q))
|
|
/// (or (not (iff p q)) (not p) q)
|
|
/// (or (not (iff p q)) p (not q))
|
|
/// (or (iff p q) (not p) (not q))
|
|
/// (or (iff p q) p q)
|
|
/// (or (not (ite a b c)) (not a) b)
|
|
/// (or (not (ite a b c)) a c)
|
|
/// (or (ite a b c) (not a) (not b))
|
|
/// (or (ite a b c) a (not c))
|
|
/// (or (not (not a)) (not a))
|
|
/// (or (not a) a)
|
|
///
|
|
/// This proof object has no antecedents.
|
|
/// Note: all axioms are propositional tautologies.
|
|
/// Note also that 'and' and 'or' can take multiple arguments.
|
|
/// You can recover the propositional tautologies by
|
|
/// unfolding the Boolean connectives in the axioms a small
|
|
/// bounded number of steps (=3).
|
|
/// </remarks>
|
|
public bool IsProofDefAxiom { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_AXIOM; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for introduction of a name
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Introduces a name for a formula/term.
|
|
/// Suppose e is an expression with free variables x, and def-intro
|
|
/// introduces the name n(x). The possible cases are:
|
|
///
|
|
/// When e is of Boolean type:
|
|
/// [def-intro]: (and (or n (not e)) (or (not n) e))
|
|
///
|
|
/// or:
|
|
/// [def-intro]: (or (not n) e)
|
|
/// when e only occurs positively.
|
|
///
|
|
/// When e is of the form (ite cond th el):
|
|
/// [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))
|
|
///
|
|
/// Otherwise:
|
|
/// [def-intro]: (= n e)
|
|
/// </remarks>
|
|
public bool IsProofDefIntro { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_INTRO; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for application of a definition
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// [apply-def T1]: F ~ n
|
|
/// F is 'equivalent' to n, given that T1 is a proof that
|
|
/// n is a name for F.
|
|
/// </remarks>
|
|
public bool IsProofApplyDef { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_APPLY_DEF; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof iff-oeq
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// T1: (iff p q)
|
|
/// [iff~ T1]: (~ p q)
|
|
/// </remarks>
|
|
public bool IsProofIFFOEQ { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_OEQ; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for a positive NNF step
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Proof for a (positive) NNF step. Example:
|
|
///
|
|
/// T1: (not s_1) ~ r_1
|
|
/// T2: (not s_2) ~ r_2
|
|
/// T3: s_1 ~ r_1'
|
|
/// T4: s_2 ~ r_2'
|
|
/// [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2)
|
|
/// (and (or r_1 r_2') (or r_1' r_2)))
|
|
///
|
|
/// The negation normal form steps NNF_POS and NNF_NEG are used in the following cases:
|
|
/// (a) When creating the NNF of a positive force quantifier.
|
|
/// The quantifier is retained (unless the bound variables are eliminated).
|
|
/// Example
|
|
/// T1: q ~ q_new
|
|
/// [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
|
|
///
|
|
/// (b) When recursively creating NNF over Boolean formulas, where the top-level
|
|
/// connective is changed during NNF conversion. The relevant Boolean connectives
|
|
/// for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
|
|
/// NNF_NEG furthermore handles the case where negation is pushed
|
|
/// over Boolean connectives 'and' and 'or'.
|
|
/// </remarks>
|
|
public bool IsProofNNFPos { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_POS; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for a negative NNF step
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Proof for a (negative) NNF step. Examples:
|
|
///
|
|
/// T1: (not s_1) ~ r_1
|
|
/// ...
|
|
/// Tn: (not s_n) ~ r_n
|
|
/// [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n)
|
|
/// and
|
|
/// T1: (not s_1) ~ r_1
|
|
/// ...
|
|
/// Tn: (not s_n) ~ r_n
|
|
/// [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n)
|
|
/// and
|
|
/// T1: (not s_1) ~ r_1
|
|
/// T2: (not s_2) ~ r_2
|
|
/// T3: s_1 ~ r_1'
|
|
/// T4: s_2 ~ r_2'
|
|
/// [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
|
|
/// (and (or r_1 r_2) (or r_1' r_2')))
|
|
/// </remarks>
|
|
public bool IsProofNNFNeg { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_NEG; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for (~ P Q) here Q is in negation normal form.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof for (~ P Q) where Q is in negation normal form.
|
|
///
|
|
/// This proof object is only used if the parameter PROOF_MODE is 1.
|
|
///
|
|
/// This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
|
|
/// </remarks>
|
|
public bool IsProofNNFStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_STAR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for (~ P Q) where Q is in conjunctive normal form.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// A proof for (~ P Q) where Q is in conjunctive normal form.
|
|
/// This proof object is only used if the parameter PROOF_MODE is 1.
|
|
/// This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
|
|
/// </remarks>
|
|
public bool IsProofCNFStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_CNF_STAR; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for a Skolemization step
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Proof for:
|
|
///
|
|
/// [sk]: (~ (not (forall x (p x y))) (not (p (sk y) y)))
|
|
/// [sk]: (~ (exists x (p x y)) (p (sk y) y))
|
|
///
|
|
/// This proof object has no antecedents.
|
|
/// </remarks>
|
|
public bool IsProofSkolemize { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SKOLEMIZE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof by modus ponens for equi-satisfiability.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Modus ponens style rule for equi-satisfiability.
|
|
/// T1: p
|
|
/// T2: (~ p q)
|
|
/// [mp~ T1 T2]: q
|
|
/// </remarks>
|
|
public bool IsProofModusPonensOEQ { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS_OEQ; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a proof for theory lemma
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Generic proof for theory lemmas.
|
|
///
|
|
/// The theory lemma function comes with one or more parameters.
|
|
/// The first parameter indicates the name of the theory.
|
|
/// For the theory of arithmetic, additional parameters provide hints for
|
|
/// checking the theory lemma.
|
|
/// The hints for arithmetic are:
|
|
/// - farkas - followed by rational coefficients. Multiply the coefficients to the
|
|
/// inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
|
|
/// - triangle-eq - Indicates a lemma related to the equivalence:
|
|
/// (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
|
|
/// - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.
|
|
/// </remarks>
|
|
public bool IsProofTheoryLemma { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TH_LEMMA; } }
|
|
#endregion
|
|
|
|
#region Relational Terms
|
|
/// <summary>
|
|
/// Indicates whether the term is of an array sort.
|
|
/// </summary>
|
|
public bool IsRelation
|
|
{
|
|
get
|
|
{
|
|
return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
|
|
(Z3_sort_kind)Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == Z3_sort_kind.Z3_RELATION_SORT);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an relation store
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Insert a record into a relation.
|
|
/// The function takes <c>n+1</c> arguments, where the first argument is the relation and the remaining <c>n</c> elements
|
|
/// correspond to the <c>n</c> columns of the relation.
|
|
/// </remarks>
|
|
public bool IsRelationStore { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_STORE; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an empty relation
|
|
/// </summary>
|
|
public bool IsEmptyRelation { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_EMPTY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a test for the emptiness of a relation
|
|
/// </summary>
|
|
public bool IsIsEmptyRelation { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_IS_EMPTY; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a relational join
|
|
/// </summary>
|
|
public bool IsRelationalJoin { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_JOIN; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is the union or convex hull of two relations.
|
|
/// </summary>
|
|
/// <remarks>The function takes two arguments.</remarks>
|
|
public bool IsRelationUnion { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_UNION; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is the widening of two relations
|
|
/// </summary>
|
|
/// <remarks>The function takes two arguments.</remarks>
|
|
public bool IsRelationWiden { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_WIDEN; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a projection of columns (provided as numbers in the parameters).
|
|
/// </summary>
|
|
/// <remarks>The function takes one argument.</remarks>
|
|
public bool IsRelationProject { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_PROJECT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a relation filter
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Filter (restrict) a relation with respect to a predicate.
|
|
/// The first argument is a relation.
|
|
/// The second argument is a predicate with free de-Brujin indices
|
|
/// corresponding to the columns of the relation.
|
|
/// So the first column in the relation has index 0.
|
|
/// </remarks>
|
|
public bool IsRelationFilter { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_FILTER; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is an intersection of a relation with the negation of another.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Intersect the first relation with respect to negation
|
|
/// of the second relation (the function takes two arguments).
|
|
/// Logically, the specification can be described by a function
|
|
///
|
|
/// target = filter_by_negation(pos, neg, columns)
|
|
///
|
|
/// where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
|
|
/// target are elements in x in pos, such that there is no y in neg that agrees with
|
|
/// x on the columns c1, d1, .., cN, dN.
|
|
/// </remarks>
|
|
public bool IsRelationNegationFilter { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_NEGATION_FILTER; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is the renaming of a column in a relation
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// The function takes one argument.
|
|
/// The parameters contain the renaming as a cycle.
|
|
/// </remarks>
|
|
public bool IsRelationRename { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_RENAME; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is the complement of a relation
|
|
/// </summary>
|
|
public bool IsRelationComplement { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_COMPLEMENT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a relational select
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Check if a record is an element of the relation.
|
|
/// The function takes <c>n+1</c> arguments, where the first argument is a relation,
|
|
/// and the remaining <c>n</c> arguments correspond to a record.
|
|
/// </remarks>
|
|
public bool IsRelationSelect { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_SELECT; } }
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a relational clone (copy)
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Create a fresh copy (clone) of a relation.
|
|
/// The function is logically the identity, but
|
|
/// in the context of a register machine allows
|
|
/// for terms of kind <seealso cref="IsRelationUnion"/>
|
|
/// to perform destructive updates to the first argument.
|
|
/// </remarks>
|
|
public bool IsRelationClone { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_CLONE; } }
|
|
#endregion
|
|
|
|
#region Finite domain terms
|
|
/// <summary>
|
|
/// Indicates whether the term is of an array sort.
|
|
/// </summary>
|
|
public bool IsFiniteDomain
|
|
{
|
|
get
|
|
{
|
|
return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
|
|
(Z3_sort_kind)Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == Z3_sort_kind.Z3_FINITE_DOMAIN_SORT);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Indicates whether the term is a less than predicate over a finite domain.
|
|
/// </summary>
|
|
public bool IsFiniteDomainLT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FD_LT; } }
|
|
#endregion
|
|
#endregion
|
|
|
|
#region Bound Variables
|
|
/// <summary>
|
|
/// The de-Burijn index of a bound variable.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain
|
|
/// the meaning of de-Bruijn indices by indicating the compilation process from
|
|
/// non-de-Bruijn formulas to de-Bruijn format.
|
|
/// <code>
|
|
/// abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
|
|
/// abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
|
|
/// abs1(x, x, n) = b_n
|
|
/// abs1(y, x, n) = y
|
|
/// abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
|
|
/// abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
|
|
/// </code>
|
|
/// The last line is significant: the index of a bound variable is different depending
|
|
/// on the scope in which it appears. The deeper x appears, the higher is its
|
|
/// index.
|
|
/// </remarks>
|
|
public uint Index
|
|
{
|
|
get
|
|
{
|
|
if (!IsVar)
|
|
throw new Z3Exception("Term is not a bound variable.");
|
|
|
|
Contract.EndContractBlock();
|
|
|
|
return Native.Z3_get_index_value(Context.nCtx, NativeObject);
|
|
}
|
|
}
|
|
#endregion
|
|
|
|
#region Internal
|
|
/// <summary> Constructor for Expr </summary>
|
|
internal protected Expr(Context ctx) : base(ctx) { Contract.Requires(ctx != null); }
|
|
/// <summary> Constructor for Expr </summary>
|
|
internal protected Expr(Context ctx, IntPtr obj) : base(ctx, obj) { Contract.Requires(ctx != null); }
|
|
|
|
#if DEBUG
|
|
[Pure]
|
|
internal override void CheckNativeObject(IntPtr obj)
|
|
{
|
|
if (Native.Z3_is_app(Context.nCtx, obj) == 0 &&
|
|
(Z3_ast_kind)Native.Z3_get_ast_kind(Context.nCtx, obj) != Z3_ast_kind.Z3_VAR_AST &&
|
|
(Z3_ast_kind)Native.Z3_get_ast_kind(Context.nCtx, obj) != Z3_ast_kind.Z3_QUANTIFIER_AST)
|
|
throw new Z3Exception("Underlying object is not a term");
|
|
base.CheckNativeObject(obj);
|
|
}
|
|
#endif
|
|
|
|
[Pure]
|
|
internal static Expr Create(Context ctx, FuncDecl f, params Expr[] arguments)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
Contract.Requires(f != null);
|
|
Contract.Ensures(Contract.Result<Expr>() != null);
|
|
|
|
IntPtr obj = Native.Z3_mk_app(ctx.nCtx, f.NativeObject,
|
|
AST.ArrayLength(arguments),
|
|
AST.ArrayToNative(arguments));
|
|
return Create(ctx, obj);
|
|
}
|
|
|
|
[Pure]
|
|
new internal static Expr Create(Context ctx, IntPtr obj)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
Contract.Ensures(Contract.Result<Expr>() != null);
|
|
|
|
Z3_ast_kind k = (Z3_ast_kind)Native.Z3_get_ast_kind(ctx.nCtx, obj);
|
|
if (k == Z3_ast_kind.Z3_QUANTIFIER_AST)
|
|
return new Quantifier(ctx, obj);
|
|
IntPtr s = Native.Z3_get_sort(ctx.nCtx, obj);
|
|
Z3_sort_kind sk = (Z3_sort_kind)Native.Z3_get_sort_kind(ctx.nCtx, s);
|
|
|
|
if (Native.Z3_is_algebraic_number(ctx.nCtx, obj) != 0) // is this a numeral ast?
|
|
return new AlgebraicNum(ctx, obj);
|
|
|
|
if (Native.Z3_is_numeral_ast(ctx.nCtx, obj) != 0)
|
|
{
|
|
switch (sk)
|
|
{
|
|
case Z3_sort_kind.Z3_INT_SORT: return new IntNum(ctx, obj);
|
|
case Z3_sort_kind.Z3_REAL_SORT: return new RatNum(ctx, obj);
|
|
case Z3_sort_kind.Z3_BV_SORT: return new BitVecNum(ctx, obj);
|
|
}
|
|
}
|
|
|
|
switch (sk)
|
|
{
|
|
case Z3_sort_kind.Z3_BOOL_SORT: return new BoolExpr(ctx, obj);
|
|
case Z3_sort_kind.Z3_INT_SORT: return new IntExpr(ctx, obj);
|
|
case Z3_sort_kind.Z3_REAL_SORT: return new RealExpr(ctx, obj);
|
|
case Z3_sort_kind.Z3_BV_SORT: return new BitVecExpr(ctx, obj);
|
|
case Z3_sort_kind.Z3_ARRAY_SORT: return new ArrayExpr(ctx, obj);
|
|
case Z3_sort_kind.Z3_DATATYPE_SORT: return new DatatypeExpr(ctx, obj);
|
|
}
|
|
|
|
return new Expr(ctx, obj);
|
|
}
|
|
#endregion
|
|
}
|
|
|
|
/// <summary>
|
|
/// Boolean expressions
|
|
/// </summary>
|
|
public class BoolExpr : Expr
|
|
{
|
|
#region Internal
|
|
/// <summary> Constructor for BoolExpr </summary>
|
|
internal protected BoolExpr(Context ctx) : base(ctx) { Contract.Requires(ctx != null); }
|
|
/// <summary> Constructor for BoolExpr </summary>
|
|
internal BoolExpr(Context ctx, IntPtr obj) : base(ctx, obj) { Contract.Requires(ctx != null); }
|
|
#endregion
|
|
}
|
|
|
|
/// <summary>
|
|
/// Arithmetic expressions (int/real)
|
|
/// </summary>
|
|
public class ArithExpr : Expr
|
|
{
|
|
#region Internal
|
|
/// <summary> Constructor for ArithExpr </summary>
|
|
internal protected ArithExpr(Context ctx)
|
|
: base(ctx)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
internal ArithExpr(Context ctx, IntPtr obj)
|
|
: base(ctx, obj)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
#endregion
|
|
}
|
|
|
|
/// <summary>
|
|
/// Int expressions
|
|
/// </summary>
|
|
public class IntExpr : ArithExpr
|
|
{
|
|
#region Internal
|
|
/// <summary> Constructor for IntExpr </summary>
|
|
internal protected IntExpr(Context ctx)
|
|
: base(ctx)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
internal IntExpr(Context ctx, IntPtr obj)
|
|
: base(ctx, obj)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
#endregion
|
|
}
|
|
|
|
/// <summary>
|
|
/// Real expressions
|
|
/// </summary>
|
|
public class RealExpr : ArithExpr
|
|
{
|
|
#region Internal
|
|
/// <summary> Constructor for RealExpr </summary>
|
|
internal protected RealExpr(Context ctx)
|
|
: base(ctx)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
internal RealExpr(Context ctx, IntPtr obj)
|
|
: base(ctx, obj)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
#endregion
|
|
}
|
|
|
|
/// <summary>
|
|
/// Bit-vector expressions
|
|
/// </summary>
|
|
public class BitVecExpr : Expr
|
|
{
|
|
|
|
/// <summary>
|
|
/// The size of the sort of a bit-vector term.
|
|
/// </summary>
|
|
public uint SortSize
|
|
{
|
|
get { return ((BitVecSort)Sort).Size; }
|
|
}
|
|
|
|
#region Internal
|
|
/// <summary> Constructor for BitVecExpr </summary>
|
|
internal protected BitVecExpr(Context ctx) : base(ctx) { Contract.Requires(ctx != null); }
|
|
internal BitVecExpr(Context ctx, IntPtr obj) : base(ctx, obj) { Contract.Requires(ctx != null); }
|
|
#endregion
|
|
}
|
|
|
|
/// <summary>
|
|
/// Array expressions
|
|
/// </summary>
|
|
public class ArrayExpr : Expr
|
|
{
|
|
#region Internal
|
|
/// <summary> Constructor for ArrayExpr </summary>
|
|
internal protected ArrayExpr(Context ctx)
|
|
: base(ctx)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
internal ArrayExpr(Context ctx, IntPtr obj)
|
|
: base(ctx, obj)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
#endregion
|
|
}
|
|
|
|
/// <summary>
|
|
/// Datatype expressions
|
|
/// </summary>
|
|
public class DatatypeExpr : Expr
|
|
{
|
|
#region Internal
|
|
/// <summary> Constructor for DatatypeExpr </summary>
|
|
internal protected DatatypeExpr(Context ctx)
|
|
: base(ctx)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
internal DatatypeExpr(Context ctx, IntPtr obj)
|
|
: base(ctx, obj)
|
|
{
|
|
Contract.Requires(ctx != null);
|
|
}
|
|
#endregion
|
|
}
|
|
}
|