mirror of
https://github.com/Z3Prover/z3
synced 2025-07-17 01:46:39 +00:00
174 lines
5.4 KiB
C++
174 lines
5.4 KiB
C++
/*++
|
|
Copyright (c) 2010 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
qe_bool_plugin.cpp
|
|
|
|
Abstract:
|
|
|
|
Eliminate Boolean variable from formula
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2010-02-19
|
|
|
|
Revision History:
|
|
|
|
Notes:
|
|
|
|
The procedure is a bit naive.
|
|
Consider a co-factoring approach that eliminates all Boolean
|
|
variables in scope in one shot, similar to what we do with
|
|
BDDs.
|
|
|
|
--*/
|
|
|
|
#include "qe/qe.h"
|
|
#include "ast/rewriter/expr_safe_replace.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "model/model_evaluator.h"
|
|
|
|
|
|
namespace qe {
|
|
class bool_plugin : public qe_solver_plugin {
|
|
expr_safe_replace m_replace;
|
|
public:
|
|
bool_plugin(i_solver_context& ctx, ast_manager& m):
|
|
qe_solver_plugin(m, m.get_basic_family_id(), ctx),
|
|
m_replace(m)
|
|
{}
|
|
|
|
void assign(contains_app& x, expr* fml, rational const& vl) override {
|
|
SASSERT(vl.is_zero() || vl.is_one());
|
|
}
|
|
|
|
bool get_num_branches(contains_app& x, expr* fml, rational& nb) override {
|
|
nb = rational(2);
|
|
return true;
|
|
}
|
|
|
|
void subst(contains_app& x, rational const& vl, expr_ref& fml, expr_ref* def) override {
|
|
SASSERT(vl.is_one() || vl.is_zero());
|
|
expr* tf = (vl.is_one())?m.mk_true():m.mk_false();
|
|
m_replace.apply_substitution(x.x(), tf, fml);
|
|
if (def) {
|
|
*def = tf;
|
|
}
|
|
}
|
|
|
|
bool project(contains_app& x, model_ref& model, expr_ref& fml) override {
|
|
model_evaluator model_eval(*model);
|
|
expr_ref val_x(m);
|
|
rational val;
|
|
model_eval(x.x(), val_x);
|
|
CTRACE("qe", (!m.is_true(val_x) && !m.is_false(val_x)),
|
|
tout << "Boolean is a don't care: " << mk_pp(x.x(), m) << "\n";);
|
|
val = m.is_true(val_x)?rational::one():rational::zero();
|
|
subst(x, val, fml, nullptr);
|
|
return true;
|
|
}
|
|
|
|
unsigned get_weight(contains_app& contains_x, expr* fml) override {
|
|
app* x = contains_x.x();
|
|
bool p = m_ctx.pos_atoms().contains(x);
|
|
bool n = m_ctx.neg_atoms().contains(x);
|
|
if (p && n) {
|
|
return 3;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool solve(conj_enum& conjs,expr* fml) override {
|
|
return
|
|
solve_units(conjs, fml) ||
|
|
solve_polarized(fml);
|
|
}
|
|
|
|
bool is_uninterpreted(app* a) override {
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
|
|
bool solve_units(conj_enum& conjs, expr* _fml) {
|
|
expr_ref fml(_fml, m);
|
|
unsigned idx;
|
|
for (expr * e : conjs) {
|
|
if (!is_app(e)) {
|
|
continue;
|
|
}
|
|
app* a = to_app(e);
|
|
expr* e1;
|
|
if (m_ctx.is_var(a, idx)) {
|
|
m_replace.apply_substitution(a, m.mk_true(), fml);
|
|
m_ctx.elim_var(idx, fml, m.mk_true());
|
|
return true;
|
|
}
|
|
else if (m.is_not(e, e1) && m_ctx.is_var(e1, idx)) {
|
|
m_replace.apply_substitution(to_app(e1), m.mk_false(), fml);
|
|
m_ctx.elim_var(idx, fml, m.mk_false());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool solve_polarized(expr* _fml) {
|
|
unsigned num_vars = m_ctx.get_num_vars();
|
|
expr_ref fml(_fml, m), def(m);
|
|
for (unsigned i = 0; i < num_vars; ++i) {
|
|
if (m.is_bool(m_ctx.get_var(i)) &&
|
|
solve_polarized(m_ctx.contains(i), fml, def)) {
|
|
m_ctx.elim_var(i, fml, def);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool solve_polarized( contains_app& contains_x, expr_ref& fml, expr_ref& def) {
|
|
app* x = contains_x.x();
|
|
bool p = m_ctx.pos_atoms().contains(x);
|
|
bool n = m_ctx.neg_atoms().contains(x);
|
|
TRACE("quant_elim", tout << mk_pp(x, m) << " " << mk_pp(fml, m) << "\n";);
|
|
if (p && n) {
|
|
return false;
|
|
}
|
|
else if (p && !n) {
|
|
for (expr* y : m_ctx.pos_atoms()) {
|
|
if (x != y && contains_x(y)) return false;
|
|
}
|
|
for (expr* y : m_ctx.neg_atoms()) {
|
|
if (contains_x(y)) return false;
|
|
}
|
|
// only occurrences of 'x' must be in positive atoms
|
|
def = m.mk_true();
|
|
m_replace.apply_substitution(x, def, fml);
|
|
return true;
|
|
}
|
|
else if (!p && n) {
|
|
for (expr* y : m_ctx.pos_atoms()) {
|
|
if (contains_x(y)) return false;
|
|
}
|
|
for (expr* y : m_ctx.neg_atoms()) {
|
|
if (x != y && contains_x(y)) return false;
|
|
}
|
|
def = m.mk_false();
|
|
m_replace.apply_substitution(x, def, fml);
|
|
return true;
|
|
}
|
|
else if (contains_x(fml)) {
|
|
return false;
|
|
}
|
|
else {
|
|
def = m.mk_false();
|
|
return true;
|
|
}
|
|
}
|
|
};
|
|
|
|
qe_solver_plugin* mk_bool_plugin(i_solver_context& ctx) {
|
|
return alloc(bool_plugin, ctx, ctx.get_manager());
|
|
}
|
|
}
|