mirror of
https://github.com/Z3Prover/z3
synced 2025-10-15 20:10:26 +00:00
1519 lines
56 KiB
C++
1519 lines
56 KiB
C++
/*++
|
|
Copyright (c) 2021 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
maintain viable domains
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2021-03-19
|
|
Jakob Rath 2021-04-6
|
|
|
|
Notes:
|
|
|
|
TODO: Investigate in depth a notion of phase caching for variables.
|
|
The Linear solver can be used to supply a phase in some cases.
|
|
In other cases, the phase of a variable assignment across branches
|
|
might be used in a call to is_viable. With phase caching on, it may
|
|
just check if the cached phase is viable without detecting that it is a propagation.
|
|
|
|
TODO: improve management of the fallback univariate solvers:
|
|
- use a solver pool and recycle the least recently used solver
|
|
- incrementally add/remove constraints
|
|
- set resource limit of univariate solver
|
|
|
|
TODO: plan to fix the FI "pumping":
|
|
1. simple looping detection and bitblasting fallback. -- done
|
|
2. intervals at multiple bit widths
|
|
- for equations, this will give us exact solutions for all coefficients
|
|
- for inequalities, a coefficient 2^k*a means that intervals are periodic because the upper k bits of x are irrelevant;
|
|
storing the interval for x[K-k:0] would take care of this.
|
|
|
|
--*/
|
|
|
|
|
|
#include "util/debug.h"
|
|
#include "math/polysat/viable.h"
|
|
#include "math/polysat/solver.h"
|
|
#include "math/polysat/number.h"
|
|
#include "math/polysat/univariate/univariate_solver.h"
|
|
|
|
namespace polysat {
|
|
|
|
using namespace viable_query;
|
|
|
|
struct inf_fi : public inference {
|
|
viable& v;
|
|
pvar var;
|
|
inf_fi(viable& v, pvar var) : v(v), var(var) {}
|
|
std::ostream& display(std::ostream& out) const override {
|
|
return out << "Forbidden intervals for v" << var << ": " << viable::var_pp(v, var);
|
|
}
|
|
};
|
|
|
|
viable::viable(solver& s):
|
|
s(s),
|
|
m_forbidden_intervals(s) {
|
|
}
|
|
|
|
viable::~viable() {
|
|
for (entry* e : m_alloc)
|
|
dealloc(e);
|
|
}
|
|
|
|
void viable::push_var(unsigned bit_width) {
|
|
m_units.push_back(nullptr);
|
|
m_equal_lin.push_back(nullptr);
|
|
m_diseq_lin.push_back(nullptr);
|
|
}
|
|
|
|
void viable::pop_var() {
|
|
m_units.pop_back();
|
|
m_equal_lin.pop_back();
|
|
m_diseq_lin.pop_back();
|
|
}
|
|
|
|
viable::entry* viable::alloc_entry() {
|
|
if (m_alloc.empty())
|
|
return alloc(entry);
|
|
auto* e = m_alloc.back();
|
|
e->side_cond.reset();
|
|
e->coeff = 1;
|
|
e->refined = nullptr;
|
|
m_alloc.pop_back();
|
|
return e;
|
|
}
|
|
|
|
void viable::pop_viable() {
|
|
auto const& [v, k, e] = m_trail.back();
|
|
SASSERT(well_formed(m_units[v]));
|
|
switch (k) {
|
|
case entry_kind::unit_e:
|
|
entry::remove_from(m_units[v], e);
|
|
SASSERT(well_formed(m_units[v]));
|
|
break;
|
|
case entry_kind::equal_e:
|
|
entry::remove_from(m_equal_lin[v], e);
|
|
break;
|
|
case entry_kind::diseq_e:
|
|
entry::remove_from(m_diseq_lin[v], e);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
m_alloc.push_back(e);
|
|
m_trail.pop_back();
|
|
}
|
|
|
|
void viable::push_viable() {
|
|
auto& [v, k, e] = m_trail.back();
|
|
SASSERT(e->prev() != e || !m_units[v]);
|
|
SASSERT(e->prev() != e || e->next() == e);
|
|
SASSERT(k == entry_kind::unit_e);
|
|
(void)k;
|
|
SASSERT(well_formed(m_units[v]));
|
|
if (e->prev() != e) {
|
|
entry* pos = e->prev();
|
|
e->init(e);
|
|
pos->insert_after(e);
|
|
if (e->interval.lo_val() < m_units[v]->interval.lo_val())
|
|
m_units[v] = e;
|
|
}
|
|
else
|
|
m_units[v] = e;
|
|
SASSERT(well_formed(m_units[v]));
|
|
m_trail.pop_back();
|
|
}
|
|
|
|
bool viable::intersect(pdd const& p, pdd const& q, signed_constraint const& sc) {
|
|
pvar v = null_var;
|
|
bool first = true;
|
|
bool prop = false;
|
|
if (p.is_unilinear())
|
|
v = p.var();
|
|
else if (q.is_unilinear())
|
|
v = q.var(), first = false;
|
|
else
|
|
return prop;
|
|
|
|
try_viable:
|
|
if (intersect(v, sc)) {
|
|
rational val;
|
|
switch (find_viable(v, val)) {
|
|
case find_t::singleton:
|
|
propagate(v, val);
|
|
prop = true;
|
|
break;
|
|
case find_t::empty:
|
|
SASSERT(s.is_conflict());
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if (first && q.is_unilinear() && q.var() != v) {
|
|
v = q.var();
|
|
first = false;
|
|
goto try_viable;
|
|
}
|
|
return prop;
|
|
}
|
|
|
|
void viable::propagate(pvar v, rational const& val) {
|
|
// NOTE: all propagations must be justified by a prefix of \Gamma,
|
|
// otherwise dependencies may be missed during conflict resolution.
|
|
// The propagation reason for v := val consists of the following constraints:
|
|
// - source constraint (already on \Gamma)
|
|
// - side conditions
|
|
// - i.lo() == i.lo_val() for each unit interval i
|
|
// - i.hi() == i.hi_val() for each unit interval i
|
|
|
|
// NSB review:
|
|
// the bounds added by x < p and p < x in forbidden_intervals
|
|
// match_non_max, match_non_zero
|
|
// use values that are approximations. Then the propagations in
|
|
// try_assign_eval are incorrect.
|
|
// For example, x > p means x has forbidden interval [0, p + 1[,
|
|
// the numeric interval is [0, 1[, but p + 1 == 1 is not ensured
|
|
// even p may have free variables.
|
|
// the proper side condition on p + 1 is -1 > p or -2 >= p or p + 1 != 0
|
|
// I am disabling match_non_max and match_non_zero from forbidden_interval
|
|
// The narrowing rules in ule_constraint already handle the bounds propagaitons
|
|
// as it propagates p != -1 and 0 != q (p < -1, q > 0),
|
|
//
|
|
|
|
for (auto const& c : get_constraints(v)) {
|
|
s.try_assign_eval(c);
|
|
}
|
|
for (auto const& i : units(v)) {
|
|
s.try_assign_eval(s.eq(i.lo(), i.lo_val()));
|
|
s.try_assign_eval(s.eq(i.hi(), i.hi_val()));
|
|
}
|
|
s.assign_propagate(v, val);
|
|
}
|
|
|
|
bool viable::intersect(pvar v, signed_constraint const& c) {
|
|
LOG("intersect v" << v << " in " << lit_pp(s, c));
|
|
if (s.is_assigned(v)) {
|
|
// this can happen e.g. for c = ovfl*(v2,v3); where intersect(pdd,pdd,signed_constraint) will try both variables.
|
|
LOG("abort intersect because v" << v << " is already assigned");
|
|
return false;
|
|
}
|
|
entry* ne = alloc_entry();
|
|
if (!m_forbidden_intervals.get_interval(c, v, *ne)) {
|
|
m_alloc.push_back(ne);
|
|
return false;
|
|
}
|
|
else if (ne->interval.is_currently_empty()) {
|
|
m_alloc.push_back(ne);
|
|
return false;
|
|
}
|
|
else if (ne->coeff == 1) {
|
|
return intersect(v, ne);
|
|
}
|
|
else if (ne->coeff == -1) {
|
|
insert(ne, v, m_diseq_lin, entry_kind::diseq_e);
|
|
return true;
|
|
}
|
|
else {
|
|
insert(ne, v, m_equal_lin, entry_kind::equal_e);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void viable::insert(entry* e, pvar v, ptr_vector<entry>& entries, entry_kind k) {
|
|
SASSERT(well_formed(m_units[v]));
|
|
m_trail.push_back({ v, k, e });
|
|
s.m_trail.push_back(trail_instr_t::viable_add_i);
|
|
e->init(e);
|
|
if (!entries[v])
|
|
entries[v] = e;
|
|
else
|
|
e->insert_after(entries[v]);
|
|
SASSERT(entries[v]->invariant());
|
|
SASSERT(well_formed(m_units[v]));
|
|
}
|
|
|
|
bool viable::intersect(pvar v, entry* ne) {
|
|
SASSERT(!s.is_assigned(v));
|
|
entry* e = m_units[v];
|
|
if (e && e->interval.is_full()) {
|
|
m_alloc.push_back(ne);
|
|
return false;
|
|
}
|
|
|
|
if (ne->interval.is_currently_empty()) {
|
|
m_alloc.push_back(ne);
|
|
return false;
|
|
}
|
|
|
|
auto create_entry = [&]() {
|
|
m_trail.push_back({ v, entry_kind::unit_e, ne });
|
|
s.m_trail.push_back(trail_instr_t::viable_add_i);
|
|
ne->init(ne);
|
|
return ne;
|
|
};
|
|
|
|
auto remove_entry = [&](entry* e) {
|
|
m_trail.push_back({ v, entry_kind::unit_e, e });
|
|
s.m_trail.push_back(trail_instr_t::viable_rem_i);
|
|
e->remove_from(m_units[v], e);
|
|
};
|
|
|
|
if (ne->interval.is_full()) {
|
|
while (m_units[v])
|
|
remove_entry(m_units[v]);
|
|
m_units[v] = create_entry();
|
|
return true;
|
|
}
|
|
|
|
if (!e)
|
|
m_units[v] = create_entry();
|
|
else {
|
|
entry* first = e;
|
|
do {
|
|
if (e->interval.currently_contains(ne->interval)) {
|
|
m_alloc.push_back(ne);
|
|
return false;
|
|
}
|
|
while (ne->interval.currently_contains(e->interval)) {
|
|
entry* n = e->next();
|
|
remove_entry(e);
|
|
if (!m_units[v]) {
|
|
m_units[v] = create_entry();
|
|
return true;
|
|
}
|
|
if (e == first)
|
|
first = n;
|
|
e = n;
|
|
}
|
|
SASSERT(e->interval.lo_val() != ne->interval.lo_val());
|
|
if (e->interval.lo_val() > ne->interval.lo_val()) {
|
|
if (first->prev()->interval.currently_contains(ne->interval)) {
|
|
m_alloc.push_back(ne);
|
|
return false;
|
|
}
|
|
e->insert_before(create_entry());
|
|
if (e == first)
|
|
m_units[v] = e->prev();
|
|
SASSERT(well_formed(m_units[v]));
|
|
return true;
|
|
}
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
// otherwise, append to end of list
|
|
first->insert_before(create_entry());
|
|
}
|
|
SASSERT(well_formed(m_units[v]));
|
|
return true;
|
|
}
|
|
|
|
bool viable::refine_viable(pvar v, rational const& val) {
|
|
return refine_equal_lin(v, val) && refine_disequal_lin(v, val);
|
|
}
|
|
|
|
namespace {
|
|
rational div_floor(rational const& a, rational const& b) {
|
|
return floor(a / b);
|
|
}
|
|
|
|
rational div_ceil(rational const& a, rational const& b) {
|
|
return ceil(a / b);
|
|
}
|
|
|
|
/**
|
|
* Given a*y0 mod M \in [lo;hi], try to find the largest y_max >= y0 such that for all y \in [y0;y_max] . a*y mod M \in [lo;hi].
|
|
* Result may not be optimal.
|
|
* NOTE: upper bound is inclusive.
|
|
*/
|
|
rational compute_y_max(rational const& y0, rational const& a, rational const& lo0, rational const& hi, rational const& M) {
|
|
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo0=" << lo0 << " hi=" << hi << " M=" << M << std::endl;
|
|
// SASSERT(0 <= y0 && y0 < M); // not required
|
|
SASSERT(1 <= a && a < M);
|
|
SASSERT(0 <= lo0 && lo0 < M);
|
|
SASSERT(0 <= hi && hi < M);
|
|
|
|
if (lo0 <= hi) {
|
|
SASSERT(lo0 <= mod(a*y0, M) && mod(a*y0, M) <= hi);
|
|
}
|
|
else {
|
|
SASSERT(mod(a*y0, M) <= hi || mod(a*y0, M) >= lo0);
|
|
}
|
|
|
|
// wrapping intervals are handled by replacing the lower bound lo by lo - M
|
|
rational const lo = lo0 > hi ? (lo0 - M) : lo0;
|
|
|
|
// the length of the interval is now hi - lo + 1.
|
|
// full intervals shouldn't go through this computation.
|
|
SASSERT(hi - lo + 1 < M);
|
|
|
|
auto contained = [&lo, &hi] (rational const& a_y) -> bool {
|
|
return lo <= a_y && a_y <= hi;
|
|
};
|
|
|
|
auto delta_h = [&a, &lo, &hi] (rational const& a_y) -> rational {
|
|
SASSERT(lo <= a_y && a_y <= hi);
|
|
(void)lo; // avoid warning in release mode
|
|
return div_floor(hi - a_y, a);
|
|
};
|
|
|
|
// minimal k such that lo <= a*y0 + k*M
|
|
rational const k = div_ceil(lo - a * y0, M);
|
|
rational const kM = k*M;
|
|
rational const a_y0 = a*y0 + kM;
|
|
SASSERT(contained(a_y0));
|
|
|
|
// maximal y for [lo;hi]-interval around a*y0
|
|
// rational const y0h = y0 + div_floor(hi - a_y0, a);
|
|
rational const delta0 = delta_h(a_y0);
|
|
rational const y0h = y0 + delta0;
|
|
rational const a_y0h = a_y0 + a*delta0;
|
|
SASSERT(y0 <= y0h);
|
|
SASSERT(contained(a_y0h));
|
|
|
|
// Check the first [lo;hi]-interval after a*y0
|
|
rational const y1l = y0h + 1;
|
|
rational const a_y1l = a_y0h + a - M;
|
|
if (!contained(a_y1l))
|
|
return y0h;
|
|
rational const delta1 = delta_h(a_y1l);
|
|
rational const y1h = y1l + delta1;
|
|
rational const a_y1h = a_y1l + a*delta1;
|
|
SASSERT(y1l <= y1h);
|
|
SASSERT(contained(a_y1h));
|
|
|
|
// Check the second [lo;hi]-interval after a*y0
|
|
rational const y2l = y1h + 1;
|
|
rational const a_y2l = a_y1h + a - M;
|
|
if (!contained(a_y2l))
|
|
return y1h;
|
|
SASSERT(contained(a_y2l));
|
|
|
|
// At this point, [y1l;y1h] must be a full y-interval that can be extended to the right.
|
|
// Extending the interval can only be possible if the part not covered by [lo;hi] is smaller than the coefficient a.
|
|
// The size of the gap is (lo + M) - (hi + 1).
|
|
SASSERT(lo + M - hi - 1 < a);
|
|
|
|
// The points a*[y0l;y0h] + k*M fall into the interval [lo;hi].
|
|
// After the first overflow, the points a*[y1l .. y1h] + (k - 1)*M fall into [lo;hi].
|
|
// With each overflow, these points drift by some offset alpha.
|
|
rational const step = y1h - y0h;
|
|
rational const alpha = a * step - M;
|
|
|
|
if (alpha == 0) {
|
|
// the points do not drift after overflow
|
|
// => y_max is infinite
|
|
return y0 + M;
|
|
}
|
|
|
|
rational const i =
|
|
alpha < 0
|
|
// alpha < 0:
|
|
// With each overflow to the right, the points drift to the left.
|
|
// We can continue overflowing while a * yil >= lo, where yil = y1l + i * step.
|
|
? div_floor(lo - a_y1l, alpha)
|
|
// alpha > 0:
|
|
// With each overflow to the right, the points drift to the right.
|
|
// We can continue overflowing while a * yih <= hi, where yih = y1h + i * step.
|
|
: div_floor(hi - a_y1h, alpha);
|
|
|
|
// i is the number of overflows to the right
|
|
SASSERT(i >= 0);
|
|
|
|
// a * [yil;yih] is the right-most y-interval that is completely in [lo;hi].
|
|
rational const yih = y1h + i * step;
|
|
rational const a_yih = a_y1h + i * alpha;
|
|
SASSERT_EQ(a_yih, a*yih + (k - i - 1)*M);
|
|
SASSERT(contained(a_yih));
|
|
|
|
// The next interval to the right may contain a few more values if alpha > 0
|
|
// (because only the upper end moved out of the interval)
|
|
rational const y_next = yih + 1;
|
|
rational const a_y_next = a_yih + a - M;
|
|
if (contained(a_y_next))
|
|
return y_next + delta_h(a_y_next);
|
|
else
|
|
return yih;
|
|
}
|
|
|
|
/**
|
|
* Given a*y0 mod M \in [lo;hi], try to find the smallest y_min <= y0 such that for all y \in [y_min;y0] . a*y mod M \in [lo;hi].
|
|
* Result may not be optimal.
|
|
* NOTE: upper bound is inclusive.
|
|
*/
|
|
rational compute_y_min(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M) {
|
|
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo=" << lo << " hi=" << hi << " M=" << M << std::endl;
|
|
// SASSERT(0 <= y0 && y0 < M); // not required
|
|
SASSERT(1 <= a && a < M);
|
|
SASSERT(0 <= lo && lo < M);
|
|
SASSERT(0 <= hi && hi < M);
|
|
|
|
auto const negateM = [&M] (rational const& x) -> rational {
|
|
if (x.is_zero())
|
|
return x;
|
|
else
|
|
return M - x;
|
|
};
|
|
|
|
rational y_min = -compute_y_max(-y0, a, negateM(hi), negateM(lo), M);
|
|
while (y_min > y0)
|
|
y_min -= M;
|
|
return y_min;
|
|
}
|
|
|
|
/**
|
|
* Given a*y0 mod M \in [lo;hi],
|
|
* find the largest interval [y_min;y_max] around y0 such that for all y \in [y_min;y_max] . a*y mod M \in [lo;hi].
|
|
* Result may not be optimal.
|
|
* NOTE: upper bounds are inclusive.
|
|
*/
|
|
std::pair<rational, rational> compute_y_bounds(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M) {
|
|
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo=" << lo << " hi=" << hi << " M=" << M << std::endl;
|
|
SASSERT(0 <= y0 && y0 < M);
|
|
SASSERT(1 <= a && a < M);
|
|
SASSERT(0 <= lo && lo < M);
|
|
SASSERT(0 <= hi && hi < M);
|
|
|
|
auto const is_valid = [&] (rational const& y) -> bool {
|
|
rational const a_y = mod(a * y, M);
|
|
if (lo <= hi)
|
|
return lo <= a_y && a_y <= hi;
|
|
else
|
|
return a_y <= hi || lo <= a_y;
|
|
};
|
|
|
|
unsigned const max_refinements = 100;
|
|
unsigned i = 0;
|
|
rational const y_max_max = y0 + M - 1;
|
|
rational y_max = compute_y_max(y0, a, lo, hi, M);
|
|
while (y_max < y_max_max && is_valid(y_max + 1)) {
|
|
y_max = compute_y_max(y_max + 1, a, lo, hi, M);
|
|
if (i >= 95)
|
|
verbose_stream() << "refined y_max: " << y_max << "\n";
|
|
if (++i == max_refinements)
|
|
break;
|
|
}
|
|
|
|
i = 0;
|
|
rational const y_min_min = y_max - M + 1;
|
|
rational y_min = y0;
|
|
while (y_min > y_min_min && is_valid(y_min - 1)) {
|
|
y_min = compute_y_min(y_min - 1, a, lo, hi, M);
|
|
if (i >= 95)
|
|
verbose_stream() << "refined y_min: " << y_min << "\n";
|
|
if (++i == max_refinements)
|
|
break;
|
|
}
|
|
|
|
SASSERT(y_min <= y0 && y0 <= y_max);
|
|
rational const len = y_max - y_min + 1;
|
|
if (len >= M)
|
|
// full
|
|
return { rational::zero(), M - 1 };
|
|
else
|
|
return { mod(y_min, M), mod(y_max, M) };
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Traverse all interval constraints with coefficients to check whether current value 'val' for
|
|
* 'v' is feasible. If not, extract a (maximal) interval to block 'v' from being assigned val.
|
|
*
|
|
* To investigate:
|
|
* - side conditions are stronger than for unit intervals. They constrain the lower and upper bounds to
|
|
* be precisely the assigned values. This is to ensure that lo/hi that are computed based on lo_val
|
|
* and division with coeff are valid. Is there a more relaxed scheme?
|
|
*/
|
|
bool viable::refine_equal_lin(pvar v, rational const& val) {
|
|
// LOG_H2("refine-equal-lin with v" << v << ", val = " << val);
|
|
entry const* e = m_equal_lin[v];
|
|
if (!e)
|
|
return true;
|
|
entry const* first = e;
|
|
auto& m = s.var2pdd(v);
|
|
unsigned const N = m.power_of_2();
|
|
rational const& max_value = m.max_value();
|
|
rational const& mod_value = m.two_to_N();
|
|
|
|
// Rotate the 'first' entry, to prevent getting stuck in a refinement loop
|
|
// with an early entry when a later entry could give a better interval.
|
|
m_equal_lin[v] = m_equal_lin[v]->next();
|
|
|
|
do {
|
|
rational coeff_val = mod(e->coeff * val, mod_value);
|
|
if (e->interval.currently_contains(coeff_val)) {
|
|
LOG("refine-equal-lin for v" << v << " in src: " << lit_pp(s, e->src));
|
|
LOG("forbidden interval v" << v << " " << num_pp(s, v, val) << " " << num_pp(s, v, e->coeff, true) << " * " << e->interval);
|
|
|
|
if (mod(e->interval.hi_val() + 1, mod_value) == e->interval.lo_val()) {
|
|
// We have an equation: a * v == b
|
|
rational const a = e->coeff;
|
|
rational const b = e->interval.hi_val();
|
|
LOG("refine-equal-lin: equation detected: " << dd::val_pp(m, a, true) << " * v" << v << " == " << dd::val_pp(m, b, false));
|
|
unsigned const parity_a = get_parity(a, N);
|
|
unsigned const parity_b = get_parity(b, N);
|
|
if (parity_a > parity_b) {
|
|
// No solution
|
|
LOG("refined: no solution due to parity");
|
|
entry* ne = alloc_entry();
|
|
ne->refined = e;
|
|
ne->src = e->src;
|
|
ne->side_cond = e->side_cond;
|
|
ne->coeff = 1;
|
|
ne->interval = eval_interval::full();
|
|
intersect(v, ne);
|
|
return false;
|
|
}
|
|
if (parity_a == 0) {
|
|
// "fast path" for odd a
|
|
rational a_inv;
|
|
VERIFY(a.mult_inverse(N, a_inv));
|
|
rational const hi = mod(a_inv * b, mod_value);
|
|
rational const lo = mod(hi + 1, mod_value);
|
|
LOG("refined to [" << num_pp(s, v, lo) << ", " << num_pp(s, v, hi) << "[");
|
|
SASSERT_EQ(mod(a * hi, mod_value), b); // hi is the solution
|
|
entry* ne = alloc_entry();
|
|
ne->refined = e;
|
|
ne->src = e->src;
|
|
ne->side_cond = e->side_cond;
|
|
ne->coeff = 1;
|
|
ne->interval = eval_interval::proper(m.mk_val(lo), lo, m.mk_val(hi), hi);
|
|
SASSERT(ne->interval.currently_contains(val));
|
|
intersect(v, ne);
|
|
return false;
|
|
}
|
|
// 2^k * v == a_inv * b
|
|
// 2^k solutions because only the lower N-k bits of v are fixed.
|
|
//
|
|
// Smallest solution is v0 == a_inv * (b >> k)
|
|
// Solutions are of the form v_i = v0 + 2^(N-k) * i for i in { 0, 1, ..., 2^k - 1 }.
|
|
// Forbidden intervals: [v_i + 1; v_{i+1}[ == [ v_i + 1; v_i + 2^(N-k) [
|
|
// We need the interval that covers val:
|
|
// v_i + 1 <= val < v_i + 2^(N-k)
|
|
//
|
|
// TODO: create one interval for v[N-k:] instead of 2^k intervals for v.
|
|
unsigned const k = parity_a;
|
|
rational const a_inv = a.pseudo_inverse(N);
|
|
unsigned const N_minus_k = N - k;
|
|
rational const two_to_N_minus_k = rational::power_of_two(N_minus_k);
|
|
rational const v0 = mod(a_inv * machine_div2k(b, k), two_to_N_minus_k);
|
|
SASSERT(mod(val, two_to_N_minus_k) != v0); // val is not a solution
|
|
rational const vi = v0 + clear_lower_bits(mod(val - v0, mod_value), N_minus_k);
|
|
rational const lo = mod(vi + 1, mod_value);
|
|
rational const hi = mod(vi + two_to_N_minus_k, mod_value);
|
|
LOG("refined to [" << num_pp(s, v, lo) << ", " << num_pp(s, v, hi) << "[");
|
|
SASSERT_EQ(mod(a * (lo - 1), mod_value), b); // lo-1 is a solution
|
|
SASSERT_EQ(mod(a * hi, mod_value), b); // hi is a solution
|
|
entry* ne = alloc_entry();
|
|
ne->refined = e;
|
|
ne->src = e->src;
|
|
ne->side_cond = e->side_cond;
|
|
ne->coeff = 1;
|
|
ne->interval = eval_interval::proper(m.mk_val(lo), lo, m.mk_val(hi), hi);
|
|
SASSERT(ne->interval.currently_contains(val));
|
|
intersect(v, ne);
|
|
return false;
|
|
}
|
|
|
|
// TODO: special handling for the even factors of e->coeff = 2^k * a', a' odd
|
|
// (create one interval for v[N-k:] instead of 2^k intervals for v)
|
|
|
|
// compute_y_bounds calculates with inclusive upper bound, so we need to adjust argument and result accordingly.
|
|
rational const hi_val_incl = e->interval.hi_val().is_zero() ? max_value : (e->interval.hi_val() - 1);
|
|
auto [lo, hi] = compute_y_bounds(val, e->coeff, e->interval.lo_val(), hi_val_incl, mod_value);
|
|
hi += 1;
|
|
LOG("refined to [" << num_pp(s, v, lo) << ", " << num_pp(s, v, hi) << "[");
|
|
// verbose_stream() << "lo=" << lo << " val=" << val << " hi=" << hi << "\n";
|
|
if (lo <= hi) {
|
|
SASSERT(0 <= lo && lo <= val && val < hi && hi <= mod_value);
|
|
} else {
|
|
SASSERT(0 < hi && hi < lo && lo < mod_value && (val < hi || lo <= val));
|
|
}
|
|
bool full = (lo == 0 && hi == mod_value);
|
|
if (hi == mod_value)
|
|
hi = 0;
|
|
entry* ne = alloc_entry();
|
|
ne->refined = e;
|
|
ne->src = e->src;
|
|
ne->side_cond = e->side_cond;
|
|
ne->coeff = 1;
|
|
if (full)
|
|
ne->interval = eval_interval::full();
|
|
else
|
|
ne->interval = eval_interval::proper(m.mk_val(lo), lo, m.mk_val(hi), hi);
|
|
SASSERT(ne->interval.currently_contains(val));
|
|
intersect(v, ne);
|
|
return false;
|
|
}
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
return true;
|
|
}
|
|
|
|
bool viable::refine_disequal_lin(pvar v, rational const& val) {
|
|
// LOG_H2("refine-disequal-lin with v" << v << ", val = " << val);
|
|
entry const* e = m_diseq_lin[v];
|
|
if (!e)
|
|
return true;
|
|
entry const* first = e;
|
|
rational const& max_value = s.var2pdd(v).max_value();
|
|
rational const mod_value = max_value + 1;
|
|
|
|
// Rotate the 'first' entry, to prevent getting stuck in a refinement loop
|
|
// with an early entry when a later entry could give a better interval.
|
|
m_diseq_lin[v] = m_diseq_lin[v]->next();
|
|
|
|
do {
|
|
LOG("refine-disequal-lin for src: " << e->src);
|
|
// We compute an interval if the concrete value 'val' violates the constraint:
|
|
// p*val + q > r*val + s if e->src.is_positive()
|
|
// p*val + q >= r*val + s if e->src.is_negative()
|
|
// Note that e->interval is meaningless in this case,
|
|
// we just use it to transport the values p,q,r,s
|
|
rational const& p = e->interval.lo_val();
|
|
rational const& q_ = e->interval.lo().val();
|
|
rational const& r = e->interval.hi_val();
|
|
rational const& s_ = e->interval.hi().val();
|
|
SASSERT(p != r && p != 0 && r != 0);
|
|
|
|
rational const a = mod(p * val + q_, mod_value);
|
|
rational const b = mod(r * val + s_, mod_value);
|
|
rational const np = mod_value - p;
|
|
rational const nr = mod_value - r;
|
|
int const corr = e->src.is_negative() ? 1 : 0;
|
|
|
|
auto delta_l = [&](rational const& val) {
|
|
rational num = a - b + corr;
|
|
rational l1 = floor(b / r);
|
|
rational l2 = val;
|
|
if (p > r)
|
|
l2 = ceil(num / (p - r)) - 1;
|
|
rational l3 = ceil(num / (p + nr)) - 1;
|
|
rational l4 = ceil((mod_value - a) / np) - 1;
|
|
rational d1 = l3;
|
|
rational d2 = std::min(l1, l2);
|
|
rational d3 = std::min(l1, l4);
|
|
rational d4 = std::min(l2, l4);
|
|
rational dmax = std::max(std::max(d1, d2), std::max(d3, d4));
|
|
return std::min(val, dmax);
|
|
};
|
|
auto delta_u = [&](rational const& val) {
|
|
rational num = a - b + corr;
|
|
rational h1 = floor(b / nr);
|
|
rational h2 = max_value - val;
|
|
if (r > p)
|
|
h2 = ceil(num / (r - p)) - 1;
|
|
rational h3 = ceil(num / (np + r)) - 1;
|
|
rational h4 = ceil((mod_value - a) / p) - 1;
|
|
rational d1 = h3;
|
|
rational d2 = std::min(h1, h2);
|
|
rational d3 = std::min(h1, h4);
|
|
rational d4 = std::min(h2, h4);
|
|
rational dmax = std::max(std::max(d1, d2), std::max(d3, d4));
|
|
return std::min(max_value - val, dmax);
|
|
};
|
|
|
|
if (a > b || (e->src.is_negative() && a == b)) {
|
|
rational lo = val - delta_l(val);
|
|
rational hi = val + delta_u(val) + 1;
|
|
|
|
LOG("refine-disequal-lin: " << " [" << lo << ", " << hi << "[");
|
|
|
|
SASSERT(0 <= lo && lo <= val);
|
|
SASSERT(val <= hi && hi <= mod_value);
|
|
if (hi == mod_value) hi = 0;
|
|
pdd lop = s.var2pdd(v).mk_val(lo);
|
|
pdd hip = s.var2pdd(v).mk_val(hi);
|
|
entry* ne = alloc_entry();
|
|
ne->refined = e;
|
|
ne->src = e->src;
|
|
ne->side_cond = e->side_cond;
|
|
ne->coeff = 1;
|
|
ne->interval = eval_interval::proper(lop, lo, hip, hi);
|
|
intersect(v, ne);
|
|
return false;
|
|
}
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
return true;
|
|
}
|
|
|
|
bool viable::has_viable(pvar v) {
|
|
refined:
|
|
auto* e = m_units[v];
|
|
|
|
#define CHECK_RETURN(val) { if (refine_viable(v, val)) return true; else goto refined; }
|
|
|
|
if (!e)
|
|
CHECK_RETURN(rational::zero());
|
|
entry* first = e;
|
|
entry* last = e->prev();
|
|
|
|
if (e->interval.is_full())
|
|
return false;
|
|
// quick check: last interval doesn't wrap around, so hi_val
|
|
// has not been covered
|
|
if (last->interval.lo_val() < last->interval.hi_val())
|
|
CHECK_RETURN(last->interval.hi_val());
|
|
|
|
do {
|
|
if (e->interval.is_full())
|
|
return false;
|
|
entry* n = e->next();
|
|
if (n == e)
|
|
CHECK_RETURN(e->interval.hi_val());
|
|
if (!n->interval.currently_contains(e->interval.hi_val()))
|
|
CHECK_RETURN(e->interval.hi_val());
|
|
if (n == first) {
|
|
if (e->interval.lo_val() > e->interval.hi_val())
|
|
return false;
|
|
CHECK_RETURN(e->interval.hi_val());
|
|
}
|
|
e = n;
|
|
}
|
|
while (e != first);
|
|
return false;
|
|
#undef CHECK_RETURN
|
|
}
|
|
|
|
bool viable::is_viable(pvar v, rational const& val) {
|
|
auto* e = m_units[v];
|
|
if (!e)
|
|
return refine_viable(v, val);
|
|
entry* first = e;
|
|
entry* last = first->prev();
|
|
if (last->interval.currently_contains(val))
|
|
return false;
|
|
for (; e != last; e = e->next()) {
|
|
if (e->interval.currently_contains(val))
|
|
return false;
|
|
if (val < e->interval.lo_val())
|
|
return refine_viable(v, val);
|
|
}
|
|
return refine_viable(v, val);
|
|
}
|
|
|
|
find_t viable::find_viable(pvar v, rational& lo) {
|
|
rational hi;
|
|
switch (find_viable(v, lo, hi)) {
|
|
case l_true:
|
|
return (lo == hi) ? find_t::singleton : find_t::multiple;
|
|
case l_false:
|
|
return find_t::empty;
|
|
default:
|
|
return find_t::resource_out;
|
|
}
|
|
}
|
|
|
|
lbool viable::find_viable(pvar v, rational& lo, rational& hi) {
|
|
std::pair<rational&, rational&> args{lo, hi};
|
|
return query<query_t::find_viable>(v, args);
|
|
}
|
|
|
|
lbool viable::min_viable(pvar v, rational& lo) {
|
|
return query<query_t::min_viable>(v, lo);
|
|
}
|
|
|
|
lbool viable::max_viable(pvar v, rational& hi) {
|
|
return query<query_t::max_viable>(v, hi);
|
|
}
|
|
|
|
bool viable::has_upper_bound(pvar v, rational& out_hi, vector<signed_constraint>& out_c) {
|
|
entry const* first = m_units[v];
|
|
entry const* e = first;
|
|
bool found = false;
|
|
out_c.reset();
|
|
if (!e)
|
|
return false;
|
|
do {
|
|
found = false;
|
|
do {
|
|
if (!e->refined) {
|
|
auto const& lo = e->interval.lo();
|
|
auto const& hi = e->interval.hi();
|
|
if (lo.is_val() && hi.is_val()) {
|
|
if (out_c.empty() && lo.val() > hi.val()) {
|
|
out_c.push_back(e->src);
|
|
out_hi = lo.val() - 1;
|
|
found = true;
|
|
}
|
|
else if (!out_c.empty() && lo.val() <= out_hi && out_hi < hi.val()) {
|
|
out_c.push_back(e->src);
|
|
out_hi = lo.val() - 1;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
}
|
|
while (found);
|
|
return !out_c.empty();
|
|
}
|
|
|
|
bool viable::has_lower_bound(pvar v, rational& out_lo, vector<signed_constraint>& out_c) {
|
|
entry const* first = m_units[v];
|
|
entry const* e = first;
|
|
bool found = false;
|
|
out_c.reset();
|
|
if (!e)
|
|
return false;
|
|
do {
|
|
found = false;
|
|
do {
|
|
if (!e->refined) {
|
|
auto const& lo = e->interval.lo();
|
|
auto const& hi = e->interval.hi();
|
|
if (lo.is_val() && hi.is_val()) {
|
|
if (out_c.empty() && hi.val() != 0 && (lo.val() == 0 || lo.val() > hi.val())) {
|
|
out_c.push_back(e->src);
|
|
out_lo = hi.val();
|
|
found = true;
|
|
}
|
|
else if (!out_c.empty() && lo.val() <= out_lo && out_lo < hi.val()) {
|
|
out_c.push_back(e->src);
|
|
out_lo = hi.val();
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
}
|
|
while (found);
|
|
return !out_c.empty();
|
|
}
|
|
|
|
bool viable::has_max_forbidden(pvar v, signed_constraint const& c, rational& out_lo, rational& out_hi, vector<signed_constraint>& out_c) {
|
|
// verbose_stream() << "has-max-forbidden with c = " << lit_pp(s, c) << "\n";
|
|
// display(verbose_stream(), v, "\n");
|
|
|
|
out_c.reset();
|
|
entry const* first = m_units[v];
|
|
entry const* e = first;
|
|
if (!e)
|
|
return false;
|
|
|
|
do {
|
|
if (e->src == c)
|
|
break;
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
|
|
if (e->src != c)
|
|
return false;
|
|
entry const* e0 = e;
|
|
// display_one(verbose_stream() << "selected e0 = ", v, e0) << "\n";
|
|
|
|
do {
|
|
entry const* n = e->next();
|
|
while (n != e0) {
|
|
entry const* n1 = n->next();
|
|
if (n1 == e)
|
|
break;
|
|
if (!n1->interval.currently_contains(e->interval.hi_val()))
|
|
break;
|
|
n = n1;
|
|
}
|
|
// display_one(verbose_stream() << "e is ", v, e) << "\n";
|
|
if (e == n) {
|
|
SASSERT_EQ(e, e0);
|
|
return false; // TODO: return true if e is the full interval?
|
|
}
|
|
if (!n->interval.currently_contains(e->interval.hi_val()))
|
|
return false; // gap
|
|
if (e == e0) {
|
|
out_lo = n->interval.lo_val();
|
|
if (!n->interval.lo().is_val()) {
|
|
// verbose_stream() << "A: " << lit_pp(s, s.eq(n->interval.lo(), out_lo)) << "\n";
|
|
out_c.push_back(s.eq(n->interval.lo(), out_lo));
|
|
}
|
|
}
|
|
else if (n == e0) {
|
|
out_hi = e->interval.hi_val();
|
|
if (!e->interval.hi().is_val()) {
|
|
// verbose_stream() << "B: " << lit_pp(s, s.eq(e->interval.hi(), out_hi)) << "\n";
|
|
out_c.push_back(s.eq(e->interval.hi(), out_hi));
|
|
}
|
|
}
|
|
else if (!e->interval.is_full()) {
|
|
signed_constraint c = s.m_constraints.elem(e->interval.hi(), n->interval.symbolic());
|
|
out_c.push_back(c);
|
|
}
|
|
if (e != e0) {
|
|
for (auto sc : e->side_cond) {
|
|
// verbose_stream() << "D: " << lit_pp(s, sc) << "\n";
|
|
out_c.push_back(sc);
|
|
}
|
|
// verbose_stream() << "E: " << lit_pp(s, e->src) << "\n";
|
|
out_c.push_back(e->src);
|
|
}
|
|
e = n;
|
|
}
|
|
while (e != e0);
|
|
|
|
IF_VERBOSE(2,
|
|
verbose_stream() << "has-max-forbidden " << e->src << "\n";
|
|
verbose_stream() << "v" << v << " " << out_lo << " " << out_hi << " " << out_c << "\n";
|
|
display(verbose_stream(), v) << "\n");
|
|
return true;
|
|
}
|
|
|
|
|
|
template <query_t mode>
|
|
lbool viable::query(pvar v, typename query_result<mode>::result_t& result) {
|
|
// max number of interval refinements before falling back to the univariate solver
|
|
unsigned const refinement_budget = 1000;
|
|
unsigned refinements = refinement_budget;
|
|
|
|
while (refinements--) {
|
|
lbool res = l_undef;
|
|
|
|
if constexpr (mode == query_t::find_viable)
|
|
res = query_find(v, result.first, result.second);
|
|
else if constexpr (mode == query_t::min_viable)
|
|
res = query_min(v, result);
|
|
else if constexpr (mode == query_t::max_viable)
|
|
res = query_max(v, result);
|
|
else if constexpr (mode == query_t::has_viable) {
|
|
NOT_IMPLEMENTED_YET();
|
|
}
|
|
else {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (res != l_undef)
|
|
return res;
|
|
}
|
|
|
|
LOG("Refinement budget exhausted! Fall back to univariate solver.");
|
|
return query_fallback<mode>(v, result);
|
|
}
|
|
|
|
lbool viable::query_find(pvar v, rational& lo, rational& hi) {
|
|
auto const& max_value = s.var2pdd(v).max_value();
|
|
lbool const refined = l_undef;
|
|
|
|
// After a refinement, any of the existing entries may have been replaced
|
|
// (if it is subsumed by the new entry created during refinement).
|
|
// For this reason, we start chasing the intervals from the start again.
|
|
lo = 0;
|
|
hi = max_value;
|
|
|
|
auto* e = m_units[v];
|
|
if (!e && !refine_viable(v, lo))
|
|
return refined;
|
|
if (!e && !refine_viable(v, hi))
|
|
return refined;
|
|
if (!e)
|
|
return l_true;
|
|
if (e->interval.is_full()) {
|
|
s.set_conflict_by_viable_interval(v);
|
|
return l_false;
|
|
}
|
|
|
|
entry* first = e;
|
|
entry* last = first->prev();
|
|
|
|
// quick check: last interval does not wrap around
|
|
// and has space for 2 unassigned values.
|
|
if (last->interval.lo_val() < last->interval.hi_val() &&
|
|
last->interval.hi_val() < max_value) {
|
|
lo = last->interval.hi_val();
|
|
if (!refine_viable(v, lo))
|
|
return refined;
|
|
if (!refine_viable(v, max_value))
|
|
return refined;
|
|
return l_true;
|
|
}
|
|
|
|
// find lower bound
|
|
if (last->interval.currently_contains(lo))
|
|
lo = last->interval.hi_val();
|
|
do {
|
|
if (!e->interval.currently_contains(lo))
|
|
break;
|
|
lo = e->interval.hi_val();
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
|
|
if (e->interval.currently_contains(lo)) {
|
|
s.set_conflict_by_viable_interval(v);
|
|
return l_false;
|
|
}
|
|
|
|
// find upper bound
|
|
hi = max_value;
|
|
e = last;
|
|
do {
|
|
if (!e->interval.currently_contains(hi))
|
|
break;
|
|
hi = e->interval.lo_val() - 1;
|
|
e = e->prev();
|
|
}
|
|
while (e != last);
|
|
|
|
if (!refine_viable(v, lo))
|
|
return refined;
|
|
if (!refine_viable(v, hi))
|
|
return refined;
|
|
return l_true;
|
|
}
|
|
|
|
lbool viable::query_min(pvar v, rational& lo) {
|
|
// TODO: should be able to deal with UNSAT case; since also min_viable has to deal with it due to fallback solver
|
|
lo = 0;
|
|
entry* e = m_units[v];
|
|
if (!e && !refine_viable(v, lo))
|
|
return l_undef;
|
|
if (!e)
|
|
return l_true;
|
|
entry* first = e;
|
|
entry* last = first->prev();
|
|
if (last->interval.currently_contains(lo))
|
|
lo = last->interval.hi_val();
|
|
do {
|
|
if (!e->interval.currently_contains(lo))
|
|
break;
|
|
lo = e->interval.hi_val();
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
if (!refine_viable(v, lo))
|
|
return l_undef;
|
|
SASSERT(is_viable(v, lo));
|
|
return l_true;
|
|
}
|
|
|
|
lbool viable::query_max(pvar v, rational& hi) {
|
|
// TODO: should be able to deal with UNSAT case; since also max_viable has to deal with it due to fallback solver
|
|
hi = s.var2pdd(v).max_value();
|
|
auto* e = m_units[v];
|
|
if (!e && !refine_viable(v, hi))
|
|
return l_undef;
|
|
if (!e)
|
|
return l_true;
|
|
entry* last = e->prev();
|
|
e = last;
|
|
do {
|
|
if (!e->interval.currently_contains(hi))
|
|
break;
|
|
hi = e->interval.lo_val() - 1;
|
|
e = e->prev();
|
|
}
|
|
while (e != last);
|
|
if (!refine_viable(v, hi))
|
|
return l_undef;
|
|
SASSERT(is_viable(v, hi));
|
|
return l_true;
|
|
}
|
|
|
|
template <query_t mode>
|
|
lbool viable::query_fallback(pvar v, typename query_result<mode>::result_t& result) {
|
|
unsigned const bit_width = s.size(v);
|
|
univariate_solver* us = s.m_viable_fallback.usolver(bit_width);
|
|
sat::literal_set added;
|
|
|
|
// First step: only query the looping constraints and see if they alone are already UNSAT.
|
|
// The constraints which caused the refinement loop will be reached from m_units.
|
|
LOG_H3("Checking looping univariate constraints for v" << v << "...");
|
|
LOG("Assignment: " << assignments_pp(s));
|
|
entry const* first = m_units[v];
|
|
entry const* e = first;
|
|
do {
|
|
entry const* origin = e;
|
|
while (origin->refined)
|
|
origin = origin->refined;
|
|
signed_constraint const c = origin->src;
|
|
sat::literal const lit = c.blit();
|
|
if (!added.contains(lit)) {
|
|
added.insert(lit);
|
|
LOG("Adding " << lit_pp(s, lit));
|
|
IF_VERBOSE(10, verbose_stream() << ";; " << lit_pp(s, lit) << "\n");
|
|
c.add_to_univariate_solver(v, s, *us, lit.to_uint());
|
|
}
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
|
|
switch (us->check()) {
|
|
case l_false:
|
|
s.set_conflict_by_viable_fallback(v, *us);
|
|
return l_false;
|
|
case l_true:
|
|
// At this point we don't know much because we did not add all relevant constraints
|
|
break;
|
|
default:
|
|
// resource limit
|
|
return l_undef;
|
|
}
|
|
|
|
// Second step: looping constraints aren't UNSAT, so add the remaining relevant constraints
|
|
LOG_H3("Checking all univariate constraints for v" << v << "...");
|
|
auto const& cs = s.m_viable_fallback.m_constraints[v];
|
|
for (unsigned i = cs.size(); i-- > 0; ) {
|
|
sat::literal const lit = cs[i].blit();
|
|
if (added.contains(lit))
|
|
continue;
|
|
LOG("Adding " << lit_pp(s, lit));
|
|
IF_VERBOSE(10, verbose_stream() << ";; " << lit_pp(s, lit) << "\n");
|
|
added.insert(lit);
|
|
cs[i].add_to_univariate_solver(v, s, *us, lit.to_uint());
|
|
}
|
|
|
|
switch (us->check()) {
|
|
case l_false:
|
|
s.set_conflict_by_viable_fallback(v, *us);
|
|
return l_false;
|
|
case l_true:
|
|
// pass solver to mode-specific query
|
|
break;
|
|
default:
|
|
// resource limit
|
|
return l_undef;
|
|
}
|
|
|
|
if constexpr (mode == query_t::find_viable)
|
|
return query_find_fallback(v, *us, result.first, result.second);
|
|
|
|
if constexpr (mode == query_t::min_viable)
|
|
return query_min_fallback(v, *us, result);
|
|
|
|
if constexpr (mode == query_t::max_viable)
|
|
return query_max_fallback(v, *us, result);
|
|
|
|
if constexpr (mode == query_t::has_viable) {
|
|
NOT_IMPLEMENTED_YET();
|
|
return l_undef;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return l_undef;
|
|
}
|
|
|
|
lbool viable::query_find_fallback(pvar v, univariate_solver& us, rational& lo, rational& hi) {
|
|
return us.find_two(lo, hi) ? l_true : l_undef;
|
|
}
|
|
|
|
lbool viable::query_min_fallback(pvar v, univariate_solver& us, rational& lo) {
|
|
return us.find_min(lo) ? l_true : l_undef;
|
|
}
|
|
|
|
lbool viable::query_max_fallback(pvar v, univariate_solver& us, rational& hi) {
|
|
return us.find_max(hi) ? l_true : l_undef;
|
|
}
|
|
|
|
bool viable::resolve_fallback(pvar v, univariate_solver& us, conflict& core) {
|
|
// The conflict is the unsat core of the univariate solver,
|
|
// and the current assignment (under which the constraints are univariate in v)
|
|
// TODO:
|
|
// - currently we add variables directly, which is sound:
|
|
// e.g.: v^2 + w^2 == 0; w := 1
|
|
// - but we could use side constraints on the coefficients instead (coefficients when viewed as polynomial over v):
|
|
// e.g.: v^2 + w^2 == 0; w^2 == 1
|
|
for (unsigned dep : us.unsat_core()) {
|
|
sat::literal lit = sat::to_literal(dep);
|
|
signed_constraint c = s.lit2cnstr(lit);
|
|
core.insert(c);
|
|
core.insert_vars(c);
|
|
}
|
|
SASSERT(!core.vars().contains(v));
|
|
core.add_lemma("viable unsat core", core.build_lemma());
|
|
verbose_stream() << "unsat core " << core << "\n";
|
|
return true;
|
|
}
|
|
|
|
bool viable::resolve_interval(pvar v, conflict& core) {
|
|
DEBUG_CODE( log(v); );
|
|
if (has_viable(v))
|
|
return false;
|
|
entry const* e = m_units[v];
|
|
// TODO: in the forbidden interval paper, they start with the longest interval. We should also try that at some point.
|
|
entry const* first = e;
|
|
SASSERT(e);
|
|
// If there is a full interval, all others would have been removed
|
|
SASSERT(!e->interval.is_full() || e->next() == e);
|
|
SASSERT(e->interval.is_full() || all_of(*e, [](entry const& f) { return !f.interval.is_full(); }));
|
|
clause_builder lemma(s);
|
|
do {
|
|
// Build constraint: upper bound of each interval is not contained in the next interval,
|
|
// using the equivalence: t \in [l;h[ <=> t-l < h-l
|
|
entry const* n = e->next();
|
|
|
|
// Choose the next interval which furthest extends the covered region.
|
|
// Example:
|
|
// covered: [-------]
|
|
// e: [-------] <--- not required for the lemma because all points are also covered by other intervals
|
|
// n: [-------]
|
|
//
|
|
// Note that intervals are sorted by their starting points,
|
|
// so the intervals to be considered (i.e., those that
|
|
// contain the current endpoint), form a prefix of the list.
|
|
//
|
|
// Furthermore, because we remove intervals that are subsets
|
|
// of other intervals, also the endpoints must be increasing,
|
|
// so the last interval of this prefix is the best choice.
|
|
//
|
|
// current: [------[
|
|
// next: [---[ <--- impossible, would have been removed.
|
|
//
|
|
// current: [------[
|
|
// next: [-------[ <--- thus, the next interval is always the better choice.
|
|
//
|
|
// The interval 'first' is always part of the lemma. If we reach first again here, we have covered the complete domain.
|
|
while (n != first) {
|
|
entry const* n1 = n->next();
|
|
// Check if n1 is eligible; if yes, then n1 is better than n.
|
|
//
|
|
// Case 1, n1 overlaps e (unless n1 == e):
|
|
// e: [------[
|
|
// n1: [----[
|
|
// Case 2, n1 connects to e:
|
|
// e: [------[
|
|
// n1: [----[
|
|
if (n1 == e)
|
|
break;
|
|
if (!n1->interval.currently_contains(e->interval.hi_val()))
|
|
break;
|
|
n = n1;
|
|
}
|
|
|
|
// verbose_stream() << e->interval << " " << e->side_cond << " " << e->src << ";\n";
|
|
|
|
if (!e->interval.is_full()) {
|
|
signed_constraint c = s.m_constraints.elem(e->interval.hi(), n->interval.symbolic());
|
|
lemma.insert_try_eval(~c);
|
|
}
|
|
for (auto sc : e->side_cond)
|
|
lemma.insert_eval(~sc);
|
|
lemma.insert(~e->src);
|
|
core.insert(e->src);
|
|
core.insert_vars(e->src);
|
|
e = n;
|
|
}
|
|
while (e != first);
|
|
|
|
// Doesn't hold anymore: we may get new constraints with unassigned variables, see test_polysat::test_bench23_fi_lemma.
|
|
// SASSERT(all_of(lemma, [this](sat::literal lit) { return s.m_bvars.value(lit) == l_false || s.lit2cnstr(lit).is_currently_false(s); }));
|
|
|
|
// NSB review: bench23 exposes a scenario where s.m_bvars.value(lit) == l_true. So the viable lemma is mute, but the literal in the premise
|
|
// is a conflict.
|
|
// SASSERT(all_of(lemma, [this](sat::literal lit) { return s.m_bvars.value(lit) != l_true; }));
|
|
core.add_lemma("viable", lemma.build());
|
|
core.logger().log(inf_fi(*this, v));
|
|
return true;
|
|
}
|
|
|
|
void viable::log(pvar v) {
|
|
if (!well_formed(m_units[v]))
|
|
LOG("v" << v << " not well formed");
|
|
auto* e = m_units[v];
|
|
if (!e)
|
|
return;
|
|
entry* first = e;
|
|
do {
|
|
LOG("v" << v << ": " << e->interval << " " << e->side_cond << " " << e->src);
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
}
|
|
|
|
void viable::log() {
|
|
for (pvar v = 0; v < m_units.size(); ++v)
|
|
log(v);
|
|
}
|
|
|
|
std::ostream& viable::display_one(std::ostream& out, pvar v, entry const* e) const {
|
|
auto& m = s.var2pdd(v);
|
|
if (e->coeff == -1) {
|
|
// p*val + q > r*val + s if e->src.is_positive()
|
|
// p*val + q >= r*val + s if e->src.is_negative()
|
|
// Note that e->interval is meaningless in this case,
|
|
// we just use it to transport the values p,q,r,s
|
|
rational const& p = e->interval.lo_val();
|
|
rational const& q_ = e->interval.lo().val();
|
|
rational const& r = e->interval.hi_val();
|
|
rational const& s_ = e->interval.hi().val();
|
|
out << "[ ";
|
|
out << val_pp(m, p, true) << "*v" << v << " + " << val_pp(m, q_);
|
|
out << (e->src.is_positive() ? " > " : " >= ");
|
|
out << val_pp(m, r, true) << "*v" << v << " + " << val_pp(m, s_);
|
|
out << " ] ";
|
|
}
|
|
else if (e->coeff != 1)
|
|
out << e->coeff << " * v" << v << " " << e->interval << " ";
|
|
else
|
|
out << e->interval << " ";
|
|
out << e->side_cond << " " << e->src << "; ";
|
|
return out;
|
|
}
|
|
|
|
std::ostream& viable::display_all(std::ostream& out, pvar v, entry const* e, char const* delimiter) const {
|
|
if (!e)
|
|
return out;
|
|
entry const* first = e;
|
|
do {
|
|
display_one(out, v, e) << delimiter;
|
|
e = e->next();
|
|
}
|
|
while (e != first);
|
|
return out;
|
|
}
|
|
|
|
std::ostream& viable::display(std::ostream& out, pvar v, char const* delimiter) const {
|
|
display_all(out, v, m_units[v], delimiter);
|
|
display_all(out, v, m_equal_lin[v], delimiter);
|
|
display_all(out, v, m_diseq_lin[v], delimiter);
|
|
return out;
|
|
}
|
|
|
|
std::ostream& viable::display(std::ostream& out, char const* delimiter) const {
|
|
for (pvar v = 0; v < m_units.size(); ++v)
|
|
display(out << "v" << v << ": ", v, delimiter) << "\n";
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
* Lower bounds are strictly ascending.
|
|
* intervals don't contain each-other (since lower bounds are ascending,
|
|
* it suffices to check containment in one direction).
|
|
*/
|
|
bool viable::well_formed(entry* e) {
|
|
if (!e)
|
|
return true;
|
|
entry* first = e;
|
|
while (true) {
|
|
if (e->interval.is_full())
|
|
return e->next() == e;
|
|
if (e->interval.is_currently_empty())
|
|
return false;
|
|
|
|
auto* n = e->next();
|
|
if (n != e && e->interval.currently_contains(n->interval))
|
|
return false;
|
|
|
|
if (n == first)
|
|
break;
|
|
if (e->interval.lo_val() >= n->interval.lo_val())
|
|
return false;
|
|
e = n;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//************************************************************************
|
|
// viable_fallback
|
|
//************************************************************************
|
|
|
|
viable_fallback::viable_fallback(solver& s):
|
|
s(s) {
|
|
m_usolver_factory = mk_univariate_bitblast_factory();
|
|
}
|
|
|
|
void viable_fallback::push_var(unsigned bit_width) {
|
|
m_constraints.push_back({});
|
|
}
|
|
|
|
void viable_fallback::pop_var() {
|
|
m_constraints.pop_back();
|
|
}
|
|
|
|
void viable_fallback::push_constraint(pvar v, signed_constraint const& c) {
|
|
// v is the only unassigned variable in c.
|
|
SASSERT(c->vars().size() == 1 || !s.is_assigned(v));
|
|
DEBUG_CODE(for (pvar w : c->vars()) { if (v != w) SASSERT(s.is_assigned(w)); });
|
|
m_constraints[v].push_back(c);
|
|
m_constraints_trail.push_back(v);
|
|
s.m_trail.push_back(trail_instr_t::viable_constraint_i);
|
|
}
|
|
|
|
void viable_fallback::pop_constraint() {
|
|
pvar v = m_constraints_trail.back();
|
|
m_constraints_trail.pop_back();
|
|
m_constraints[v].pop_back();
|
|
}
|
|
|
|
signed_constraint viable_fallback::find_violated_constraint(assignment const& a, pvar v) {
|
|
for (signed_constraint const c : m_constraints[v]) {
|
|
// for this check, all variables need to be assigned
|
|
DEBUG_CODE(for (pvar w : c->vars()) { SASSERT(a.contains(w)); });
|
|
if (c.is_currently_false(a)) {
|
|
LOG(assignment_pp(s, v, a.value(v)) << " violates constraint " << lit_pp(s, c));
|
|
return c;
|
|
}
|
|
SASSERT(c.is_currently_true(a));
|
|
}
|
|
return {};
|
|
}
|
|
|
|
univariate_solver* viable_fallback::usolver(unsigned bit_width) {
|
|
univariate_solver* us;
|
|
|
|
auto it = m_usolver.find_iterator(bit_width);
|
|
if (it != m_usolver.end()) {
|
|
us = it->m_value.get();
|
|
us->pop(1);
|
|
}
|
|
else {
|
|
auto& mk_solver = *m_usolver_factory;
|
|
m_usolver.insert(bit_width, mk_solver(bit_width));
|
|
us = m_usolver[bit_width].get();
|
|
}
|
|
SASSERT_EQ(us->scope_level(), 0);
|
|
|
|
// push once on the empty solver so we can reset it before the next use
|
|
us->push();
|
|
|
|
return us;
|
|
}
|
|
|
|
find_t viable_fallback::find_viable(pvar v, rational& out_val) {
|
|
unsigned const bit_width = s.m_size[v];
|
|
univariate_solver* us = usolver(bit_width);
|
|
|
|
auto const& cs = m_constraints[v];
|
|
for (unsigned i = cs.size(); i-- > 0; ) {
|
|
signed_constraint const c = cs[i];
|
|
LOG("Univariate constraint: " << c);
|
|
c.add_to_univariate_solver(v, s, *us, c.blit().to_uint());
|
|
}
|
|
|
|
switch (us->check()) {
|
|
case l_true:
|
|
out_val = us->model();
|
|
// we don't know whether the SMT instance has a unique solution
|
|
return find_t::multiple;
|
|
case l_false:
|
|
s.set_conflict_by_viable_fallback(v, *us);
|
|
return find_t::empty;
|
|
default:
|
|
return find_t::resource_out;
|
|
}
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& out, find_t x) {
|
|
switch (x) {
|
|
case find_t::empty:
|
|
return out << "empty";
|
|
case find_t::singleton:
|
|
return out << "singleton";
|
|
case find_t::multiple:
|
|
return out << "multiple";
|
|
case find_t::resource_out:
|
|
return out << "resource_out";
|
|
}
|
|
UNREACHABLE();
|
|
return out;
|
|
}
|
|
|
|
}
|
|
|